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A comparison of the results obtained with NaC1,
KCl, and KBr is interesting. Even in the purest NaC1
crystals colored and kept in the dark, o./o.„ is con-
siderably suppressed in the temperature range
100—500'C, and excess conductivity due to F-aggregate
centers or colloids is not observed. " The excess con-
ductivity due to R, M, and colloids is signi6cant in
KCl if crystals are of high purity. The excess conduc-
tivity due to P-aggregate centers in the purest KBr
crystals is larger by a factor of 3 as compared to KCl
crystals. The 180'C peak observed in KBr in the dark
is not observed in KCl crystals. The background diva-
lent cation impurity concentration (estimated from the

conductivity data) in the best crystals used by us are
10 ' in NaC1, 10 ' in KC1, and better than 10 ' molar
fraction in KBr. We believe that the differences in the
behavior of the NaCl, KCl, or KBr are related to the
differences in the concentration of background im-
purity in the crystals. KCl and KBr crystals containing
large background impurity concentration behave like
NaCl crystals.
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The normal modes of a semi-infinite ionic crystal bounded by a pair of (100) faces normal to the e direction
but infinite jn the x and y directions have been determined by a combination of analytical and numerical
methods. Cyclic boundary conditions are imposed on the displacements along the x and y directions, but
the presence of a pair of free surfaces is correctly incorporated into both the short-range and the long-range
Coulomb contributions to the dynamical matrix. The latter contribution is made rapidly convergent by a
modified Bessel-function transformation. The 6LX6L (L=number of atomic planes for the slab) eigen-
value equation for the normal-mode frequencies is solved numerically for general values of the wave vector
throughout the two-dimensional first Brilluion zone. The two lowest-frequency modes are Rayleigh waves,
whose degeneracy is slightly split by the presence of a pair of free surfaces. Optical surface modes are found
whose limiting frequencies at infinite wavelength differ from those of the bulk LO and TO modes. The con-
tribution to infrared absorption at infinite wavelength of the optical surface modes have been calculated
an.d the effects of relaxing the intraplanar lattice parameter and the interplanar separations to minimize
the potential energy of the slab have also been determined.

I. INTRODUCTION

~ ~HE problem of determining the normal modes and
their frequencies of finite or semi-inhnite speci-

mens of ionic crystals has received a good deal of theo-
retical attention in recent years. ' ~ Particular attention
has been given to the determination of the frequencies
of the long-wavelength optical modes which play a
central role in determining the optical properties of
ionic crystals at infrared frequencies. Inasmuch as the
long-range Coulomb forces between ions make a signi-
6cant contribution to the frequencies of the long-wave-

length optical modes through the macroscopic fields to

' H. B. Rosenstock, Phys. Rev. 121, 416 {1961).
~ A. A. Maradudin and G. H. gneiss, Phys. Rev. 123, 1968

(1961).' T. H. K. Barron, Phys. Rev. 123, 1995 (1961).
4 R. Fuchs and K. L. Kliewer, Phys. Rev. 140, A2076 (1965);

K. L. Kliewer and R. Fuchs, ibid. 144, 495 (1966);150, 573 (1966).
5R. Englman and R. Ruppin, Phys. Rev. Letters 16, 898

(1966).' A. A. Lucas, Phys. Rev. 162, 801 (196'i).
' A. A. Lucas (unpublished).

which they give rise, these frequencies are sensitive to
the size and shape of the crystal specimens.

The limiting optical frequencies of a finite spherical
crystal of the rocksalt structure were studied by
Maradudin and Weiss, ' neglecting retardation effects.
These authors found that in the long-wavelength limit
the frequencies of the longitudinal optical (LO) and
transverse optical (TO) modes are equal, in contrast
with the result obtained for infinitely extended crystals,
in which these frequencies obey the Lyddane-Sachs-
Teller relation, &or, o/coro= (ep/e ) t A I, where ep and e„
are the static and high-frequency dielectric constants,
respectively. ' More recently, Fuchs and Kliewer have
examined the optical modes of an ionic crystal slab
extending to inanity in the two lateral directions and of
finite thickness. Neglecting retardation they found in
this case that as the wave vector k —& 0, the frequencies
of the LO and TO modes are those of the in6nitely
extended crystal, and satisfy the Lyddane-Sachs-Teller

SR. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
673 (1941).
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relation. The difference between this result and that of
Maradudin and Weiss is due primarily to the difference
between the deplorizing fields associated with a sphere
and with a slab. However, in addition to the long-wave-
length optical modes of the infinitely extended crystal,
Fuchs and Kliewer found that the slab possesses two
branches of surface optical modes as well. These are
normal modes which are wavelike in directions parallel
to the free surfaces of the slab, but in which the atomic
displacement amplitudes decay exponentially with
increasing distance into the slab from the free surfaces.
Unlike the case of Rayleigh surface modes, ' which are
acoustic surface modes, the frequencies of surface
optical modes tend to nonzero limits as the components
of their wave vectors parallel to the free surface, k
and k„, tend to zero, and are characterized by the motion
of the constituent sublattices against each other rather
than in parallel, as is the case for Rayleigh waves. Fuchs
and Kliewer found that at the point k =k„=0, the two
surface modes become one "longitudinal" and one
"transverse" in nature and their frequencies approach
those of the limiting LO and TO frequencies of the
infinitely extended crystal. The two surface modes
have the property that the displacement amplitudes do
not decay with increasing distance into the crystal at
k,= ky ——0.

In their work, Fuchs and Kliewer approximated two-
dimensional lattice sums, which give the force exerted
on an ion by other ions in a certain layer of the slab
through their Coulomb interactions by converting them
into integrals. As we shall see in Sec. IV, this kind of
approximation is not valid for determining the fre-
quencies of modes of very long wavelengths. Also, they
did not include any correction to the short-range forces
acting on ions in the crystal surfaces due to the smaller
numbers of neighbors such ions have.

Corrections to the short-range forces from this source
were included in a recent work by Lucas. " He approxi-
mated a semi-infinite slab of E layers of ions by a double
chain of E ions each, and calculated the normal-mode
frequencies of the double chain for the special case
k, =k„=0. Coulomb interactions between nearest-
neighbor layers were taken into account only. He found
two nearly degenerate TO surface modes; the frequen-
cies of both of these modes lie below the limiting TO fre-
quency of the infinitely extended crystal. Also, unlike
what Fuchs and Kliewer obtained, these surface modes
have displacement amplitudes that attenuate exponen-
tially as a function of increasing distance into the crystal
from the free surfaces, even at k,=k„=0.

It is felt that the discrepancies between the two works
may have arisen from the different approximation
methods employed in each case and that a method of
higher accuracy is required to get the complete picture
for the vibrational modes of the slab. In this paper, we

'Lord Rayleigh, Proc. London Math. Soc. 17, 4 {1885);G. C.
Benson, P. I. Freeman, and E. Dempsey, J. Chem. Phys. 39, 302
(I963).

study the vibrations of a slab of finite thickness by a
method that gives us both the acoustic and optical
normal modes and their frequencies for arbitrary wave
vectors in the irreducible element of the two-dimen-
sional Brillouin zone. Both the Rayleigh waves and the
surface optical modes are found. The presence of a pair
of free surfaces is correctly incorporated into the short-
range and the long-range Coulomb contributions to the
dynamical matrix. The contributions from Coulomb
interactions between all the layers in the slab are in-
cluded. We find at certain regions in the Brillouin zone
that these Coulomb interactions between the layers
are slow varying and long-ranged. In these regions,
"surface" effects penetrate deeply into the crystal slab.
It is then no longer a valid approximation to include
Coulomb interactions between nearest-neighbor layers
alone. The effects due to relaxation of the ionic layers
near the free surfaces are also included. Our results for
the surface optical modes differ significantly from those
of Fuchs and Kliewer, 4 and at the point k,=k„=0, our
results agree in part with those obtained by Lucas. "

In Sec. VI of this paper, the frequency distribution
curve of the slab is compared with that of an infinitely
extended crystal with cyclic boundary conditions. Peaks
in the difference curve appear at where the surface modes
are located. In Sec. VII, the contribution of the surface
optical modes to infrared absorption is calculated.

x(its) =x(l)+x(tt), (2 1)

where x(l) is the position vector of the 1th unit cell and
x(ss) is the position vector of the ttth ion in any unit cell.

