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A comparison of the results obtained with NaCl,
KCl, and KBr is interesting. Even in the purest NaCl
crystals colored and kept in the dark, ¢./0, is con-
siderably suppressed in the temperature range
100-500°C, and excess conductivity due to F-aggregate
centers or colloids is not observed.!! The excess con-
ductivity due to R, M, and colloids is significant in
KCl if crystals are of high purity. The excess conduc-
tivity due to F-aggregate centers in the purest KBr
crystals is larger by a factor of ~3 as compared to KCl
crystals. The 180°C peak observed in KBr in the dark
is not observed in KCl crystals. The background diva-
lent cation impurity concentration (estimated from the
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conductivity data) in the best crystals used by us are
10-5 in NaCl, 10-% in KCl, and better than 10~ molar
fraction in KBr. We believe that the differences in the
behavior of the NaCl, KCl, or KBr are related to the
differences in the concentration of background im-
purity in the crystals. KCl and KBr crystals containing
large background impurity concentration behave like
NaCl crystals.
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The normal modes of a semi-infinite ionic crystal bounded by a pair of (100) faces normal to the z direction
but infinite in the # and y directions have been determined by a combination of analytical and numerical
methods. Cyclic boundary conditions are imposed on the displacements along the x and y directions, but
the presence of a pair of free surfaces is correctly incorporated into both the short-range and the long-range
Coulomb contributions to the dynamical matrix. The latter contribution is made rapidly convergent by a
modified Bessel-function transformation. The 6LX6L (L=number of atomic planes for the slab) eigen-
value equation for the normal-mode frequencies is solved numerically for general values of the wave vector
throughout the two-dimensional first Brilluion zone. The two lowest-frequency modes are Rayleigh waves,
whose degeneracy is slightly split by the presence of a pair of free surfaces. Optical surface modes are found
whose limiting frequencies at infinite wavelength differ from those of the bulk LO and TO modes. The con-
tribution to infrared absorption at infinite wavelength of the optical surface modes have been calculated
and the effects of relaxing the intraplanar lattice parameter and the interplanar separations to minimize
the potential energy of the slab have also been determined.

I. INTRODUCTION

HE problem of determining the normal modes and
their frequencies of finite or semi-infinite speci-

mens of ionic crystals has received a good deal of theo-
retical attention in recent years.!~7 Particular attention
has been given to the determination of the frequencies
of the long-wavelength optical modes which play a
central role in determining the optical properties of
ionic crystals at infrared frequencies. Inasmuch as the
long-range Coulomb forces between ions make a signi-
ficant contribution to the frequencies of the long-wave-
length optical modes through the macroscopic fields to

1H. B. Rosenstock, Phys. Rev. 121, 416 (1961).

2 A. A. Maradudin and G. H. Weiss, Phys. Rev. 123, 1968
1961).
( "’T.) H. K. Barron, Phys. Rev. 123, 1995 (1961).

4R, Fuchs and K. L. Kliewer, Phys. Rev. 140, A2076 (1965);
K. L. Kliewer and R. Fuchs, 7bid. 144, 495 (1966); 150, 573 (1966).

8R. Englman and R. Ruppin, Phys. Rev. Letters 16, 898
1966).
( 6 A. A. Lucas, Phys. Rev. 162, 801 (1967).

7 A. A. Lucas (unpublished).

which they give rise, these frequencies are sensitive to
the size and shape of the crystal specimens.

The limiting optical frequencies of a finite spherical
crystal of the rocksalt structure were studied by
Maradudin and Weiss,? neglecting retardation effects.
These authors found that in the long-wavelength limit
the frequencies of the longitudinal optical (LO) and
transverse optical (TO) modes are equal, in contrast
with the result obtained for infinitely extended crystals,
in which these frequencies obey the Lyddane-Sachs-
Teller® relation, wno/wro= (er/es) /251, where e and e,
are the static and high-frequency dielectric constants,
respectively.! More recently, Fuchs and Kliewer* have
examined the optical modes of an ionic crystal slab
extending to infinity in the two lateral directions and of
finite thickness. Neglecting retardation they found in
this case that as the wave vector k — 0, the frequencies
of the LO and TO modes are those of the infinitely
extended crystal, and satisfy the Lyddane-Sachs-Teller

!R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
673 (1941).
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relation. The difference between this result and that of
Maradudin and Weiss is due primarily to the difference
between the deplorizing fields associated with a sphere
and with a slab. However, in addition to the long-wave-
length optical modes of the infinitely extended crystal,
Fuchs and Kliewer found that the slab possesses two
branches of surface optical modes as well. These are
normal modes which are wavelike in directions parallel
to the free surfaces of the slab, but in which the atomic
displacement amplitudes decay exponentially with
increasing distance into the slab from the free surfaces.
Unlike the case of Rayleigh surface modes,® which are
acoustic surface modes, the frequencies of surface
optical modes tend to nonzero limits as the components
of their wave vectors parallel to the free surface, k.
and k,, tend to zero, and are characterized by the motion
of the constituent sublattices against each other rather
than in parallel, asis the case for Rayleigh waves. Fuchs
and Kliewer found that at the point 2,=%,=0, the two
surface modes become one “longitudinal” and one
“transverse” in nature and their frequencies approach
those of the limiting LO and TO frequencies of the
infinitely extended crystal. The two surface modes
have the property that the displacement amplitudes do
not decay with increasing distance into the crystal at
ky=Fky=0.

In their work, Fuchs and Kliewer approximated two-
dimensional lattice sums, which give the force exerted
on an ion by other ions in a certain layer of the slab
through their Coulomb interactions by converting them
into integrals. As we shall see in Sec. IV, this kind of
approximation is not valid for determining the fre-
quencies of modes of very long wavelengths. Also, they
did not include any correction to the short-range forces
acting on ions in the crystal surfaces due to the smaller
numbers of neighbors such ions have.

Corrections to the short-range forces from this source
were included in a recent work by Lucas.” He approxi-
mated a semi-infinite slab of V layers of ions by a double
chain of & ions each, and calculated the normal-mode
frequencies of the double chain for the special case
ks=ky=0. Coulomb interactions between nearest-
neighbor layers were taken into account only. He found
two nearly degenerate TO surface modes; the frequen-
cies of both of these modes lie below the limitingTO fre-
quency of the infinitely extended crystal. Also, unlike
what Fuchs and Kliewer obtained, these surface modes
have displacement amplitudes that attenuate exponen-
tially as a function of increasing distance into the crystal
from the free surfaces, even at k,=%k,=0.

Itisfelt that the discrepancies between the two works
may have arisen from the different approximation
methods employed in each case and that a method of
higher accuracy is required to get the complete picture
for the vibrational modes of the slab. In this paper, we

9 Lord Rayleigh, Proc. London Math. Soc. 17, 4 (1885); G. C.

I(Senson, P. I. Freeman, and E. Dempsey, J. Chem. Phys. 39, 302
1963).
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study the vibrations of a slab of finite thickness by a
method that gives us both the acoustic and optical
normal modes and their frequencies for arbitrary wave
vectors in the irreducible element of the two-dimen-
sional Brillouin zone. Both the Rayleigh waves and the
surface optical modes are found. The presence of a pair
of free surfaces is correctly incorporated into the short-
range and the long-range Coulomb contributions to the
dynamical matrix. The contributions from Coulomb
interactions between all the layers in the slab are in-
cluded. We find at certain regions in the Brillouin zone
that these Coulomb interactions between the layers
are slow varying and long-ranged. In these regions,
“surface” effects penetrate deeply into the crystal slab.
It is then no longer a valid approximation to include
Coulomb interactions between nearest-neighbor layers
alone. The effects due to relaxation of the ionic layers
near the free surfaces are also included. Our results for
the surface optical modes differ significantly from those
of Fuchs and Kliewer,* and at the point k.= k,=0, our
results agree in part with those obtained by Lucas.”

In Sec. VI of this paper, the frequency distribution
curve of the slab is compared with that of an infinitely
extended crystal with cyclic boundary conditions. Peaks
in the difference curve appear at where the surface modes
are located. In Sec. VII, the contribution of the surface
optical modes to infrared absorption is calculated.

II. EQUATIONS OF MOTION OF A
VIBRATION SLAB

We consider a crystal slab consisting of a finite
number of layers, each layer perpendicular to the z axis
(the [001] direction), and extending to infinity in the
x and y directions. The position vector of the xth ion in
the /th unit cell is given by

x(le)=x()+x(x),

where x(7) is the position vector of the /th unit cell and
x(x) is the position vector of the «th ion in any unit cell.
The equations of motion of the lattice are!

Mbia(l)=— X Pap(le; Vi Yusg(l'c’),
7]

(2.1)

2.2)

where M, is the mass of the xth kind of ion, #,(l) is the
a-Cartesian component of the displacement of the ion
(i), and ®ap(lk; k') are the atomic force constants.
With the substitution

u“(lx) = [va(lK)/Mxl/zjg—iwt ,
Eq. (2.2) becomes
Qﬂ lK; l’K/
o= 5 ool 1)
veg (MM, )12

10 A, A. Maradudin, E. W. Montroll, and G. W. Weiss, Theory of
Lattice Dynamics in the Harmonic Approximation (Academic
Press Inc., New York, 1963).

25(0’). (2.3)
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F1c. 1. Diatomic cubic lattice with the (+4) ions located at
70(l1,l2,ls), where li+-Ilo-+Is=even integer, and the (—) ions at
7o(l1,l2,ls), where l1+412-+I3=0dd integer.

We assume the crystal to have the rocksalt structure.
In this case k denotes either a (+) ion or a (—) ion. We
can eliminate the sum over ¥’ in Eq. (2.3) by noticing
that if we assume the origin of coordinates (0,0,0) to
be occupied by a (+) ion, then

X(l+)=1’0(l1,lz,l3) , l1+l2+la= even
x(I)=ro(,lsle) , litlet+Ils=o0dd
where 7 is the distance between nearest-neighbor ions

(see Fig. 1).
Equation (2.3) then separates into

1 even
@0 P (hloly) =2 [— 2 Pap P (Ulols; U'"T)
8 LM, weiy

odd

Ve UL ) +————
X VP (Ul L) l1’lzz’l3’

P gt

X (Wlels; 1115 )vg (1172,[3)] ’

h+l+l=even (2.4a)
and

B

1 even
2. a(_) l l l = _—_—
@20, ) (Ilals) Zﬂ: l:(M+M_) T ll'lz?.’la'

odd

1
X (hlels; W'l"Ts ) og P (11" ) +—— 2 Bapg

_ Ui’y

X (Llals; 111" )vg ™) (ll'lzlls)] ;

h+l+l;=0dd (2.4b)

where the word even or odd appearing above the triple
sums denotes the restrictions Iy/+7y'+l’=even or
I/ 141’ =0dd, respectively, on the summation
variables.
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Due to the existence of the pair of free surfaces
perpendicular to the z direction, we can assume wavelike
solutions satisfying periodic boundary conditions in the
x and y directions. We therefore write v, (I12:l;) as the
product of a wavelike function of /; and I3 and an
unknown function of /5:

29 (lilals) = exp(ilipr+ilape) {0 (Is)
I3 even, 141, even
and

1) (lilols) = exp(ilips+ilap2) a0 (Is),
ls odd, li+1s odd  (2.52)

where ¢1="%,7o and ¢p2=Fkyro, and the symbol (e) or (o)
denotes that /5 labels an even or an odd layer, respec-
tively. Similarly, we write v, (liJol5) as the product of
two factors:

060 (lilals) = exp(ilspst-ilaps)§ o« 9 (1)
I3 even, l1415 odd
and

10 (Iilols) = exp(iliprt-ilape) {2 ()
I3 0dd, l;+1; even. (2.5b)
Using Egs. (2.52) and (2.5b), we can rewrite Egs. (2.4a)

and (2.4b) as a set of four equations with the general
form

o P (ls) =20 20 Dag 7 ¥ P (prspa; Lol )57 (Is'),

13’8 «'p’

where Kk’ =(+) or (=), p,p'=(e) or (0), (2.6)
D og 2 (1pa; Lsly')
1 (%)
=W lf,V_{‘z, q’a/s(""”‘"")(lllzls; 1'1,'1y)
Xexpli(lh' —l)gi+i(l'—l)ga].  (2.7)

The () on the summation symbol denotes the restric-
tion on the double sum over Iy’ and /)’ that l,/+1, is
an even integer or an odd integer according to whether
the product of the parities of «’ and p’ is even or odd
[the parity of «'=(+) is regarded as even; that of
k= (—) as odd].

Equation (2.6) is a 6N X6N (N =number of layers in
the slab) matrix equation with the squares of the
normal-mode frequencies as its eigenvalues.

In the remainder of this work we assume that each
pair of ions interacts through a potential function of
¢ (r), which depends only on the magnitude of their
separation, 7. In this case the atomic force constants
®,5(lx; I'k’) take the form

q)ag(llc; Z’K/)
2

=— Drx (7') ] r=x(Ix)—x(l'x") =(I>aﬁ(l,"/; lK) .
0x,0%3

(2.8)
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Since the potential function depends only on the rela-
tive distance between the ions at the sites labeled by
(l1,lz,la) and (ll,,lgl,ls'), (I>¢,5(Z1lzls; llllgllsl) iS a function Of
Iy, Iy, I, 1) only through the difference (/;—%4') and
(I—1). Introducing the notation li=4—1I’ and
lo=1,—1;', we can rewrite Eq. (2.7) as

Do k2’ 2") (1pa; lsls')

1 (r) .
= 3" B,z 0 k') ([ 1155 L3l5")
(M M )12 0l

Xexp(—iilgbl-—ﬂzqsz) N (29)

where 1+, is now an even or an odd integer according
to whether the product of the parities of , p, ¥, and p’
is even or odd, respectively.

III. MATRIX ELEMENTS FOR THE
SHORT-RANGE INTERACTIONS

The dynamical matrix D.s*?%'?") (¢1s; Isls") defined
by Eq. (2.9) can be divided into two parts, a part
Dot *mi'2) (d1ebs; I3l3") corresponding to the Coulomb
interactions between the ions and a part D,g®*ri'»"
(¢19p2; Isl5") corresponding to the short-rangeinteractions.

Let us define two constants 4 and B! by

4re® &V (r)
e drt
(3.1)
4r2 AV (r)
B=— s
e dr l,_n

where V(r) is the nearest-neighbor interaction potential.
For nearest-neighbor short-range interactions, the
matrices Dag**?¢'?) (¢1po; Isls’) are all diagonal. For
a slab with IV layers, their explicit forms are

P=?la
D og* <2360 (hacpo; Usls”) = (€2 /M 0% 15,15 80p(3 A+ B),
for lLi==1lor N (3.2)

Dms(“p;"p) (¢1¢2; l3l3’)=DWS(Kp; kD) (¢1¢,2; lslsl)
= (82/M,(1’03)513,13' (%A+%B) )
for Lz=1lor N
D> ri2) (p1ha; Lsls') = (€2 /M xro®) 815,10 (R A+ B)
for Iz=1or N;

Case (1): k=«/,

(3.3a)

(3.3b)
Case (ii): k=K', p=9p’,
D22 K'P) (p1gpa; Is,ls”)
82
=———§};.12(34 cos1+1B cosg,),
(MM ) o

1 E. W. Kellermann, Phil. Trans. Roy. Soc. London A238,
513 (1940).
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Dz/va(w;“’p)(‘t’l‘ﬁﬁ Isly)
&2
- (1 1
(]‘[,:]M'Kl)1/27f‘)1‘16ls’l3 (2B COS¢I+ZA COS¢2) ’
D, 5o x’p)(¢1¢,2; lglal)
&2
- s . T1 )
GLar iy B ostrteosga) ;- (34)
Case (iii): «k#«’, p£p’
Do 2 2") (haghy; Lsls") = 0; (3.5)
Case (iv): k#«/, p#=p/,
Do Wi 2 (pagho; Lsly')
&2
=Dy * P2 (1hs; lgls') = ——
(MKMK’)1/27'03
X[3B@Ou, 1541+ 015,0-1)]1,  (3.6)

D, sn K’p’)(¢1¢2; l3l3’)

e2

e 1 , ,
(MKMK,)1/27034A (825, 23r41F 015,13—1) -

Notice that for any «, ¥’ and p, ¢/, the relation

Da,s"’(“" x'p')(¢1¢,2; l3l3')=Daﬂs(x'r': "")(¢1¢2; 1313/)

always holds.