The equations of motion of the lattice are'

M„ii (lst) = —g C tt(its; l'ss')Its(l'tc'), (2.2)

where M„ is the mass of the ssth kind of ion, I (4) is the
u-Cartesian component of the displacement of the ion
(lsc), and C tt(k; i'ss') are the atomic force constants.
With the substitution

I (lst) = Pe (its)/M 't'je —'"'

Eq. (2.2) becomes

0 e(its; l'ts')
cost (lst) = Q ve(i'st').

t'"tt (M„M„.)'" (2 3)

'o A. A, . Maradudin, E. W. Montroll, and G. W. Weiss, Theory of
Lattice Dynamics sn the Harmonic Approximation (Academic
Press Inc. , New York, 1963).

II. EQUATIONS OF MOTION OF A
VIBRATION SLAB

We consider a crystal slab consisting of a finite
number of layers, each layer perpendicular to the s axis
(the L001j direction), and extending to infinity in the
x and y directions. The position vector of the ath ion in
the lth unit cell is given by
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(t,o,i)

(O,o,or.

('o,o,o)r.

(o, l, t) r.

Due to the existence of the pair of free surfaces
perpendicular to the s direction, we can assume wavelike
solutions satisfying periodic boundary conditions in the
x and y directions. We therefore write e &+) (111213) as the
product of a wavelike function of /j and l2 and an
unknown function of l3.'

+' (/1/2/3) = exp(i/al/ 1+i/2&2)/ +' (13)

13 even, /1+12 even

(l, l,o)ro

Fzo. t. Diatomic cubic lattice with the (+) iona located at
r3(/l, /2, /3), where /i+4+/3=even integer, and the (—) iona at
r0{l~,l2,l3), vrhere l~+l2+l3 =odd integer.

~. + (/, l,l,)= exp(2/tyt+2/2ys)i. .+ (13),

13 odd& /2+12 odd (2.5a)

where pt ——k,re and &2——k„r&&, and the symbol (e) or (o)
denotes that la labels an even or an odd layer, respec-
tively. Similarly, we write v & '(111213) as the product of
two factors:

'va (ll/2/3) = exp(i/tent+ i/242)/ (/3)

13 odd, 11+12even. (2.5b)
x(l+) rs(/1 /2 13) /1+/2+13 —even

x(l ) = re(/1, /3, /2), 1,+1,+/3 ——odd
Using Eqs. (2.5a) and (2.5b), we can rewrite Eqs. (2.4a)
and (2.4b) as a set of four equations with the general
formwhere ro is the distance between nearest-neighbor ions

(see Fig. 1).
Equation (2.3) then separates into

o)2/. &~u)(/ ) g g D &gP;3 P')(y y . / / l)|- &„'y')(/ l)
l3'p g'y'

''=(+) o (—) PP'=() o (), (26)even

o)22) &+&(l,l,l,)=Q Q C p&++&(111213, /3'/2'/3')

p ~+ ly'l2'l3'
where

We assume the crystal to have the rocksalt structure. t& & '&(111213)= exp(i/tl/it+i/2p2)/ & '&(1,—),
In this case K denotes either a (+) ion or a (—) ion. We 13 even, /1+12 odd
can eliminate the sum over K' in Eq. (2.3) by noticing
that if we assume the origin of coordinates (0,0,0) to
be occupied by a (+) ion, then

od.8

X Vp&+)(/2'/2'/3')+ Q C p&+ -)
(M+M )'" ll &3 l3

X (/3/2/3, /3'/2'/3')lip & ) (/3'/2'/3)

and
ll+ 12+13

——even (2.4a)

Od.d.

X (/, /, /„ /, '12'1,')lip&+) (/1'/2'/3')+ Q @.p&

lx'l2'l3'

X (/3/2/3 j 1], 12 13 )t&p (/1 /2 /3)

ll+ 12+13 =odd (2.4b)

o)2v & )(/1/2/3)=Q Q c'ap& +'
p (M+M )'l2 l~'12'l3'

1 (r)

Q C' p'" ""'&(111213,ll'12'13')
(M M )'l2 4'32'

XexpLi(/3' —/t)yt+i(/2' —12)$2$. (2.7)

The (r) on the summation symbol denotes the restric-
tion on the double sum over /3' and 12' that /t'+/2' is
an even integer or an odd integer according to whether
the product of the parities of K' and p' is even or odd
)the parity of K'=(+) is regarded as even; that of
K'=(—) a,s oddj.

Equation (2.6) is a 6EX6cV (/= number of layers in
the slab) matrix equation with the squares of the
normal-mode frequencies as its eigenvalues.

In the remainder of this work we assume that each
pair of ions interacts through a potential function of
p„„(r), which depends only on the magnitude of their
separation, r. In this case the atomic force constants
C p(lK; /'K') take the form

where the word even or odd appearing above the triple
sums denotes the restrictions /1'+/2'+/3' ——even or
/2'+12'+13'= odd, respectively, on the summation
variables.

C p(lK; /'K')

4@~'(r)
~ r=x&lz) —x&l'~ ) =C' p(l K

' lK) . (2.8)
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Since the potential function depends only on the rela-
tive distance between the ions at the sites labeled by
(/1 4 /p) and (4',4', /p'), C ~e(/)/p/p, /('/p'/p') is a function of
/&, 4, /&', 4' only through the difference (/), —/&') and
(/p —4'). Introducing the notation E(= /) —/i' and
lp ——/p —/p', we can rewrite Eq. (2.7) as

D e(z» c'p')(y y ~ / / I)

j. («)

Q C e("»"'&')(E(lp, /p/p')

(M M )'" rirp

Xexp( iZ)—(/g ilp—(/p), (2.9)

where Zi+Zp is now an even or an odd integer according
to whether the product of the parities of ((, p, ((', and p'
is even or odd, respectively.

III. MATRIX ELEMENTS FOR THE
SHORT-RANGE INTERACTIONS

e2

8(p, (pi(pB cos(jh(+ pA cospp),
(M„M„.)'i r,

s(ay; L'y)
Q y . / / I)

8(p)pip, pB(cosbjl+cos$2) j;
(M„M„)'"rp'

Case (iii): ((&((', p&p'

s(sy;ay')(y y . / / ) p.

Case (iv): )(W»', pAp',

D s(c» L'y')(y y ~

/ / i)

e2
=D„("'"'"')(~.Vp; 44') =-

(M„M„.)'"rpP

(34)

(3.S)

The dynamical matrix D e("&'"'&')(@)P&,/p/p') deined
by Eq. (2.9) can be divided into two parts, a part
D e'"»"'~')(QiQp, /p/p') corresponding to the Coulomb
interactions between the ions and a part D p'&"&'"'&'

($1/2 /3/3 ) corresponding to the short-range interactions.
Let us define two constants A and 8"by

D .(";"~)(y,y, . /, /, i)

e2

XEgB(Z)ls, lp'+1+()lt' 1),j — (3.6)

4 A (~la, (p'+)+ bl p, ( p' )) A-
(M„M„)'"rp'

Notice that for any ((, ((' and p, p', the relation
4rp' d'V(r)

A==
r2 r-rp

D e~(~~;~'u')(yiyp ~

/p/ ') —D es(~'p';~y)Q, y // I).
always holds.

Of the above expressions, only (3.4) depends on the
values of p). and pp. In the limit as pi = (t p ~ 0, the above
expressions become the same as those given by Fuchs
and Kliewer, 4 who worked in the long-wavelength limit.

However, they have neglected the changes in these
coefficients which occur at the surface layers, given
here in Eqs. (3.3a) and (3.3b). Instead, they used the
bulk expression (3.2) for all layers in the slab.

In Appendix A, the expressions for D
(p)@p', /p/p') for nearest and next-nearest-neighbor short-
range forces are also given.