Of the above expressions, only (3.4) depends on the
values of ¢ and ¢. In the limit as ¢1=¢; — 0, the above
expressions become the same as those given by Fuchs
and Kliewer,* who worked in the long-wavelength limit.

However, they have neglected the changes in these
coefficients which occur at the surface layers, given
here in Egs. (3.3a) and (3.3b). Instead, they used the
bulk expression (3.2) for all layers in the slab.

In Appendix A, the expressions for Dgg®»i«'»")
(p162; lsls") for nearest and next-nearest-neighbor short-
range forces are also given.

IV. MATRIX ELEMENTS FOR THE COULOMB
INTERACTIONS BETWEEN IONS

The Coulomb contribution to Dag®#«'») (¢ibg; Isls")
defined by Eq. (2.9) is

€y
(MKMK’)llzi’os
) exp(—ilip1—ilogps) . o
X - - [3l,l5—6, T2 T2 2
Tila (212+l22+l32)5/2 Lobalbp s(l 2?4 132)]
=Daﬁc(x’p’;‘<ﬂ)(¢l¢2; lsls'), (4.1)

where ¢, is the charge of the «th ion, and [;=l—1. As
it stands, the lattice sum in Eq. (4.1) is slowly conver-

Daﬁc(xp:‘x,p,)((ﬁﬂsﬁ lslsl —_
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gent, and must be transformed into a much more rapidly
convergent sum before its numerical evaluation becomes
feasible. We have carried out such a transformation
using a method due originally to Mackenzie.!? For illus-
tration, we work out here the expression for D ,g¢*»i#'»")
(p1p2; Isl3") for the case k=«', p=7’.

From Eq. (4.1) we find that

D, 2ix0) (¢1ba; Isls")
e o o exp(—ihgr—ilxps)
=— 2 X
Mg li=w L= (ll2+l22+l32)5/2
Ii+l2=even
X 2I2—12—13?).
Let us for the moment consider the case when 735%175’.
We make use of the integral representation
1 1 0
/ dt ts/2—-le-—-r2t
T(s) Jo
to rewrite Eq. (4.2) in the form
e? 1
Mo T(%)

4.2)

|x]¢

D, cCPikD) (1ho; Lls") = —

XY ¥ #82dt exp[ — (24124 1:2)]
Tiifimeven ”°

Xexp(—ilipr—ilaps) L2 —1*—1s%). (4.3)
The restriction l;4I;= even means that either I; and I,

are both even or that they are both odd. We can thus
break the sum in Eq. (4.3) into two parts:

e2

1
(F1+Fs),

4.
Mare* T(3) @

szc(xp; kD) (¢1¢2; lgls’) —_—

where

F1= i i t3/26“’32’dt
Mm=0 Nn=00 0
X exp(—4m2t— 2imep, —4n’t—2ing,)
X (8mr—4n*—1I?) (4.5a)
and

F2=§ i/ B2dt ¢t exp[ —4(m—3)%
m=00 0

—2i(m—%)¢1—4(n—3)*t—2i(n—3)2]
X[8(m—3)*—4(n—3%)?—1*]. (4.5b)
We convert the sums over # and # in Egs. (4.5a) and
(4.5b) into more convenient forms by the use of

12], K. Mackenzie, Ph.D. thesis, University of Bristol, 1949
(unpublished). This method is described in the paper by B. M. E.
van der Hoff and G. C. Benson, Can. J. Phys. 31, 1087 (1953).
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Poisson’s summation formulas,?

f‘, exp(—4m2—2ime)

m=—o0

T

12 o
S(2)" £ e, aso

4¢ =0

2 exp[—~4(m—%)%—2i(m—3)¢]
N\
=<7;;> G_Z_: (—1)Ge@t=&2/at  (4.5d)
Then
T [ 0
FirtFo=- 3 X

4 G=—0 H=—x 0

(o1 +7G)*+ (pot+mH)?
ol 1

2 —(p1+7G)?
d
2 4

The integrals in (4.6) are integrable analytically and
can be expressed in terms of the modified Bessel func-
tions of the second kind K,(x) with z=half-odd
integers, which can in turn be expressed as exponential
functions of I;. Thus, using Eq. (4.4) and Egs. (B5)-(B7)
in Appendix B, we get

0

11724y 6—13%

Yot (=pees]

2-— 9 71']?[2
=t )—232). 4.6)

&2
D k73 52) (1pa; Usly') = 5
xros 2
© © (¢1+7r'm)2
X T ¥ [H(=1)]
o “L@rtmmy (@) e

Xexp{— | ls|[($r+mm)*+($ot-mn)? ]2} . (4.7)

For nonzero I3, the sum in Eq. (4.7) converges very
rapidly for general ¢, and ¢s.

The remaining components of Dg°*?%2)(¢1¢bo; Isl5")
can be expressed in similar forms and we list them in
Appendix B [Egs. (B9)-(B13)].

To obtain the sums over I; and I, with the restriction
li+1,=0dd integer, all that is necessary is to replace
the factor [14(—1)™**] in Egs. (4.7) and (B9)-(B13)
by the factor [(—1)™+4(—1)"]. Thus, for example, for
the element D,,°*#¥' ) (¢1¢9; Isl;") we obtain the result

D, e 7 ¥ D) (¢ 1bos Lsly")
€xCyr ™ i i [( 1) +( 1) ]
- (MKMK')Uzl’g?' 2 m=—® n=—mw
(p1F-mm)?

[(@rtmm)*+ (pot-mn)? ]2
Xexp{—|ls| [(¢r+7m)*+(¢o+mn)*]2}
k. (4.8)

13 M. J. Lighthill, Tniroduction to Fourier Analysis and General-
zzgegi I)"unctions (Cambridge University Press, Cambridge, England,
1958).
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It should be pointed out that when |Z;|>>1, and ¢1/,
¢2/m are not small compared to 1, the dominant con-
tribution to the sums in both Egs. (4.7) and (4.8) is
from the origin (m=n=0) terms. Thus, when these
conditions are satisfied, '

ey
(MM o) Pre® (¢r2+2?)' 2
Xexp[—| L] (124+¢22) 2], «k=k’ or k#k’.  (4.9)

The origin term given by Eq. (4.9) is exactly the ex-
pression obtained by Fuchs and Kliewer* for the lattice
sums, where they replaced direct summation by an
integral. However, when |I3]| is not large compared to
unity and ¢1/m, ¢o/m are small compared to unity, the
origin term no longer dominates the sums and this
approximation method fails. This can easily be seen
by comparing the magnitude of the origin term with
that of the first nonzero term in either Eq. (4.7) or
Eq. (4.8). Thus, for example, when we put ¢1=¢:=¢,
Eq. (4.7) gives the relation

€kl

Dzzc(xp: k' p) (¢1¢2; l3[3/)—

(magnitude of origin term: m=#=0)

(magnitude of 1st nonzero term: m=n=1)

exp(2'2|ls|m)

=|(+n/¢)7| exp(22|ls|m). (4.9

Hence, for a given |l;|, when ¢ is small such that the
relation | /¢ |~~exp(2'/2|l;| =) holds, the approximation
of using the origin term for the sums is no longer valid.
In fact, for very-long-wavelength vibration modes,
¢ — 0 and the approximation method totally breaks
down, since then the origin term approaches zero while
the higher-order terms remain finite.

Equation (4.9) is a slowly varying function of ||
in certain regions of the Brillouin zone. For example,
when ¢1=0.1, $=0 and |l;] >2, the origin term given
by Eq. (4.9) is the dominating part of the sum. If we
compare the magnitudes of D,.°®*2i¥'?)(¢1s; lals")
between a two-layer separation |l;| =2 and a ten-layer
separation |l;| =10, we find that

| Doporin (0.1, 0; ly=1, Iy =3)|
[ Dape i 2(0.1, 05 Is=1, I’ =11) |

=e08=2.225,

0 ©0 e

PP

m=—0 n=—00 [,

0 0 i

=2 X

G=—00 n=—00 0

0 ©0

=2 X

G=—00 N=—00

where a=4(n—3%)? and b=%(¢1+7G)2.
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indicating a very slow drop of the the magnitude of
sum with respect to layer-separation distance. When
|T3] =1, we see from Eq. (4.9’) that the origin term does
not dominate the sum, but nevertheless it contributes
more than 509 to the sum’s magnitude. In these regions
where the Coulomb interactions between the layers
drop off slowly, it is essential to include Coulomb inter-
actions between all layers of the slab.

We now turn to the case when /3=1/;". Equation (4.7)
and (B9)-(B13) are no longer useful since they become
slowly convergent and we need to do the summing in a
different manner. Consider first the case when x>«/,
p=1¢'. In this case we have

Do c2i2) (¢iehy; Lsls)
e? exp( —ii1¢1 —1Z2¢2)
,OS(MKMK,)l/z Z1+fizlzodd (212+Z22)5’2
X[3lulg—bas(l2+12)]. (4.10)

The restriction (lit+ly=0dd) implies that when I is
odd, l» must be even or vice versa. Hence, we can write

Do Bk 2) (h1po; Lslg)

e2

1
<F1+F2)y

= @.11)
7'03(MKMK')1/2 I‘(‘%)

where

0

Fi= Y X dt 372

Mm=—0 n=—00 0
Xexp[ —4m? —2imp; —4(n—3)4—2i(n—3%)ps ]
X[8m?—4(n—1)?], (4.12a)

Fo= > X dt 372

m=—0 n=—0 [,
Xexp[ —4(m—3%)%—2i(m—5)$1—4n*t—2nigs ]
X[8(m—3%)?—4n?]. (4.12b)

Instead of transforming both the sums over # and # in
Egs. (4.12a) and (4.12b) by the Poisson’s summation
formula as we did for [;0, here we transform only the
sum over # in Eq. (4.12a) and likewise only the sum
over 7 in Eq. (4.12b). The first term in Eq. (4.12a) is

dat 1372 exp[ —4m*t —2imepy —4(n—3)2 —2i(n—3%)d2 | (8m?)

2U—($1+7G)? /w112
di 1312 exp[_4(n_%)2;_2¢(n_%)¢2][_M(1> e——(¢1+7r6')2/4t:|

28 4

4

172 ® 2
<z> e‘“("*””‘“/ dte‘““”“[l-—-**—’——(‘m—‘_rG)], (4.13)
0

2t
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The integrals in (4.13) can be expressed in terms of K,(x) with z=integer [see Appendix B, Eq. (B8)]. Doing
that and following the same procedure for the other terms in Eqs. (4.12a) and (4.12b), we can write Eq. (4.11) as
62 0 )
c(kp; k' p) . —_—— —
Dot D) (b Usls) r03(MKMKr)1’2{ nZ:l mzw 2 cos[ (2n—1)¢1 ]

X[(rm+2)Ko((2n—1) | 7m-+¢2| )+ (|mm+¢2| / 20— 1))Ki(2n—1) [ 7m—+¢2| )]

Y Y 2cos[(2n— s L (rmt- b Ko((2n—1) | imt-oi])]}, (4.14)

n=1 m=—w

where the sums of modified Bessel functions are very rapidly convergent.
The other components of D¢ *7:¥'?) (¢1¢po; l3l;) are listed in Appendix B, in Eqs. (B14)-(B17).
Finally, for the case when k=«"; p=9', Eq. (2.9) gives

—Z_ @agc("p; "P>(LZ2; l3l3) eXp(—’izldh—’l:iquz)
T —l-—l!zl'-l—-?even

1
D oo k25 50) (prgo; Usls) =

1 .- i i

=__|:(paﬂc(xp; «p) (00, l313)+ -Z_’ @aﬁc(“p; «p) (lllz, l3l3) exp(—zl1¢1—¢l2¢2):| (415&)
MK 71+ilzl'——l—zeven

The prime on the double sum indicates that the term l;=1I,=0is to be excluded. The first term ®,z°2i*» (00; I5l5)
is the atomic force tensor for the case li=1y, ls=1,’, and l;=13". This term can be found from the relation

Do 70 (00; lals) = — 35 32" Bapetriv ) (lily; Lily'), (4.15b)

k' p’ 13’11l

where the prime on the triple sum indicates that the point li=1I,=0, I'=1; is to be excluded. ®,5°*#*»(00; I l5)
is equal to zero for a diatomic, infinitely extended crystal of cubic structure, but for our slab of finite number of
layers, the elements which are diagonal in « and B are nonzero near the surfaces. We have listed in Table I the
values of ®,q°*?i#2)(00; I3/3) as functions of /; for a slab with 15 layers.

We see that while ®,,°*?: %22 (00; I5l5) is negligible at a depth of three or four layers, its value at the surface is
quite comparable to the other sums and hence cannot be neglected. Fuchs and Kliewer* have put these terms
identically equal to zero in their treatment while Lucas? has included the surface term and neglected the rest.

The second term of Eq. (4.15a) is

—e? exp(—ilipi—ilsps) . . S
c(kp; kp) . = ! L - 2 ?
D(2)aﬁ e (¢1¢2’ l313) Mx7’03 sz.fz (l_12+222)5/2 lealﬁ 5aﬁ(l1 th ):l (4.16)

71+72=even

By using the same method as used for the (I;+I>= odd) sums but taking care to exclude the point l;=1I,=0 from
the double sum, we express Eq. (4.16) in terms of rapidly convergent sums of modified Bessel functions. Thus,
for example,

| m+pe|
D (95275 5P) (1po; Isls) =
M

2 (4 ©» o
{—( > cos(2n¢1)|:(7rm+¢2)2Ko(2n[wm+¢21)+ K1(2n]7rm+¢2[)]

K703 3\n=1 m=— n

0 ©

-3 > cos(2n¢,) I:% (wm~+¢1)*Ko(2n|mm~+-¢1|)+

n=1 m=—o0

m~+¢
uKl(anwm+¢1l ):I

0

+ Z i (—' 1)m COS((Z?L—' 1)¢1)[(7rm+¢2)2K0((2n— 1) [1rm—l—¢2[ )+

n=1 m=—w0

2]7Tm+¢2|
WKI(I 7rm—{—¢>2| (2” - 1)):]

ﬁ'%%'-x«lmwlr (20— 1»])} .

S (—1)’”COS[(ZW“1)¢2:|l:%(7rm+¢1)2K0(‘Wm+¢1|(2”—1))+ .
4.17)

n=1 m=—x
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TaBLE I. Matrix elements of ®,°7:x?)(00; l3/s) for a
diatomic ionic crystal slab of 15 layers.

@n(oo;t,t.)ci"p;”’) = @yy(OOilll.)c(‘p;‘p)
= —i‘l’n(oo;l;lg)"(“”"")

€2/re* X (—0.66147)

Layer number (/)

1 or 15 (surface

layers)
2o0r 14 e2/r¢X (0.00763)
3ori13 €2/r¢3X (—0.00009)
4or12 0

The other components are listed in Appendix B, in
Egs. (B18)-(B21).

V. NORMAL MODE FREQUENCIES OF AN
IONIC CRYSTAL SLAB

In Secs. III and IV, we obtained the explicit forms of
D i’ 2") (d1ebo; l3l5") and expressed the elements of
D5 *kmi ") (h1ebg; I3l5") in terms of rapidly convergent
sums which are easily evaluable for given values of s,
I3 and for arbitrary wave-vector components ¢; and ¢..
The eigenvalue equation (2.6) is solved numerically for
a crystal slab of 15 layers, where the physical quantities
used were to fit a NaCl crystal. The physical constants
on which these calculations were based are

M, (Na)=238.16X10"2¢ g/atom,

M_(Cl)=158.85X10** g/atom,
70=2.814X10"8cm, e=4.8X1071 esu,
A=9.288, B=-—1.165.