(3.1)
4rp' (/V(r)

e (& r rp

where V(r) is the nearest-neighbor interaction potential.
For nearest-neighbor short-range interactions, the
matrices D e'("&'"'&')((1))gp, /p/p') are all diagonal. For
a slab with X layers, their explicit forms are

Case (i): ((=((', p=p',

D.e "'" (41@2, /3/3') = (e'/M. rp')8(, ,(;5.e( ', A+8), -
for /p/1 or J)Z (3.2)

IV. MATRIX ELEMENTS FOR THE COULOMB
INTERACTIONS BETWEEN IONSD.'""'""'(eV; 4/') =D„'"' "'((t (t;/. /')

= (e'/M„rp')()(, , (,.(-', A+-,'8),
for /p 1or it/ —(—3.3a) The Coulomb contribution to D e("»'"'&')((/, (),; /, /, ')

defined by Eq. (2.9) is

e„e„.

(M„M„.) '"rp'Case (ii): ~W((', P=P',

D„'(»'»(g,P, ; /p/p') = (e'/M„rp')/)(, , (, ( A+8),
for /p ——1 or 1V; (3.3b) D (. ~ g«)i~ ~ // n

D..'("""'"(qhq4; /p, /p')

Z)(3, la'(pA cos@1+pB cos$2) )

(M„M. )'"rp'

»E. W. Kellermann, Phil. Trans. Roy. Soc. London A238,
513 (1940).

(i) exp( —iE)(t (—ilppp)
XQ —

1 3E.E,—a.,(i, +i, yl, )j
zirp (Ep+ E,'+ Zpp)'"

=D., ("""»(y,y„ /, /, ') (4.1)

where e„ is the charge of the ath ion, and &3
——l3—l3'. As

it stands, the lattice sum in Eq. (4.1) is slowly conver-
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gent, and must be transformed into a much more rapidly
convergent sum before its numerical evaluation becomes
feasible. We have carried out such a transformation
using a method due originally to Mackenzie. '2 For illus-
tration, we work out here the expression for D p'~"&' "'I"~

(&~ps, Esls') for the case «= «', p= p'.
From Eq. (4.1) we find that

D c&cy; zy)(P P ~ l l I)

Poisson's summation formulas, "
exp( —4m't —2imy)

(~ ) 1/2

e «+ 0—~ "4' (4.5c)
&4t)

exp[ —4(m —,')st —2i(m —,')y)

e2

3f„rps lI =
l1+l2 =eveIl

exp (—iEggs&
—ill p)

(E s+ l s+ Eps)»s
Then

1)ge &P+~g&»4~

&4t)

X (2Ex' —lss —Es')

Let us for the moment consider the case when /3&l3'.
We make use of the integral representation

1 i
dtt'" 'e "'

T(s~) o

(
2t —(y,P~G)' 2t (@,+~a—)& —ls' . (4.6)

2t2 4t2
to rewrite Eq. (4.2) in the form

The integrals in (4.6) are integrable analytically and
can be expressed in terms of the modified Bessel func-
tions of the second kind E„(x) with n =half-odd
integers, which can in turn be expressed as exponential
functions of Es. Thus, using Eq. (4.4) and Eqs. (85)—(87)
in Appendix B, we get

e2
c &up; xy) (p p ~ l l ~)—

M„rp' T(-,')

ts& dt exp[ —t(E&'+E& +Es'))

7P' &O e0
(4 2) P +P Q Q tl/2dt e-4&t

e—II=" p

(p,+~G)'+ (g,+~H)'q
Xexp~— 1[1+(—1)" )l 4t )

D & '"&(yA EE')= — (~+F), (4.4)
M„rp' T(-', )

where

m=e0 n=~
t3/2e —l3 ddt

Xexp( —4mst —2im&t g
—4e't —2in@s)

X (8m' —4e' —ls') (4 5a)

ts &'dt e-'~" exp[ —4(m —') st

2;(m ,—)y, 4(—~—;)s—t 2i(e ,')—y,)—
X[8(m —-')' —4(n —p)' —Eps). (4.5b)

We convert the sums over m and n in Eqs. (4.5a) and

(4.5b) into more convenient forms by the use of

»J. K. Mackenzie, Ph.D. thesis, University of Bristol, 1949
(unpublished). This method is described in the paper by B.M. E.
van der Hoff and G. C. Benson, Can. J. Phys. 31, 1087 (1953l.

l1= &e l2= co

l1+l 2 =eVen

Xexp( —il~gq —i2sps)(2E~' —Es' —lp') . (4.3)

The restriction Eq+Es ——even means that either Eq and Es

are both even or that they are both odd. We can thus
break the sum in Eq. (4.3) into two parts:

e' 7r

D c&Ly;ap)(@ y . l l &)

M„rp' 2
00 00 (yg+a m)'

1)m+~]
m=&e n— [(P&+am)'/+a. e)')'»

Xexp{—
~
ls

~ [(&t~+a m)'+ Q»+a.n)']'~') . (4.7)

For nonzero Es, the sum in Eq. (4.7) converges very
rapidly for general P& and @&.

The remaining components of D e'"~'"~'(Qipsj Epls)
can be expressed in similar forms and we list them in
Appendix 8 [Eqs. (89)—(813)].

To obtain the sums over l j and l2 with the restriction
E&+l&.——odd integer, all that is necessary is to replace
the factor [1+(—1)™)+in Eqs. (4.7) and (89)—(813)
by the factor [(—1) +(—1) ].Thus, for example, for
the element D„'&"& "'&'(p~&t s, Epls') we'obtain the result

& u; 'u)(y&t, ll')
e„e„

Z [(—1)"+(—1)")
(MM ~) rp'2~= —~~—~

(&t g+~m)'
X

[(Pq+am) +(yp+a.~) )~~

Xexp{—
~
l,

~
[(y&+7rm)'+ Q,+ere)')'"},

«'Wa. (4.8)
' M. J. I-ighthill, IntrodNctioe to Folrier Analysis and General-

ized Fgectiorrs (Cambridge University Press, Cambridge, England,
1958}.
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It should be pointed out that when
I
l2 I))1, and gi/2r,

&2/2r are not small compared to 1, the dominant con-
tribution to the sums in both Eqs. (4.7) and (4.8) is
from the origin (m=22=0) terms. Thus, when these
conditions are satisfied,

D c(cp;c'p)(p y ~
2 2 ~)~

(M M )i/2r 2 (p 2+/ 2)l/2

XexpL —
I

2
I
Qi'+&2')'"j «&' o««' (49)

The origin term given by Eq. (4.9) is exactly the ex-
pression obtained by Fuchs and Kliewer4 for the lattice
sums, where they replaced direct summation by an
integral. However, when I22I is not large compared to
unity and tt i/2r, $2/2r are Small COmpared tO unity, the
origin term no longer dominates the sums and this
approximation method fails. This can easily be seen

by comparing the magnitude of the origin term with
that of the first nonzero term in either Eq. (4.7) or
Eq. (4.8). Thus, for example, when we put pi=&2=&,
Eq. (4.7) gives the relation

(magnitude of origin term: m =I=0)

(magnitude of 1st nonzero term: m =22 =1)

rp'(M, M„)'" ii+is =odd

exp (—ilia) —il2y2)

(2 2+2 2)5/2

&(I 32 Z//
—8 s(2 '+Z 2)g. (4.10)

The restriction (2i+22 ——odd) implies that when Zi is
odd, l2 must be even or vice versa. Hence, we can write

D c(cp;c'p)Q y ~
2 2 )

indicating a very slow drop of the the magnitude of
sum with respect to layer-separation distance. When

I
22

I

= 1, we see from Eq. (4.9') that the origin term does
not dominate the sum, but nevertheless it contributes
more than 50%%uo to the sum's magnitude. In these regions
where the Coulomb interactions between the layers
drop off slowly, it is essential to include Coulomb inter-
actions between all layers of the slab.

We now turn to the case when 22 ——l2'. Equation (4.7)
and (89)—(813) are no longer useful since they become
slowly convergent and we need to do the summing in a
different manner. Consider first the case when ~&~',
p= p'. In this case we have

D,.(.,;;»(p,y, . l,l, )

exp(2'"I 22I2r)

p+2r (

=
I (1+2r/y) 'I exp(2'"I 22 I vr). (4.9') where

g2

P'2+~2), (4 11)
r '(M M )'" I'(—')

Hence, for a given I lpI, when g is small such that the
relation

I
2r/p I

exp(2'/'
I

l2
I
2r) holds, the approximation

of using the origin term for the sums is no longer valid.
In fact, for very-long-wavelength vibration modes,
P~ 0 and the approximation method totally breaks
down, since then the origin term approaches zero while
the higher-order terms remain finite.