The 90 normal-mode frequencies {w;(¢1,¢62)} and the
corresponding eigenvectors {¢,@ (I} (j=1, 2, ---,
6N =90) were obtained for a mesh of values of (¢12)
covering the irreducible element of the two-dimensional
Brillouin zone (see Fig. 2). For a NaCl crystal slab of
15 layers, eight localized surfaces modes and 82 “bulk”
vibrational modes are found. The optical “bulk”
modes have a wide range of frequencies and their upper
and lower bounds have frequencies at infinite wave-
length shifted only slightly from the corresponding
limiting LO and TO values of an infinitely extended
crystal with cyclic boundary conditions (see Table II).
Two Rayleigh-type waves with slightly different fre-
quencies (the fractional frequency separation Aw/w
~10~*) are found lying below the lower bound of the
acoustic “bulk” modes (Fig. 3). For the optical modes,
we find at ¢p1=¢2=0, two TO surface modes whose
eigenvectors have opposite parities, and whose fre-
quencies are nearly degenerate with each other
(Aw/w~10—%) and they lie below the TO limiting fre-
quency of the infinitely extended crystal (Fig. 4). The
two surface modes have ionic displacement amplitudes
that attenuate exponentially at ¢1=¢,=0 (see Fig. 5).
This agrees with the results obtained by Lucas.’
However, we find that each of these two modes is
doubly degenerate. This is what one expects since
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Pol=kyro)

o8

oem
(.5m S7)

o4 |

o.27

4’. (=ky%)

F16. 2. Mesh of values for ¢; and ¢ chosen in the irreducible
element of the two-dimensional first Brillouin zone. ¢;=m¢:1/10
and ¢s=mgy/10, where ¢ and ¢» are integers satisfying the rela-
tions ¢1>¢s and ¢1+¢2<10.

these are transverse modes at ¢1=¢2=0 and the ions
vibrate either in the x direction or the y direction, both
parallel to the surfaces. As we go away from the point
¢1=¢2=0, we find two nearly degenerate higher-
frequency surface modes (Aw/w~~10"%) having expo-
nentially decaying displacement amplitudes and they
correspond to the higher-frequency surface optical mode
found by Fuchs and Kliewer.* However, unlike their
result, these two modes have limiting frequencies at
infinite wavelength different from the LO limiting
frequency of the infinitely extended crystal. The dis-
placement amplitudes of these two upper-surface modes
have very little attenuation at the point ¢1=¢2=0 and
at this point, their frequencies are no longer nearly
degenerate (Aw/w~10"2). The fact that surface modes

40

3.0 .—_d//————'—__———

20} ACOUSTIC BULK MODES

wWi.017x10'3sec™)

-
-

o

A . R #
o o2 04w o6 o8 T

F1c. 3. Acoustic bulk modes and the Rayleigh waves propagat-
ing in the x direction (¢2=0) for a 15-layer NaCl crystal slab.
The dashed curve represents two nearly degenerate Rayleigh
waves. The acoustic “bulk” modes have a wide range of frequen-
cies lying within the two solid lines, which mark their upper and

lower bounds.
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TasiE II. Values of the upper- and lower-bound frequencies at ¢ =0 of the optical “bulk’” modes for a 15-layer NaCl crystal slab and
the limiting LO and TO frequencies of an infinitely extended crystal with cyclic boundary conditions (¢1=¢2=0).

2
Longitudinal €
optical mode

A=9.288, B=—1.165

5.852X1013 sec™!

Transverse
optical mode

4=9.288 B=—1.165
2.487X 1013 sec™!

1 1 8w\ /2
wro(Infinite crystal) =| —{ —+— ){ 4+2B+—
2 \M, M- 3
32 1 1 41!' 1/2
wro(Infinite crystal)=| —{( —+— )\ 4A+2B—— jl
2r\My M- 3

9 shift from

wup(unrelaxed) wro(infinite crystal)

5.837X107% sec™? —0.26%

9%, shift from

wlow (unrelaxed) wro(infinite crystal)

2.491X107% sec! 0.16%

comprise two branches, which are nearly degenerate in
frequency, is due to the presence of two free surfaces
and a plane of reflection symmetry midway between
them. The surface modes in the presence of two free
surfaces are essentially linear combinations of the
surface modes associated with each of the surfaces
separately of even and odd parity with respect to the
midplane of the slab, and consequently they have
slightly different frequencies. As the thickness of the
slab is increased, the frequency of each of these surface
modes approaches the frequency of a surface mode in a
semi-infinite crystal.

VI. FREQUENCY SPECTRUM OF A SLAB

As was mentioned earlier in Sec. I, the method used
here enables us to calculate the normal-mode frequencies

60
W o

50

OPTICAL BULK MODES
40 b N

/

£
1

[ — —_—— ——1

w(1.017x10!3sec™)
n
o

o " i " 4,[

o 0.27.- o4 [oX-3 4 o8 kg

Fi16. 4. Optical bulk modes and the optical surface modes propa-
gating in the x direction (¢2=0) for a 15-layer NaCl crystal slab.
Each of the three dashed curves marked (a), (b), and (c) repre-
sents two optical surface modes. The optical bulk modes have a
wide range of frequencies lying within the two solid lines, which
mark their upper and lower bounds.

of the slab for arbitrary wave-vector components in the
two-dimensional Brillouin zone. Thus, it is possible to
determine the frequency spectrum of the slab, which is
required for many applications, and to compare it with
that calculated for an infinite crystal. We divide the
frequency scale into intervals of Aw=0.3X10% sec™,
and calculate the normal-mode frequencies for a NaCl
crystal slab of 10 layers using 100 points in the two-
dimensional first Brillouin zone. (This gives us a total
of 6000 frequencies.) For the infinitely extended crystal
we use the normal-mode frequencies calculated by
Kellermann!! for NaCl.* The results are shown in
Fig. 6. In Fig. 7 the difference between the two fre-
quency histograms is plotted and we find three maxima
in the frequency intervals (1.2-1.5), (2.1-2.4), and
(3.6-3.9)X 10" sec™!. These maxima are due to the
Rayleigh waves and to the optical surface waves. The
peak at (2.1-2.4) X108 sec! is much higher than the
other two, and this is because the frequencies of the
surface modes occurring in that interval are weakly
dependent on the wave vectors. (See Fig. 4.)

VII. INFRARED LATTICE ABSORPTION OF AN
IONIC CRYSTAL SLAB

One of the ways of detecting optical surface modes in
an ionic crystal slab is by measuring the infrared
absorption spectrum of the slab. Optical surface modes
have a dipole moment associated with them, and should
absorb electromagnetic radiation at the frequencies of
these modes. Thus, one should observe peaks in the
infrared absorption spectrum due to the surface optical
modes at frequencies different from the bulk optical
mode frequencies.

In this section, we calculate the imaginary part of
the dielectric response tensor e, ® (w), which has peaks
at the same frequencies as the infrared absorption
coefficient. The imaginary part of the dielectric re-

14 In the result listed by Kellermann (Table IV) in his paper for
the normal-mode frequencies of the infinite crystal, he included
the point (10,5,0), which does not belong to the mesh of wave
vectors he has chosen. Instead, the point (7,7,1), which should be
included in the mesh, is missing.
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DISPLACEMENT AMPLITUDE OF Na ION
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DISPLACEMENT  AMPLITUDE. OF Na ION
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(b)

F16. 5. Attenuation curve of the ionic displacement amplitude
of the (4) ion for the TO surface modes of a 15-layer NaCl
crystal slab at ¢1=¢2=0. (a) and (b) shows the displacement
amplitudes of the sodium ion plotted against the layer number for
an even and an odd surface optical mode, respectively. Each of the
even or odd mode is doubly degenerate; the displacement ampli-
tude of the Na ion can either be in the x or y direction. A similar
attenuation curve can be plotted for the displacement amplitude
of the chlorine ion.

sponse tensor can be written in the form?!s
efro—1

en,<2><w>=zvr< ) / "t e ML), (1)

16 This result follows from Eq. (8.14) of the article by
A. A. Maradudin, in Astrophysics and the Many-Body Problem
(W. A. Benjamin, Inc., New York, 1963), p. 107, if the dielectric
tensor is related to the dielectric susceptibility tensor by
ew(@) =8 +4rX ().
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Fi6. 6. Frequency-distribution histograms of a NaCl crystal
slab of 10 layers and that of an infinite crystal. The histogram
bounded by the dashed curve is for a slab of 10 layers while the
one bounded by the solid curve is for an infinitely extended crystal.

where V is the volume of the crystal and M ,(¢) is the
Heisenberg representation operator for the u component
of the crystal dipole moment. Writing M ,(f) as

M, (0)=2 ea,(ix; 1),
173
Eq. (7.1) becomes

(7.2)

(g

b>
#Vn(w) isvs (M M)

€@ (w) =

X/ dt e KV, (Ik; OV (V5 0))
0
o ¢2(— 1)lHatls(— )i+ Hs

BVn(e) s wity (M (hlols) M (B ) ]

Xf dt euiw«V,,(lllgls; t) V‘,(llllzllg’; 0)>, (7.3)
0

where we have put #(w)=(¢#7—1)~! and
() =V, (l) /M M2

We can apply a normal coordinate transformation
on the displacement amplitudes V,(lil2ls; {) by putting

AN i1 il
Vs 0=(0) £ p ROt
22 T [epig) I

XEuD (dap2; la)Aj(bage; 1), (7.4)

where ¢=(¢1,02) sums over the two-dimensional first
Brillouin zone and L? is the number of ions in each layer
of the slab. For an ionic slab of N layers, the index
j(=1,2, ---, 6N) labels the 6N normal-mode solu-
tions of Eq. (2.6). The field operator 4;(¢;¢) can be
expressed in terms of the creation and destruction phonon
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Fi16. 7. Curve showing the difference between the frequency distribution of a NaCl crystal slab of 10 layers
and that of an infinitely extended crystal.
operators for the mode (g,7) as Using Eqs. (7.4)-(7.6), we obtain from Eq. (7.3)
A(é; t)=bj(¢3) 4:xp[—1'wj(¢)t] i s ) 2m2e? w—w;i(g) ]— o wtw;i(d)]
O . . — (. t . [ w)=
+b; ( ¢) eXP[’“*’J(!I‘)t] J ( @; )) ( ) # VI dios 7 wj(¢)
and the creation and destruction operators obey the o byl
following commutation relations: > (=1)irttta( )it
(bi(8)bi:1(8"))=[n(w;($))+116;5:06¢r,  (7.62) niats W'ty [M (Wlals) M (1'115') ]2
(bi(9)b;+(8"))=(b;'(8)b1(¢"))=0, (7.6b) XexpLi(h—h)¢itila—1')¢2]
(65" ()b;(8"))=1n(w;($))5;ir3s'- (7.6¢) XEuD(8; 1)5* (g5 1) . (7.8)

The eigenvectors {{,?(¢1p2; Is)} are normalized by the
relation

The delta function 8[w—+w;(¢)] is identically equal to
zero if we restrict ourselves to the frequency region

3 600 (ude; ) (uchas Is) =8 (7.7) @>0. The triple sum over /s, Iy, Is in Eq. (7.8) can be
Isn broken up in the following way:
(—1)utiats . £ PO (g 1)
—————exp(thért-ld2)i P (d; )= X X S exp (ih¢1+ilsps)
utsts M (lilols) /2 Is L2 +
h+lz=even
C. P (gs Iy) (9) (++0)
- XX ————exp(ihgitilg)+ XX exp(ihgitilaps)
1s Ll M_1r2 Is Liz 172
h+l2=0dd h-+l2=0dd
(9) (—o)
- XX — exp(iliprtilaps).  (7.9)
Is Lls e
i+l =even
The periodic boundary condition implies that
) exp (ihgrtilsps) =3 LA 14 (—1)" 2186, 015 8p9,nar (7.10a)

hiz
li+l2=even
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and ) . 17
Z CXP(’LZI¢1+1Z2¢2)=IL [(—1)m+(—1)n2]5¢1,n116¢2,n27r, (710b)

4123
l14l2=0dd

where #74,73=0, 1, 2- - - . The wave vectors corresponding to #1+#n,=2n (n=1, 2, - - - ) are outside the two-
dimensional first Brillouin zone and are equivalent to the point ¢1=¢2=0 in the first Brillouin zone; hence, the
dielectric tensor €, (w) in Eq. (7.9) depends only on the normal modes at ¢=0. Using the relations given in
Eqs. (7.10a) and (7.10b), we finally obtain

2 6[w—wj(0)] / C D (05 1) Ca D05 I5) s $u P E(0; 1) D05 1)
NQ@r®) 7 wi(0) \%  wu VR I » M2 ls M_1» >
*() (+e)(0; ) §V*<j)(-—e)(0; 1 r) &*D (+o)(0; 1 /) g-y*(j)(—o)((); 1 /)
x(z‘, { “ - -3 : ) (7.11)
13’

oD (@) =

F2
T
M2 Py M 12 1’ M2 % M_12
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Fi1c. 9. Diatomic crystal slab of NV layers with variable
parameters ¢;(¢=1,2, ---, N—1) and 7.

We have calculated the values of €,,®(w) for a slab
of 15 layers with M,(=mass of sodium atom) and
M_(=mass of chlorine atom). At ¢=0, the tensor
€, (w) 1s diagonal in u and » and e;;® (w)= €, @ (w).
We show in Figs. 8(a) and 8(b) the values of e..®(w)
and e;,®(w), respectively, for different frequencies.
Since the optical surface modes are transverse in nature
at =0, they only contribute to e;,®(w). In Fig. 8(b),
the line (A) at the lowest frequency is due to the TO
surface modes while the lines (B), (C), and (D) at higher
frequencies are due to the optical bulk modes. We see
from this figure that, at least in the case of a slab of
15 layers, the absorption by the optical surface modes is
comparable with that by bulk TO modes, and this
result suggests that surface optical modes may be
experimentally observable.

VIII. RELAXATION EFFECTS OF A SLAB

In the preceding sections we have assumed any two
nearest-neighbor ions in the slab to be separated by a
distance 7o apart, where 7, is taken to be the nearest-
neighbor separation for an infinite crystal. As a conse-
quence, the spacing between successive layers of the
slab is restricted to be equal to 7o, so the layers (especi-
ally those near the surfaces) may not be at their true
equilibrium positions. In this section, we vary the
spacings between the layers and allow the interionic
distance in each layer to change.'® We then minimize
the total potential energy of the slab as a function of
the interionic distance and the separation distances of
the layers, and estimate the magnitudes of the effects
due to the relaxation on the surface modes.

16 We assume the new interionic distance in each layer of the
slab to be the same.
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Letr be the separation distance between two adjacent
ions in the same layer of a slab; then r=#, for an -
infinite crystal. Let the (i41)th layer be separated
from the ith layer by a distance (1+¢)r, where ; is a
parameter to be determined (see Fig. 9). Then the
potential energy due to Coulomb interactions between
the ith and (i4-#)th layers (n=integer>0) is

2

Ve(i, i+n) =—6~L2(—1)”

r

o © (_1)11+l2
X X < : ) (8.1)
== ly=o \[ 112412+ (14 8,.%) 7]u/2

© where 8n=€it+eit - Feay, and L? is the total

number of ions in a layer.
We expand Eq. (8.1) in powers of 8,

e? © ©
Ve@i, i) =—LA(=1)» 3 3 (—1)nte
4 l1=— lg=—o0

1 7
X[ _"Bni
(l12+122+n2)1/2 (ll2+l22+n2)3/2
) (21’1«2—112—122)
(112+lz2+n2)5/2 a ]
=(@/NLH(=1)"[A(0) —8.'B()+(5,2C(m) ]}, (8.2)

where

o (—1)uta
An)= % —_—,
l1=—00 lpg=—c0 (ll2+122+n2)1/2

o o (—1)ttizy,
Bn)= X —,
t=—o tim o (I L2 m2)2
o (—1)Ha(2p2 — 12— ,2)
(212 4-n2)502

In Eq. (8.2) we have kept terms in the expansion in
powers of 8,° only up to the second order. This is because
(.91 for @>3 and #<2, while the coefficients of
(827)* become negligible for #>2. The sums 4 (n), B(n),
and C(n) are similar to those considered in Sec. IV,
and can be expressed in terms of modified Bessel
functions. They are listed in Appendix C.