Equation (4.9) is a slowly varying function of Il2I
in certain regions of the Brillouin zone. For example,
when @i——0.1, &2——0 and I22I)2, the origin term given

by Eq. (4.9) is the dominating part of the sum. If we
compare the magnitudes of D; (""'"'")

((t/i(l/2,
' lplp')

between a two-layer separation
I

lp
I

= 2 and a ten-layer
separation

I l2I = 10, we find that

ID c(c»'"'»(0.1 0; l2=1, lp' ——3)I =2.225
~

I
D„'(""'"'» (0.1, 0; lp

——1, lp' ——11)I

m=oo n

d'] ]3/2

XexpL —4m't —2impi —4(22 —22) t —2i(22 —22)(t2j

&& I
8m2 —4(22 ——,')'j, (4.12a)

m~oo A—(o p

)&expI —4(m —,')'t —2i(m —2')p, —422't —222ip2 j
X I 8(m —-')' —4l'j. (4.12b)

Instead of transforming both the sums over m and n in
Eqs. (4.12a) and (4.12b) by the Poisson's summation
formula as we did for la/0, here we transform only the
sum over m in Eq. (4.12a) and likewise only the sum
over 22 in Eq. (4.12b). The first term in Eq. (4.12a) is

fS~(e A~(e p

dt tp" expL —4 t—m2impi —4(22 —2) t —2i('I —22)&2j(8m')

Ct t'" expL 4(22 ')'t —2i(22—-2)4—27—2t ((t/2+2rG) 2 (2r ) '/2—
e-(&I+~0)&t4t

2t2 ( 4t)

where (2= 4(n —2)' and b= ~2(ct/i+2rG) 2.

2r) i/2
g-2 ((n—1/2) Ci2

4)

(e+ G)'-
dQ-at- b/'t (4.13)
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The integrals in (4.13) can be expressed in terms of K„(x) with n= integer Lsee Appendix B, Eq. (B8)].Doing
that and following the same procedure for the other terms in Eqs. (4.12a) and (4.12b), we can write Eq. (4.11) as

g2

D„'&"»"'»(&/)i&t)2, lol3) {Q p 2 cos[ (2N —1)pi]
r '(M M )'" ~=i ~=~

X [ (2rm+&2) Ko((222 I) I 2rm+&2 I )+( I 2rm+&2 I /(2N 1))Ki((2N I)
I
2rm+4 I )]

2 cosC(2N I)&/'2X(2rm+pi)'Ko((2N 1) I orm+p& I )]}, (4 14)
n=l m—QO

where the sums of modified Bessel functions are very rapidly convergent.
The other components of D 2'&"& "'»(g&&'2, lolo) are listed in Appendix B, in Eqs. (B14)—(817).
Finally, for the case when ~=)&'; P= P', Eq. (2.9) gives

D p' " '"
(yiy2, lolo) =— Q C p" '""'(li/2, l, lo) exp( —iliyi —iloy2)

3f„
pl+$2 =CVCII

1
p@ o &»»)(pp. / /)+

M, 212l 2

$1+$2 =CVC11

C )2'&"»'"»(/il2, l,l,) exp( —iL)pi —il2$2)]. (4.15a)

The prime on the double sum indicates that the term /i ——
/2

——0 is to be excluded. The first term C o'&'&' "») (00; /2/2)

is the atomic force tensor for the case l~=l~', l~ ——l~', and l3 ——(3'. This term can be found from the relation

c&~n;ay)(PP /2/2)
— g P' @ &~&~»~'»')(/i/2 /2/2')

a'y' l3'lIl2
(4.15b)

where the prime on the triple sum indicates that the point li ——/2 0, lo ————lo is to be excluded. C o'&"»'"»(00; lolo)

is equal to zero for a diatomic, infinitely extended crystal of cubic structure, but for our slab of finite number of
layers, the elements which are diagonal in n and P are nonzero near the surfaces. We have listed in Table I the
values of C '&""'"»(00; lolo) as functions of /2 for a slab with 15 layers.

We see that while C '""'"»(00;4/2) is negligible at a depth of three or four layers, its value at the surface is
quite comparable to the other sums and hence cannot be neglected. Fuchs and Kliewer' have put these terms
identically equal to zero in their treatment while I ucas~ has included the surface term and neglected the rest.

The second term of Eq. (4.15a) is

D&».&'&"»'"»(@i@„/, l,) = Pl
3f„rp'

l 1+l 2 =CVCll

exp( i tiki —i loy2)—
L3/-L) —~-o(/i'+/2')7

(l 2+/ 2) 2/2
(4.16)

By using the same method as used for the (/i+/2= odd) sums but taking care to exclude the point li /2
——0 from-—

the double sum, we express Eq. (4.16) in terms of rapidly convergent sums of modified Bessel functions. Thus,
for example,

QO QO [~m+y, [

os( 22+2) ', (~m+@,)—'Ko(2n
I ~m+4, [)+ K,(20 I ~m+@, I)

2n= 1 m~QO

—e' 4&' m [~m+@2[
D&2)»'""'""'(42421/2/2) = —— —

I 2 Z cos(222pi) (2rm+@2)2Ko(2N [2rm+qb2[)+ — — Ki(222[2rm+@2[)
3II„roo 3E~=im—~ S

QO QO 2[~m+02[
+g g (—1) os((2+ —I)p,) (2rm+42)'Ko((222 —1) I2rm+4'2I)+ — Ki([2rm+y2[ (222 —1))

n=l tn- (2m —1)

QO QO
[ m+y, [

(—1) cos[ (222 —1)+2] 2(2rm+4) Ko(lorm+Ai[(222 —1))+ Ki([2rm+pil(222 1))
n=j m=QO (222 —1) )

(4 17)
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TABLE I. Matrix elements of C '&'&'"»(00; lele) for a
diatomic ionic crystal slab of 15 layers.

1, y~(=I Ilr.)

Layer number (le)

1 or 15 (surface
layers)

2or j4
3 or $3
4or I2

@'s~(oo;tali)' ""'""= 4'yy(oo;lily)' ""'""
g C'zz(OO lyly)

e'/re' X (—0.66147)

e'/ree X (0.00763)
e'/ro'X (—0.00009)

0

0.8 m'

0.6a

The other components are listed in Appendix 8, in
F.qs. (818)—(821).

V. NORMAL MODE FREQVENCIES OF AN
IONIC CRYSTAL SLAB

0.4 v

0.27f' BL

In Secs. III and IV, we obtained the explicit forms of
D~e""'"'&'&(P]Qs isle) and expressed the elements of
D.p'""""&(yips, leis ) in terms of rapidly convergent
sums which are easily evaluable for given values of l3,
4' and for arbitrary wave-vector components Pi and Ps.
The eigenvalue equation (2.6) is solved numerically for
a crystal slab of 15 layers, where the physical quantities
used were to 6t a NaC1 crystal. The physical constants
on which these calculations were based are

M~(Na) =38.16&&10 "g/atom,

M (Cl)=58.85)&10' g/atom,

r0=2.814&(10 cm, e=4.8&10 ' esu,

3=9.288, 8= —1.165.

The 90 normal-mode frequencies (ce,Q i,ps)) and the
correspon. ding eigenvectors (I &'&&"»(ls)}(j=1, 2, ~

6iV=90) were obtained for a mesh of values of (PiPs)
covering the irreducible element of the two-dimensional
Brillouin zone (see Fig. 2). For a NaC1 crystal slab of
15 layers, eight localized surfaces modes and 82 "bulk"
vibrational modes are found. The optical "bulk"
modes have a wide range of frequencies and their upper
and lower bounds have frequencies at infinite wave-
length shifted only slightly from the corresponding

limiting Lo and To values of an infinitely extended
crystal with cyclic boundary conditions (see Table II).
Two Rayleigh-type waves with slightly different fre-
quencies (the fractional frequency separation Ao~/re

~10 ') are found lying below the lower bound of the
acoustic "bulk" modes (Fig. 3). For the optical modes,
we find at fr=ps=0, two TO surface modes whose
eigenvectors have opposite parities, and whose fre-
quencies are nearly degenerate with each other
(A~/re~10 4) and they lie below the TO limiting fre-
quency of .the infinitely extended crystal (Fig. 4). The
two surface modes have ionic displacement amplitudes
that attenuate exponentially at P& ——P&

——0 (see Fig. 5).
This agrees with the results obtained by Lucas. ~

However, we And that each of these two modes is
doubly degenerate. This is what one expects since

0 02m 0.4m'

FIG. 2. Mesh of values for @I and p2 chosen in the irreducible
element of the two-dimensional first Bril!ouin zone. @i——s.tf&/10
and gs=xg2/10, where g& and g& are integers satisfying the rela-
tions qI&q2 and qI+q2&10.

these are transverse modes at pt ——&s= 0 and the ions
vibrate either in the x direction or the y direction, both
parallel to the surfaces. As we go away from the point
Pi=Ps ——0, we find two nearly degenerate higher-
frequency surface modes (A&a/o&~10 ') having expo-
nentially decaying displacement amplitudes and they
correspond to the higher-frequency surface optical mode
found by Fuchs and Kliewer. ' However, unlike their
result, these two modes have limiting frequencies at
inanite wavelength different from the Lo limiting
frequency of the infinitely extended crystal. The dis-
placement amplitudes of these two upper-surface modes
have very little attenuation at the point Pt ——P&

——0 and
at this point, their frequencies are no longer nearly
degenerate (Ace/oi~10 s). The fact that surface modes

40

30

I~
IO

20O

O

AC OUST 1C BULK MODE S

I.O

0 0.2 m' 0.4m 0.671 0,8W

FIG. 3. Acoustic bulk modes and the Rayleigh waves propagat-
ing in the z direction (F2=0) for a 15-layer NaCI crystal slab.
The dashed curve represents two nearly degenerate Rayleigh
waves. The acoustic "bulk" modes have a wide range of frequen-
cies lying within the two solid lines, which mark their upper and
lower bounds.
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TABI.E II. Values of the upper- and lower-bound frequencies at ii =0 of the optical "bulk" modes for a 15-layer NaCl crystal slab and
the limiting LO and TO frequencies of an infinitely extended crystal with cyclic boundary conditions (4»= pe=0).

Longitudinal
optical mode

Transverse
optical mode

s'(1 1'lf grr)
coLO(Infi»te crystal) =

I
+—

II
"+'~+—

2ro'Egg+ M-~ E 3 ~—
A =9.288, 8= —1.165

5.852&&10"sec '
s'/1 1 lf' 4rr)

~ro(Infin&te crystal) = —
I

+ II
'4+»—

I2,. E3f, ~-iE 3i
A =9.288, 8 =' —1.165

2.48/X10" sec '

cl1&p (unrelaxed)

5.837X10 'sec '

co&,„(unrelaxed)

2.491&&10 "sec'

fo shift from
~Lo(infinite crystal)

—0.26%

j, shift from
~To(infinite crystal)

0.16/o

comprise two branches, which are nearly degenerate in
frequency, is due to the presence of two free surfaces
and a plane of reflection symmetry midway between
them. The surface modes in the presence of two free
surfaces are essentially linear combinations of the
surface modes associated with each of the surfaces
separately of even and odd parity with respect to the
midplane of the slab, and consequently they have
slightly different frequencies. As the thickness of the
slab is increased, the frequency of each of these surface
modes approaches the frequency of a surface mode in a
semi-infinite crystal.

VI. FREQUENCY SPECTRUM OF A SLAB

As was mentioned earlier in Sec. I, the method used
here enables us to calculate the normal-mode frequencies

6.0
LO

of the slab for arbitrary wave-vector components in the
two-dimensional Brillouin zone. Thus, it is possible to
determine the frequency spectrum of the slab, which is
required for many applications, and to compare it with
that calculated for an infinite crystal. We divide the
frequency scale into intervals of Ace=0.3&10" sec ',
and calculate the normal-mode frequencies for a XaCl
crystal slab of 10 layers using 100 points in the two-
dimensional first Brillouin zone. (This gives us a total
of 6000 frequencies. ) For the infinitely extended crystal
we use the normal-mode frequencies calculated by
Kellermann" for NaCl. " The results are shown in
Fig. 6. In Fig. 7 the difference between the two fre-
quency histograms is plotted and we find three maxima
in the frequency intervals (1.2—1.5), (2.1—2.4), and
(3.6—3.9))&10" sec '. These maxima are due to the
Rayleigh waves and to the optical surface waves. The
peak at (2.1—2.4) &&10" sec ' is much higher than the
other two, and this is because the frequencies of the
surface modes occurring in that interval are weakly
dependent on the wave vectors. (See Fig. 4.)

50 VII. INFRARED LATTICE ABSORPTION OF AN
IONIC CRYSTAL SLAB

4.0

5.0

I~
s To

lO

2 2,0-
r

O

JO

, ~(a)

(b)

0.2v:- OA m' 0.6 v 0.8 m

One of the ways of detecting optical surface modes in

an ionic crystal slab is by measuring the infrared
absorption spectrum of the slab. Optical surface modes
have a dipole moment associated with them, and should

absorb electromagnetic radiation at the frequencies of
these modes. Thus, one should observe peaks in the
infrared absorption spectrum due to the surface optical
modes at frequencies different from the bulk optical
mode frequencies.

In this section, we calculate the imaginary part of
the dielectric response tensor e„.t'&(o&), which has peaks
at the same frequencies as the infrared absorption
coefficient. The imaginary part of the dielectric re-

Fxo. 4. Optical bulk modes and the optical surface modes propa-
gating in the x direction (&2

——0) for a 15-layer NaCl crystal slab.
Each of the three dashed curves marked (a), (b), and (c) repre-
sents two optical surface modes. The optical bulk modes have a
wide range of frequencies lying within the two solid lines, which
mark their upper and lower bounds.

~4 In the result listed by Kellermann (Table IV) in his paper for
the normal-mode frequencies of the infinite crystal, he included
the point (10,5,0), which does not belong to the mesh of wave
vectors he has chosen. Instead, the point (7,7,1), which should be
included in the mesh, is missing.
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l2
~ W 8

z 4
10

Lil

I-
CL

2
I-
LLJ

LIJ

I

0

8

7 9
LAYER NUMBER

l5 2
~ 0 ~

0 .6 I,2 I.8 2.4 5.0 5.6 4,2 4.8 5A 6.0 Ccf(IOI&eec 1)

FIG. 6. Frequency-distribution histograms of a NaC1 crystal
slab of 10 layers and that of an infinite crystal. The histogram
bounded by the dashed curve is for a slab of j.0 layers while the
one bounded by the solid curve is for an infinitely extended crystal.

o 2

where V is the volume of the crystal and M„(f) is the
Heisenberg representation operator for the p component
of the crystal dipole moment. Writing M„(t) as

M„(f)=Q e„u„(la, t), (7 2)

w0

o
I

I-
w -l
w
C3

CL
CO0 -2

LAYER
NUMBER Eq. (7.1) becomes

2' e„e„
~ "'(~)= —Z

Avn(re) &~;&'~' (M„M )t~s

dt e '"' V /I(:; t V„ /' If.", 0

4, ~

e&( 1)&1+i2+i3( 1)«'+~&'+~a'

-Z Z
Qvn(te) ilt2/3 il l2 l3 fM(lilsls)M(li'ls'ls') j

X dh e '"'(V, (ltlsls', f) V„(li'ls'ls", 0)), (7.3)

«5

(b)

FIG. 5. Attenuation curve of the ionic displacement amplitude
of the (+) ion for the TO surface modes of a i5-layer NaCl
crystal slab at @1

——@&=0. (a) and (b) shows the displacement
amplitudes of the sodium ion plotted against the layer number for
an even and an odd surface optical mode, respectively. Each of the
even or odd mode is doubly degenerate; the displacement ampli-
tude of the Na ion can either be in the x or y direction. A similar
attenuation curve can be plotted f'or the displacement amplitude
of the chlorine ion.