Using Eq. (8.2), the total Coulomb energy due to
interactions between all the layers of the slab is

+3(3,7)

(8.3a)

(8.3b)

C)=% >

lj=—0 lg=—c0

(8.3c)

(75 €1, * *,en_1)
e? N—1N—i

=—r—[Z 2 Vei, i+n)+N®(0)]L, (8.4)

=1 n=1
where IV is the number of layers in the slab, and
— 1)l
, ( 1) 1+

BO)=1 Y —
( ) 2 11,12 (l12+l22)1/2
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is the Coulomb interaction energy due to ions in the
same layer. The prime on the double sum indicates that
the term J;=17,=0 is to be excluded.

For the short-range interactions,

Ve@i, i+1)=L2V((1+€))
=L V(r)+eaV'(r)+3e22V"(r)+ -]

=fr—L2[(rV(r)/e2)+(e#zB+eﬁ%A>], 8.5)

where V(r) is the short-range interaction potential
between nearest-neighbor ions and we have made use
of the constants 4 and B, defined in Eq. (3.1). Here, 4
and B are no longer constants but are functions of 7
and their functional forms depend on the explicit form
of V(7). For example, if we assume V(7) to be the Born-
Mayer potential Ae~7/7; then

473/ N\ 492\
4 =—A— g“T/P, B=————¢1lp,
' é? <p2> e p

The total short-range interaction potential energy for
a slab of NV layers is

B(7; €1, *yen—1)
e? N-1
=—LBN—1Dgo(r)+ 2 (:Beit3de?)], (8.6)
r i=1

where ¢o(r)=(r/e?)V (r). Adding Egs. (8.4) and (8.6),
we get the total potential energy,

BT(r; €1, -+ en—1) =D(7; €1, - - yen—1)

+‘I>s(r; €1, *° ,GN_1) . (87)

We minimize ®7(7; e1,- - -,exy—1) with respect to e;
and 7 by solving the set of N—1 simultaneous equations

0dT
a—(f’; €1, "+ en-1)=0,
€

i=1---N—1

for different values of . We then determine the value
of #min at which ®7(7; e, - -,ex—1) is a minimum. For a
NaCl crystal slab of 15 layers, using the Born-Mayer
potential function for V(r), we find that the minimum
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N(r i€ €ia)

BClll-

r(10~%m)

Fmin= 2.798x10°

0 | 2 3

-2 F

-5

Fi16. 10. Total potential energy of a 15-layer NaCl crystal slab as
a function of the interionic separation distance 7.

value of ®7(7; €1, - - ,ex_1) occurs at r=2.798X 1078 cm
(see Fig. 10), giving a change of 0.57%, from the value
of 7o=2.814X 1078 cm of the infinitely extended crystal.
The shifts in the interplanar separation distances at
minimum potential and at other values of 7 are listed
in Table III. Using the results at minimum potential,
the normal-mode frequencies of a relaxed slab of 15
layers are calculated. The number of Rayleigh and
optical surface modes remains the same, but their
frequencies and those of the bulk modes are shifted
from the corresponding frequencies of a slab of 15 layers
without relaxation (see Table IV).
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TasLE III. Values of 4, B, ¢ (i=1,2, - -+, N—1), and ®7(r; e1," - - ,ex—1) for different values of 7
for a 15-layer NaCl crystal slab with relaxation.

7’(10_8 cm) A B €1=€14 €2=€13 €3= €12 €4= €11 €5= €10 €= €9 €7=€g @T(r,el,- . ,514)

" 2.818 9223 —1.155 —0.0059 —0.0023 —0.0024 —0.0024 —0.0024 --0.0024¢ —0.0024 —4.06317
r=ro(infinite

crystal) »  2.814  9.288 —1.165 -—0.0034  0.0001 0 0 0 0 0 —4.06329

2.813 9304 —1.167 —0.0028 0.0006 0.005  0.0005  0.0005  0.0005  0.0005 —4.06332

r=tmo—>  2.798 9.547 —1.204 0.0059  0.0089  0.0088 00088  0.0088  0.0088  0.0088  —4.06351

2.740 10.574 —1.362  0.0343  0.0361 0.0360  0.0360 - 0.0360  0.0360  0.0360 —4.05968

2,700 11332 —1481 0.0496  0.0508  0.0508  0.0508  0.0508  0.0508  0.0508 —4.05153

2.600 13433 —1.823 0078 00791 00791 = 00791 00791 00791  0.0791  —4.00351
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TasirE IV. Values of the upper- and lower-bound frequencies of the optical bulk modes and the frequencies of the optical surface
modes and Rayleigh modes for a 15-layer NaCl crystal slab with and without relaxation. (a) is for the case when ¢1=¢2=0 and (b) is

for the case when ¢;=0.27 and ¢2=0.

Upper bound Lower bound Optical Optical Optical Rayleigh
optical bulk optical bulk surface surface surface modes
mode mode modes modes modes
Wup Wlow (a) (b) (C)
(A)
15-layer slab 5.837 2.491 2418 2.418 Osec™
(no relaxation)
(1018 sec™)
15-layer slab
(with relaxation) 5.944 2.561 2.516 2.516 Osec™?
(108 sec™?)
Shifts of relaxed
frequencies from 1.83 2.81 4.05 4.05 0
unrelaxed frequencies
o
(B)
15-layer slab
(no relaxation) 5.698 2.398 3.735 2.449 2.347 0.488
(103 sec™?)
15-layer slab
(with relaxation) 5.750 2.503 3.783 2.547 2.456 0.486
(1013 sec™?)
Shifts of relaxed
frequencies from 0.91 437 1.28 4.0 4.64 —04

unrelaxed frequencies
o

APPENDIX A: SHORT-RANGE FORCES WITH
NEAREST- AND NEXT-NEAREST NEIGHBOR
INTERACTIONS

s(kp; k' p’) . N
Dag?eri? s L) (M M)

(r) . - -
X2 Pog® ®2i' 2 (1155 13ly") exp(—ilipr—iloge) ,

2
: k=(+)or (—1), p=(e) or (o).
Let us define the following constants:
A= rd/e2)V'(ry), B=(4rp2/e2)V'(ry),
Ar= (/) V1" (22%,) , By= (dred/21262)Vy(21/2,)
Ao=(4rg*/e2) V3" (21210),  By= (dre/21262) V4 (21/2,) ,

where V(r)=short-range interaction potential between
nearest-neighbors ions, Vi(r)=short-range interaction
potential between next-nearest-neighbor (4) ions,
Vao(r)=short-range interaction potential between next-
nearest-neighbor (—) ions, and the prime on each func-
tion denotes differentiation with respect to the respec-
tive arguments. The matrices Dag**%%' 2" (d1ps; lsls")
are no longer all diagonal in form. We list the nonzero
elements of the matrices below.

(A1)

Case (i): x=x=(+) ion, p=p’
If /5 is not a surface layer, then

Da::ns(+p; +2) (¢1¢2: l3l3l)
= Dy FPit) (hugbo; Lsls') = (e2/ro3M 4) 8151
X[3A4+ B+ A1+ 2B1—3(A1+ By) cosgy cospa],

D, stpitp) (¢1¢2; lslal)
=(e*/re*M )b13,1
X[5344 B+ A1+ 2B1— Bi cosp1 cosps |,

D,;y“(ﬂ"h’) (¢1¢2; 1313’)
= (62/7’03M+)613,la%([1 1— Bl) SiI’l(bl Sin¢2
= Dws(+p;+p) (¢1¢2; 1313')_

If I3 is a surface layer, then

Do 2i42) (Gagho; Ialy')
=Dy FPED) (1p; Isls") = (€2/70 M 1) Sy 19
X[3A+2B+24:+ (5/4)Bs
—3(A1+By) cosey cosgs],
D220 (¢1hs; Lals")
= (e?/1*M 1) 14,1y
X (GA+ B4+3A414+2B1— By cospi cosps) ,
Dy * o t2) (acho; Uals”)
= (e2/r¢*M ;) 815,195 (A1— By) sing; sing,
= Dws(+p;+p) (¢,1¢2; 1313/) .
For the case k=«'=(—) ion, substitute A,, Bs, and

M_ for 4, By, and M, respectively, in the above
expressions.

Case (ii) : x=«/, p#=p’

The expressions for D,g**»¥'?) are exactly the same
as those given in Eq. (3.4).