sponse tensor can be written in the form"

peesca

es i'&(te) = 2s'~
~

dt e '"'(M (f)M (0)) (7.1)&iv)
'~ This result follows from Kq. (8.14) of the article by

A. A. Maradudin, in Astrophysics and the MarIy-Body ProNem
(W. A. Benjamin, Inc., New York, 1963), p. I07, if the dielectric
tensor is related to the dielectric susceptibility tensor by
e„„(ru)=S„,+4sX„„(ru)

where we have put n(co) = (ee""—1) ' and

u„(l~)= V„(k)/M„'~'

We can apply a normal coordinate transformation
on the displacement amplitudes V„(ltlsls, t) by putting

exp(i7tgi+ ilsgs)
V„(l,l,l„ I) =I

F21.'I siss ~ Lte, (yips)$'I'

Xf.„& &(y,4„ l )~;(4,4„f), (7.4)

where fl= (@t,ps) sums over the two-dimensional first
Brillouin zone and I.' is the number of ions in each layer
of the slab. For an ionic slab of E layers, the index
j(=1, 2, , 6$) labels the 6X normal-mode solu-
tions of Eq. (2.6). The field operator A;(fI; t) can be
expressed in terms of the creation and destruction phonon
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FIG. /. Curve showing the difference between the frequency distribution of a NaCl crystal slab of 40 layers
and that of an infinitely extended crystal,

operators for the mode (t/, j) as

~ (0 /)=»Q) PL
— J(0)/j

+»t(—0) eRI: i(N)/j=~'( —
1/; /), (73)

and the creation and destruction operators obey the
following commutation relations:

(7.6a)

(7.6b)

(7.6c)

Q I Ie ($1/2~ /3)I Ie ($1/2) l3)

hajji

~ (7.7)

(»(1/)/ "(t/')) =
I zz( (0))+1j/' '&

(»(t/)»'((/')) = (»'8)»'(0')) = 0

(»'(~/)»'(t/')) =~(~ Q))~ '4 '
The eigenvectors {I„(j)Q 1/2, l3) }are normalized by the
relation

Using Kqs. (7.4)—(7.6), we obtain from Kq. (7.3)

2zr'e' /)L(o —(oj(y)j—/)Lco+(oj(y) j
~. "'(~)=—Z Z

VL2 vice j (oj((/)

( ])(1+(2+(3( $)(1'+12'+le'

Xg
lll2)3 ll l2 13 fM(/1/2/3)M(l1 l2 l3 )j

Xexp t'i(/1 —l1')&1+i(/2 —/2') &2$

The delta function 8L(o+raj(P)$ is identica11y equal to
zero if we restrict ourselves to the frequency region
(d) 0. The triple sum over /1, l2, l3 in Kq. (7.8) can be
broken up in the following way:

( ])L1+(2+13 I. (j)(+e)(y. /3)
p( /,y,+/, (t,)t-„( )(y; t,) =

&1&24 M(/1/2/3) ~2 ~+'~'
li+l2 =even

exp(z/1$1+ z/2/2)

le fg1e M 1/2
la+la =odd

(j) (+o)

exP(z/14'1+2/24'2)+ Z Z — e"P(z/1(/'1+3/2&2)
ls lils

l&+l2 =odd

(j) (-o)

l j, +la =even
The periodic boundary condition implies that

exp(z/14'1+z/2/2) 4+ 11.+( 1) f~pz, nze/)$3, nzo
lcm

li+l2 =even

exp(i/ghz+i/2&2) . (7.9)

(7.1.0a)
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4J
N

O
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FIG. 8. Imaginary part of the
crystal dielectric response tensor
for a i5-layer NaCl crystal
slab. e„(co) in (a) and ~„(~)
in (b) are normalized such that
Jo ESP (M) d&

.6

i 4.0 5.0 6.0
hl(lOt&sec ~)

.5

0I- 4
0
OI-
Cl
taJ
N

CL
OX

and

l1ls
l1+l2 =odd

0
24 2.6

{b)
4g(IO'~sec ~)

(7.10b)

where Ni, ns ——0, 1, 2 .~. The wave vectors corresponding to jzi+ns ——2n (n=1, 2, .~) are outside the two-
dimensional erst Brillouin zone and are equivalent to the point pi ——(ts ——0 in the first Brillouin zone; hence, the
dielectric tensor e„„()(o)) in Eq. (7.9) depends only on the normal modes at /=0. Using the relations given in
Eqs. (7.10a) and (7.10b), we finally obtain

~,(Q)j 1- (j)(+8)(Q ls) 1
(j)(-8)(Q $s) i. (j)(+0)(Q. $ )

lit (2«&) j (d, (Q) i3 M+'» (3 3f '" i~ M+'»

(j) +se)(Q() ') i. *(i)(-~)(Q (t ') 1- s(j)(+0)(Q 1I).
xi& —2 +2

(is' 3f '" &3' 3f '~' &3'

(j)(-o)(Q. ) ))
3f '"

a(j)( 0)(Q ~ ) I))
(7.11)
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(1+65)r
(I+6~) r

(l+6q)r
(t+62)r

'[ (I+6,)r~5
r

N LAYERS

g2

V'(i, i+n) =—J.2(—1)"
r

( 1)11+12co ao (
&& Z Z I

-
. , (8.1)

ll—~ 12=~ ELl 2+1 '+ (22+ g„')2jl/2

where 8 '=5,+5,+1+ +5;+„1, and L,' is the total
number of ions in a layer.

We expand Eq. (8.1) in powers of 8„':

Let r be the separation distance between two adjacent
ions in the same layer of a slab; then r=ro for an
infinite crystal. Let the (i+1)th layer be separated
from the ith layer by a distance (1+5;)r, where 5, is a
parameter to be determined (see Fig. 9). Then the
potential energy due to Coulomb interactions between
the ith and (i+n) th layers (22= integer) 0) is

rmin" ~7~8 A

e
2.8l 4A V'(i, i+22) =—1.2(—1)" Q Q ( 1)'—1+'2

FIG. 9. Diatomic crystal slab of S layers with variable
parameters o;(i 1, 2, =~ ~ ~, E—1) and r.

We have calculated the values of e„„&2&(a&) for a slab
of 15 layers with M+(=mass of sodium atom) and
M (=mass of chlorine atom). At /=0, the tensor
5/ca&" (lc&) is diagonal in /2 and lc and e„t'& (a&) = e„„&2&(a&).

We show in Figs. 8(a) and 8(b) the values of e„t2&(&u)

and e„t2&(a/), respectively, for different frequencies.
Since the optical surface modes are transverse in nature
at /= 0, they only contribute to e„t2& (&v). In Fig. 8(b),
the line (A) at the lowest frequency is due to the TO
surface modes while the lines (8), (C), and (D) at higher
frequencies are due to the optical bulk modes. We see
from this figure that, at least in the case of a slab of
15 layers, the absorption by the optical surface modes is
comparable with that by bulk To modes, and this
result suggests that surface optical modes may be
experimentally observable.

VIII. RELAXATION EFFECTS OF A SLAB

In the preceding sections we have assumed any two
nearest-neighbor ions in the slab to be separated by a
distance ro apart, where ro is taken to be the nearest-
neighbor separation for an in6nite crystal. As a conse-
quence, the spacing between successive layers of the
slab is restricted to be equal to rs, so the layers (especi-
ally those near the surfaces) may not be at their true

equilibrium positions. In this section, we vary the
spacings between the layers and allow the interionic
distance in each layer to change. "Ke then minimize
the total potential energy of the slab as a function of
the interionic distance and the separation distances of
the layers, and estimate the magnitudes of the effects
due to the relaxation on the surface modes.

"We assume the new interionic distance in each layer of the
slab to be the same.

( 1)11+12

A(22) = g
4=co lo (l12c+o=i 2+222)1/2

( 1 )ii+12/2

&(~)= Z Z
11—~ l2—~ (its+$22+222)»2

(8.3a)

(8.3b)

( 1)4+12(2252

C(22) =-,' P P — —

(8 3c)
la=co 12—ao ($ 2+l22+252) 5/2

In Eq. (8.2) we have kept terms in the expansion in
powers of 6 'onlyup to the second order. Thisisbecause
(l1„') ((1 for n&3 and n&2, while the coefficients of
(f&„') become negligible for I)2. The sums A(n), B(n),
and C(n) are similar to those considered in Sec. IV,
and can be expressed in terms of rnodihed Bessel
functions. They are listed in Appendix C.

Using Eq. (8.2), the total Coulomb energy due to
interactions between all the layers of the slab is

C (f el' ' eN 1)

N—1%—i
Vo(i, i+25)+PC(0)gI2, (8.4)

i=1 e 1

where S is the number of layers in the slab, and

( 1)11+12

C(0) =-,'Q'
lc lo (t 2yl 2)1/2

X--
-(112+l22+ 222) 1/2 (l12+$22+ 252) 3 /2

(2222 —l12—l22)
+-'(~ ')'- -+ "

(i&2+i 2+222)5/2

=(e'/~)~'(( —1)"L~(n) —&.'&(~)+(~.') C(n)g) (8.2)
where
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is the Coulomb interaction energy due to ions in the
same layer. The prime on the double sum indicates that
the term /~= t2 ——0 is to be excluded.

For the short-range interactions,

V'(i, i+1)=L'V(r(1+et))

=L't V(r)+.e;rv'(r)+pe'rsv"(r)+ . ]
g2

"min"-2.798x IO
-8

t'(10 cm)
4

=—L'P(r V(r)/e')+ (e;sB+e '—'A )$
r

(8.S) -I ~

where U(r) is the short-range interaction potential
between nearest-neighbor ions and we have made use
of the constants A and B, defined in Eq. (3.1).Here, A
and 8 are no longer constants but are functions of r
and their functional forms depend on the explicit form
of V(r). For example, if we assume V(r) to be the Horn-
Mayer potential Ae "~&, then

4r'f ) 4r' )I.

A =
~

—e '&, B=— -e-"'p.
e'kp' ' e' p

-2

The total short-range interaction potential energy for
a slab of E layers is

C '(r; ei, , eiv i)

PIG. 10. Total potential energy of a 15-layer NaC1 crystal slab as
a function of the interionic separation distance r.

N—I
=—L'L(3&—1)4s(r)+ 2 (-'B"+sAe')3 (8 6)

where Ps(r) =(r/e')V(r). Adding Eqs. (8.4) and (8.6),
we get the total potential energy,

C' (, ei, ' ' ' eN—1)=C' (r el, ' ' ' eN 1)—
+C'(r; ei, , eA i). (8.7)

We minimize C (r; ei, , eiv i) with respect to e;
and r by solving the set of E—1 simultaneous equations

(r; ei, ,eiv i) =0, i=1 ~ ~ 7—1

value of 4 r(r; et, , eiv i) occurs at r = 2.798&&10-s cm

(see Fig. 10), giving a change of 0.57% from the value
of ra= 2.814)(10 ' cm of the infinitely extended crystal.
The shifts in the interplanar separation distances at
minimum potential and at other values of r are listed
in Table III. Using the results at minimum potential,
the normal-mode frequencies of a relaxed slab of 15

layers are calculated. The number of Rayleigh and

optical surface modes remains the same, but their
frequencies and those of the bulk modes are shifted
from the corresponding frequencies of a slab of 15 layers
without relaxation (see Table IV).
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TABIX III. Values of A, 8, e' (i 1, 2, ~, N=—1), and C (r; el ' ' ' eÃ r) for different values of r
for a 15-layer NaC1 crystal slab with relaxation.

r(10 s cin) A el= e14 e2=eis e8=e19 e4=ell e5=elo e6=89 &7 e8 4 (r ei ' ' ' e14)

2.818 9.223 —1.155 —0.0059 —0.0023 —0.0024 —0.0024 —0.0024 —'0.0024 —0.0024 —4.06317
r = ro(infinite

crystal) -+ 2.814
2.813
2.798
2.740
2.700
2.600

9.288
9.304
9.547

10.574
11.332
13.433

—1.165—1.167—1.204—1.362—1.481—1.823

—0.0034—0.0028
0.0059
0.0343
0.0496
0.0786

0.0001
0.0006
0.0089
0.0361
0.0508
0.0791

0
0.0005
0.0088
0.0360
0.0508
0.0791

0
0.0005
0.0088
0.0360
0.0508
0.0791

0
0.0005
0.0088
0.0360
0.0508
0.0791

0
0.0005
0.0088
0.0360
0.0508
0.0791

0
0.0005
0.0088
0.0360
0.0508
0.0791

—4.06329—4.06332—4.06351—4.05968—4.05153—4.00351
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TAsx,E IV. Values of the upper- and lower-bound frequencies of the optical bulk modes and the frequencies of the optical surface
modes and Rayleigh modes for a 15-layer NaCl crystal slab with and without relaxation. (a) is for the case when p&=$&=0 and (b) is
for the case when @I——0.2m and @2——0.

Upper bound
optical bulk

mode
COup

Lower bound
optical bulk

mode
colo'

Optical
surface
modes

(a)

Optical
surface
modes

(b)

Optical
surface
modes

(c)

Rayleigh
modes

15-layer slab
(no relaxation)

(10"sec ')
15-layer slab

(with relaxation)
(10"sec ')

Shifts of relaxed
frequencies from
unrelaxed frequencies

(%)

15-layer slab
(no relaxation)

(1O» sec-~)
15-layer slab

(with relaxation)
(1O» sec-~)

Shifts of relaxed
frequencies from
unrelaxed frequencies

(%)

5.837

5.944

1.83

5.698

5.750

0.91

2.491

2.561

2.81

2.398

2.503

4.37

3./35

3./83

1.28

2.418

2.516

4.05

2.449

2.547

4.0

2.516

4.05

2.347

2.456

Osec '

Osec '

0.488

0.486

—0.4

APPENDIX A: SHORT-RANGE FORCES WITH D„'(+»+» (y,y, ; l,'l, ')
NEAREST- AND NEXT-NEAREST NEIGHBOR ( s/ sM )~

INTERACTIONS
X$,'A+8+At+-2Bt Bt cosh) co—sQ,),

D 8(sp;x'y')(gtPs ~ l l I)—
(M„M„.)'"

(r)
XQ C ' e»'("'&' (l)l tls34 ) exp( —lltgr —li,ys),

D.„'(+&+» (yerbs, 'lsls')

=(e'/rs'M~)bl, , l s(At Bl) sing) sings

=D„,~(+r:+r ) (y,y,

K= (+) or (—I), p = (e) or (0) . (AI)

Let us define the following constants:

A = (4rss/e') V'(rs), B= (4r,'/e') V'(rs),

A, = (4r()'/e') Vt"(2' 'r()) Bt (4rs'/2' 'e') Vt——'(2'"r())

As ——(4rs'/e') Us" (2'&'re) Bs (4r&)'/2'( e') Vs——'(2'&'r())

where V(r) = short-range interaction potential between
nearest-neighbors ions, Vt(r) = short-range interaction
potential between next-nearest-neighbor (+) ions,
Vs(r) = short-range interaction potential between, next-
nearest-neighbor (—) ions, and the prime on each func-
tion denotes diGerentiation with respect to the respec-
tive arguments. The matrices D e'("»'"'r')(pries ls4')
are no longer all diagonal in form. We list the nonzero
elements of the matrices below.

Case (i):x=x= (+) ion, p=p'

If l3 is not a surface layer, then

~(+s;+n)(y y ~ l ls')

=D„„'+ '+ (pter„. lsls)=(e/rs'M+)8&;&;
X$-', A+B+At+2Bt ——',(At+Br) co&t co&sf,

If 13 is a surface layer, then

D„~(+n;+»(pter ~ l l ~)

=D„„'+&'+»(PtPs, l,l,') = (e'/r p'M~) 5,, &;

X f&-', A+~B+ ', A +(5/4)B-
s(At+Br) cosset cospsj,

D„8(+r;+r)(ptas 44')
= (e'/rssM+) 8„&,.

X(sA+B+ ', At+sBt Bt cos-$t costs),—
D., &+'+)9 ~.;l i')

= (e'/rs'M+)8&, , &,.-', (At —Bt) sinter sings

=D,.'+"+"
(&t t4 s 44')'

For the case K=K'=(—) ion, substitute As, Bs, and
M for A&, 8&, and M+, respectively, in the above
expressions.