181 NORMAL MODES OF A SEMI-INFINITE CRYSTAL 1333

Case (iii) : k=%'= (4) ion, p=£p’ D, 2540 (h1dg; Isls")
8(+p; . = (62/M+703)[ii‘(A I_Bl) Sind>1:|(5z Jg'—1— 01 ,l,'+1)
Dest et iubs; 1) — DLt a; L)

= —(e*/M r¢*)[1(41+By) COS¢1+%6BI COS¢2]6 D, 2 Grite) (gachos Lols')
X Ou st drsty-1), = —(e?/M r¢*)[i}(41— B1) sing2] (813,191~ 815,15741) -
8 3 ’ . !
Dy, 72 (gugpe; lals') For the case k=«'=(—) ion, substitute Az, Bs, and
= —(¢*/M,7¢*)[§ B1 cos¢1+1(41+ B1) cosps] M_ for Ay, By, and M., respectively, in the above
X (815,141 815,11) expressions.
D222 (1o Lsly') Case (iv): x#«/, p=p’
= — (/M r¢*)[1(41+ B1)(cosdr+coses) ] The expressions for Deg®* “2) (¢1pe; lsls’) are the

X (81,1541 8215,09—1),  Same as those given in Eq. (3 6).

APPENDIX B: ELEMENTS OF THE DYNAMICAL MATRIX FOR THE COULOMB INTERACTION

Using the Poisson’s summation relations given in Eqgs. (4.5¢) and (4.5d), the following four summation rules
are derived:

" © 1/2 94 2
S mPeimie-2img = <_7£> we_ @Hr@?2 /4t (B1)
m=—c0 4 16¢2
i (m—%)? exp[ —4(m—%)2%—2 G llzw o (dHT@)2/4¢
1 expl—4(m —1yt=2im—1el= ¥ (1) o . B
w © 1/2
> metntiting = _; 3 (¢+7rG)<1 > o (HTO L (B3)
m=—00 G=— 4t 4t
o+7G)
Z (m—3) exp[ —4(m—3)*—2i(m—3)¢]=—i Z (— 1)G( " (4t> (T, (B4)
Some useful integrals:
o Jf g—b—a?/4t 2la[ 1/2 /2
A= =< > Kio(|a]|b])=——e10lal | |B] 520 BS)
[ =) Kesttatten=1- H (
© ¢ e—lﬂt—-a"‘iu 8 ’ bl 1/2 2l
5= =(57) Kanllalloly=-—e-tut, o] %0 ®6)
0 £ |al la

C=/wdle"’”‘*“”4‘l"2=2<ﬂ> Kspo(|al [0s]) =3[ (1+]al [0])/[b]*]etoMel, [B] 50 (B7)
0 2[8]

i dx
D= / gobir— =2K(2(ab)'2), a>0,5>0. (BS)
0 X

The other components of D¢ %) (¢1hs; laly’) for |Is| 20 are

e?

Dy, ox0i0) (ypo; Isls') = - Z Z [14(=1)m+n]

er 2 m=—o0 n=—ow

(pot+mn)?
[(¢1Fmm)?+ (pot7n)?]/2

exp{ —|lis| [(¢1+mm)*+ (¢o+mn)* ]2}, (BY)
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D x2ix2) (¢acp; lsls") = —[ Do P ¥0) (G1a; Usls”) + Dy o2 %2) (hagp; Lsls") ], (B10)

e2 © ) (¢ + m)(¢ -+ ”)
T8 5 f(=ppmn—— T
M r¢® 2 m=—0 n—= [(prtmm)>+ (pot-mm)* ] 2

Xexp{ — | ls| [(@r+7m)*+ (pot7n)2 ]2} = D023 52) (Grpo; Lsls’),  (B11)

D, o2 x2) (agpo; Lsls") =

e2

™ «© © .za
Ty 5 Lt (=1t mm)

718 2= e | Iy

Xexp{ — | ls| [(p1+7m)?+ (pot71)2] 2} =D, o7 x2) (d1p; Isls"),  (B12)

Do« x0) (¢ 1bo; Usls") =

and
32

T w il
S ST S W G P T

1(7'03 2 m=—0 n—=w Izb’I

Xexp{ — | ls| [(¢1+7m)* 4 (¢otm1)?]1 2} =D, 2ix0) (gaho; Lsls") . (B13)

Dyzc(xp; Kp)(¢1¢2; 1313') =

The other components of Dg°*#: ¥’ (¢1ps; lsls) are

e? © 0
c(kp; k' p) . = —
D272 (ips; Uals) TTRTEIL { ngl mz.:_w 2 cos[(2n—1)¢ ]

[ mm—-eb |
(2n—1)

x[<rm+¢l>2z<o<(2n—1)lm+¢11)+ KI«Zn—merm)]

55 2cos[<zn—1>¢ljt<wm+¢2>21<o«zn—1>11rm+¢2|)3}, (B14)

n=1 m=—o0

Do D) (Gagpy; lsls) = —[Dao 732 (Grgba; lsl)+Dyy i ' 2 (dagp; Usls) |, (B15)
82 0 ©
D1y B D) (b Usls) = _-——[ > X 2amt¢y) | mmt-1| sin((2n—1)p2)K1((2n—1) | mmt1])
7’03(M,¢M,‘l)1/2 n=1 m=—ow0

+§: i 2(rm+¢2) | mm~+¢s| sin((2n—1)¢:) Kl((Zn—l)[wm+¢2]):| =D, 0 *BKD) (yps; Isls),  (B16)

n=1 m=—c0

and
D22 ) (B1epa; Lsls) = Dy 0¥ D) (1po; lals) = Dop® 93P (Grgpa; lals) = Doy P32 (dagp; lals) =0.  (B17)

The other components of D (z)as®*? ¥?) ($p1¢s; lals) are
D(Z)wc(w: «r) (¢1¢2§ lsls)

Tm~+¢1
!—m———ﬂKl(Zn [ 7rm—l-¢1| )]

82 4: © ©
=— _{ > 005(2n¢2)|:(7rm+¢1)2K0(2%l7rm+¢1|)+

M 7® 3 Ln=1 m=—0

——i i cos(2ne)

n=1 m=—o0

Tm+¢2)” it éa
[(_’”_?_)Ko(znlm+¢2|)+|—"—22—QK1(2”’“’”+¢2”]
n

2| mm+¢|

3 5 (0 costCn=1) (o g K@D et Kl(on—1) o) |

n=1 m=—w

[(ﬂ'm‘l-‘l’z)z [ wm—+ba|

—X ¥ (=D cos((@i—1)¢) Ko (n=Dlmm+eu)+= s KiGn—Dlamtoal) |, (819

n=1 m=—cw0
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D (2) 5P %2) (Gaspa; lsls) = —[D (2)xa® P ¥2) (pab; lals) D (2)yy * % 2 (1ca; lls) ],
2

UE S (emtin) | mm-ton] sin(@ngs)Ky(Qn|zm+1])

n=1 m=—cw

€
D(2)1yc(x12; xp)(¢l¢2; 1313) —
M

xTos

+ i i (—1)"(rm~+¢y) | mm~+61| sin[ (2n—1)¢2 1K1((2n—1) [ mm—+1|)} =D (2)ya® <7 <2 ($1ba; lals) ,

n=1 m=—o

and

D (2257 %0 (agpa; Uals) = D 2)y° 73 *P) (1ps; lals) = D (2)2a°“7 K0 (1po; lsls) = D (2“7 ¥P (apo; lal3) = 0.

APPENDIX C: EXPRESSIONS FOR A(n), B(n), C(n), AND ®(0) IN
TERMS OF RAPIDLY CONVERGENT SUMS

0 0

8
n) = X T f 24 A ey
A( ) lle zle ((211._1)2_|_ (2l2 1)2)1/2 ¢ p{ ]nl[(Zl 1) (2l 1) ] }

B)=3 3 8rexp{—r|n|[(@h—1)+(2k—1)2]12},

l1=1 lo=1

Co=% 3 4r[(2h—1)+ =177 exp{ —r|n| [(2h— 1)+ QL —1)7]"},

=1 lp=1
(_1)l1+l2 0 o
®0)=L>'—F—=3 4(—1)1Ko(rli(21,—1)) —In,2.

i (2410212 u=11=1
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(B19)

(B20)

(B21)

(C1)

(C2)

(C3)

(C4)