Case (ii): st&st', p&p'

The expressions for D p'("&'"'» are exactly the same
as those given in Eq. (3.4).
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Case (iii): 24=24'= (+) ion, pW p'

D s(+gq+y)
(AD&@2

~ 44&)

= —(e'/M~r2')L4(A, +B1)co&1+ 2B1-co~2]

X( ls, l2'+1+mls, ls' —1) )

D22'+" "'(41K' t2ts')

(e—'/M+r2')$ ', B&-costs&+-'(A1+B1) cos(I&2]

X (mls, ls'+1+ mls, ls' 1) 1—

D„s(+2;+u') (y&lt,
~ [ t ')

= —(e'/M+r 22)
I

-'4 (A 1+B1)(cos&1+cosp2)]

X (bl, l '+1+bi&' 1), —

s(+y;+2') (y&st,2. 12t2&)

= —(e'/M+r() )$i , (A—1 B—1) sing&](mls, l, 1—812,12+1)
=D.:(+':+")($14t&2, l2l2'),

D„s(+y; +y') (@1tt,2 t24l)
= —(e'/M+ro') Li4'(A1 —By) sin/2](812, ls —1 blsls+, 1) ~

For the case )(=)('=(—) ion, substitute A2, B2, and
M for A~, Bj, and M+, respectively, in the above
expressions.

Case (iv): 24W24', p&p'

The ezpreSSiOnS fOr D e'("2'"'"'(st&&sjs2; t2l2') are the
same as those given in Eq. (3.6).

APPENDIX B: ELEMENTS OF THE DYNAMICAL MATRIX FOR THE COULOMB INTERACTION

Using the Poisson s summation relations given in Eqs. (4.5c) and (4.5d), the following four summation rules
are derived:

16t2

t'2r )'"2t —(p+2rG)2
2&22e 4m2l-24m&= g ~-(P+n.G) ~/4t

7
m g=- &4tl

00 t'2r ) '" 2t (sj)+nG)2— .
Z ( -!)'-pL-4( --:)'t-2 ( -l)e]= Z (-1)'I —

Im= a=- (4tJ 16t'
(B2)

(y+~G) t ~)'"
2&M

—4m2l —2ime e (4+so)2(42-
m—m e=m 4t E4t)

00 00 g+~G) ~ '»
(224—2) exp) —4(222 ——,')'t —2i(r)2 —21)tt] = —i p (—1)a ~-(rt&+m G) &/4t

m G (o 4t 4t

Some useful integrals:

(114)

"ct e '" "l" t2I a-l q'-»
e-(2(i.(, lb I Wo

& lbl J lbl
(85)

dt e 4 l a /44—
t
—
g I

b
I q

1i2 2 '
I Kt2(lallbl)= e ', lal&0

t2" lal
(B6)

00 f lal )2»
I

&2l2(lallb2I)=-'~'»I:(1+lallbl)/Ibl2] ~' ~

(2lbl)

ds
e '* 2'* =2E2(2(ab)U') —a)0 b)0

0 g

The other components of D e'(""'"")(st&1&2,
' l24') for

I l2 I
40 are

D,.(" '""8~.; t 4')=, — Z Z L1+(-1)-'"]
3f„rp' 2 m—~ n=~

(@,+~~)2
X exp f —

I 12 I I Q»+2r222)'+ ((t 2+2rm)2]'"), (39)
L(y1+2r2&2) 2+ (y2+2r22) 2]'»
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oo oo (yg+orm) ((t g+vrm)
D c(cp;cp)(y y ~ l l i) — p p I 1+( 1)]m+n

~„yoo 2 m=m n=m [(y&+arm)'+ (pg+orm)'g'"

(810)

Xexp{—[l, [I (P(+orm) +(Po+orn)'g" ) =D nc("P'"P (4x4o; 44'), (811)

e2 x ~ ~ il3
D.. ( '")g.~.; V.') = — Z Z —

I
1+(-1)™+"](~+)

~„yoo 2 m=cc n cc [lo[

Xexp{ I lo[I Q'(+7rm)'+(Po+vry()']' ') =D c("P'"»Q»P» lolo')) (812)
an(I

e 7l ~ ~ 1E3

D '""'"'(~i~;4l ') = — Z Z . I
1+(-1)"'"j(~+ I)

~gyoo 2 m=cc n=cc
[ l3

I

Xexp{—[4[I (yi+orm)'+(4o+or&)']'") =D 'c""p)(p(A; lola'). (813)

The other components of D sc("p'"'»(p)go, lolo) are

D„„("'")Q,y, l,l,)=
e' (e 00

2 cos[ (2n 1)p—oj
yoopf „~„)& ~o n &m—=m

[~m+y, [

(orm++))'E, ((2(o—1)[orm+p([)+ E ((2N —1)[7rm+@g [)
(2oo —1)

2 cos[ (2' —1)q4)I (orm+po)oEo((2N —1) I
pm+a, [)j, (814)

n=l m=oo

D c(cp; c'p) Q, y ~ l l ) — LD c(cp; c'p) g y ~ l lo)+D c(cp; c'p)(y y ~ l l )j (815)

e2

D,„' '(p"'»(qb p(o,. 13l3) = — P P 2(arm+&&) [7rm+pz[ sin((2N —1)po)Ez((2n —1)[s. +pz[)
yO'(M M )'" n=(m —m

and

+g g 2(7rm+cl&o) [7rm+po[ sin((2(o —1)gz) Ez((2N —1)[orm+po[) =D; " (p'»(&gal 'loolo) (816)
n=l m=oo

D c(cP;c'»Q, y ~ l l ) D c(cP;c'P)Q y . 4l )—D c( P; P)cQ,ciao ~ 4lo) —D c(cP;c'P)(gizmo ~ lolo)
—0 (817)

The other components of D(o)no'("p'"»(garbo, 4lo) are

D(o)w. '""""'(4i4o lolo)

[~m+y, [2 cos(2~go) (~m+yi)'Eo(2~[~m+yil )+ E,(20 I ~m+yil )
~„y03 3 n-1 m—~ S

00 00 -(~m+yo)' [~m+qS, [—Z Z cos(2&4 ) Eo(2~[~m+yo[)+ Ei(2~[~m+col)
n=l m=00 2 2n

(I 00

+ P P (—1) cos((2e —1)go) (orm+4 |)'Eo((2N —1) I vrm+q4 I)+ Ei((2oo —1) I ~m+4'il)
n~l m- (2m —1)

00 (6 -(sm+yg)' l~m+eol
(—1) cos((2e —1)P)) Eo((2y& —1) I orm+y, [)+ Eg((2N —1) I

arm+)ho [), (818)
n=l m 2 (2oo —1)
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(B19)

oo (x)

D(~),„'("&"»(g1p2, l3l, ) = 2{P g (arm+Pi) [em+Pi( sin(2ng2)1(. ((2n[mm+Pi[)
CVf. fo n=l ns
IA 3

CVfa 0

+P g ( 1—) (vrm+qh) [am+Pi [ sin((2n —1)$2]E|((2n—1) [n-m+pi [)}=D(2», '(" '" )(p,p2; l()l,), (B20)
n=l m

D(*) '""""'(((i42ilais)=D(2)w '""'""'(4iA; lala)=D(2). '"""")(Pi@;4la)=D() '"'""'(&42;4la)=0. (B21)

APPENDIX C: EXPRESSIONS FOR A(n), B(n), C(n), AND %(0) IN
TERMS OF RAPIDLY CONVERGENT SUMS

00 (I 8
A(n) = g g exp{—n. [n[1(2li —1)'+(2l2—1)'j'n}

»=»2=) ((2l, —1)'+ (2l& —1)')'I'
(C1)

B(n) = g g Sar exp{—7r [n[L(2l|—1)'+(2l2 —1)'j'"})
ll=l l2~l

(C2)

C(n) = P P 4n'L(2l| —1) +(2l2 —1)'g' exp{—z [n[[ (2l(—1) +(2l2 —1) g' '}
2I~l l2=l

( 1)i&+la

@(0)= g' = g g 4(—1)('Eo(grig(2l2 —1))—1n,2.
li lg (ly2+l 2) l2 ly 1/2=1=

(C3)

(C4)


