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A theory of a single-mode gas laser in a magnetic field has been derived, including the
effects of collision-induced anisotropic relaxation. The theory is similar to that obtained by
D'yakonov and Perel', but is more general in that it includes anisotropic relaxation, and does
not use the Doppler limit to evaluate the third-order integrals. From this theory we have

obtained an expression for the critical axial magnetic field strength, and shown that for
j=1 j=0 transitions this expression is particularly simple. Experimental values for the
various collision cross sections were obtained by fitting the theoretical expression to the
results of a series of measurements of the critical field strength for a He-Ne laser oscillating
on the 1.52-pm (2s2 2p~, j=1 j=0) transition. The cross sections for the relaxation of
the electric quadrupole moment of the Ne 2s2 state as a result of collisions with ground-state

Ne, He, and He atoms are 5 + 3, 2.99+ 0.32 and 2.78 + 0.37, respectively, in units of 10
cm . The corresponding cross sections for the relaxation of the magnetic dipole moment

are a factor of 3 larger. The total radiative lifetime of the Ne 2s2 state was found to be 10
nsec, in agreement with other experiments. The experimental cross sections are shown to
be in satisfactory agreement with those calculated from the van der %aals collision model.

I. INTRODUCTION

In his well-known laser theory Lamb' neglects
all collision effects and assumes that the laser
action takes place between two nondegenerate levels.
This theory has been extended by Sargent, Lamb,
and Fork' to treat the degeneracies of the levels
and the effects of a magnetic field which lifts these
degeneracies. It has been found that, with simple
phenomenological additions to account for collisions,
these theories successfully describe a wide range
of experimentally observed phenomena. '~4 How-
ever, it was found that single-cavity-mode, in-
ternal-mirror lasers oscillating on j=1-j =0
transitions, such as the Ne 2s, - 2p, transition,
showed a definite preference for circular polariza-
tion (strong coupling of the oppositely circularly
polarized components of the mode), while the
theory predicted polarization indifference (neutral
coupling). '-' It was suggested that this effect is
a consequence of collision-induced transitions be-
tween the magnetic sublevels of the j =1 state such
that t ~) =2 collisions are more probable than

I Am I = 1 collisions. 4~' Recently it has been shown
by Tomlinson and Fork' that by including these
phenomena in the laser theory in terms of different
relaxation rates for the various multipole mo-
ments of the j =1 state (anisotropic decay) it is
possible to obtain quite good agreement between
experiment and theory, and hence to obtain a mea-
sure of these different relaxation rates.

In general, gas lasers are operated at pressures
of the order of 1 Torr, thus only binary collisions
need be considered, and because at any one time

most of the atoms are in their ground states, the
only binary collisions which need be considered
are those between an excited atom in one of the
laser states and another same or different atom
in its ground state. As indicated in the preceding
paper, it is useful to divide collision-induced re-
laxation mechanisms into two categories. In the
first category we include collisions in which the
initially excited atom does not change its electronic
state, although its angular momentum may be re-
oriented. We will refer to such collisions as
mj - mixing collisions. In the second category we
include collisions in which the electronic excita-
tion is transferred from the initially excited atom
to the coQiding atom. We will refer to these pro-
cesses as excitation-transfer collisions.

In a laser osciQator intracoherence between the
sublevels of each of the laser states is excited by
the standing wave optical field in the cavity. (In
this section we mill use the mord "intracoherence"
rather loosely to indicate the presence of off-diag-
onal elements of the density matrix for the Zeeman
sublevels of an excited state. ) However, since the
field is essentia. lly monochromatic it only interacts
with atoms having velocities along the laser axis
such that their Doppler-shifted transition fre-
quericies fall within a natural linewidth of the cav-
ity frequency. Furthermore the atoms which have
interacted with the field are "labeled" because the
field also excites an "intercoherence" between the
two laser states, and it is this coherence which
we measure by means of its interaction with the
field. The coherence between the two states can-
not be transferred to another atom, so tha, t if an
atom which has interacted with the laser field
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then transfers its excitation to another atom, it
has effectively been removed from the laser. The
coherence between the sublevels of one of the states
(intracoherence) can be transferred, but since the
atom to which the excitation is transferred can
have essentially any velocity along the laser axis,
the effects of this coherence are diluted by the
ratio of the natural width to the Doppler width for
the transition, and can usually be neglected. Sim-
ilarly, radiation trapping also cannot transfer the
intercoherence of an active atom, and by the same
reasoning as given above we will neglect the intra-
coherence which is transferred. Therefore, since
rn& - mixing collisions and excitation-transfer col-
lisions affect the system in different ways, we
can measure separately the relaxation rates of the
coherence of the ensemble of atoms with a given
velocity component along the laser axis which
was initially excited by the laser field, and the
rates of excitation transfer and radiative decay.

The situation is somewhat different in a Hanle-
effect experiment. " In such an experiment the
intracoherence in a particular state is excited by
absorption of a beam of resonance radiation, and
the relaxation rates of the coherence are measured
by observing the fluorescence light emitted in
some direction by all the atoms in that particular
state. There is no way of distinguishing between
an atom excited by the exciting beam and an atom
excited by an excitation transfer process such as
a resonant collision or radiation trapping, since
intracoherence is transferred from one atom to
another atom of the same kind through the excita-
tion transfer. Therefore in the Hanle effect, one
measures the total relaxation rate of the intra-
coherence of the ensemble of atoms in the excited
state but cannot experimentally separate the re-
laxations by nz — mixing collisions and by excita-j
tion transfers.

In this paper we derive a theory of a single-
mode Zeeman laser including the effects of aniso-
tropic relaxation. In particular we obtain an ex-
pression for the critical axial magnetic field,
which is the magnetic field strength for which the
coupling between the circular polarizations is
neutral. The critical field is a well-defined ex-
perimental quantity, and for j =1-j =0 transitions
the theoretical expression assumes a very simple
form. Ne have made experimental measurements
of the critical field strength as a function of gas
mixture and pressure for a He-Ne laser oscillat-
ing on the l. 52-pm Ne transition (2s, -2p„
j=1-j=0). Fitting the theoretical expression to
the experimental results we obtain experimental
values for cross sections for collision-induced
anisotropic relaxation of the Ne o 2s, state as a
result of collisions with ground state Ne'

p
He',

and He~ atoms. These cross sections are in
satisfactory agreement with those calculated from
the van der Waals collision model. '

II. FORMULATION OF THE PROBLEM

Because the optical field medium interaction is
small compared with the thermal energy (kT),
and because the duration of a collision is short
compared with the natural lifetime of the atomic
states, the collision dynamics can be considered
independently of the laser interactions. As a
result, at any time t during the laser action an
active atom, at position z measured along the
axis of the laser with velocity component v along
the z axis, can be described by a density operator
p(z, v, t) with an approximate equation of motion
of the form

ap(z, v, t) = - t [X + V(z, t), p( z, v, t) ]

—2 [ r, p(z, v, t) j +Ap, (t)A+

( )
sp(z) vi t)

Bt col

p(z, v, t)=Q p "(z,v, t)r(y) (y)
gC 9' (2)

where the reduced density operator p& (z, v, t)(x)
does not depend on the atomic orientation. The
spatial arrangement of the atom is taken into ac-
count by the spherical tensor operator T
whose matrix element between the states lf m)
and Ij'm') is given by

Here K is the unperturbed Hamiltonian describing
the active atom, and V(z, t) is the interaction of
the optical field with the atom. The operators
I" and A are included to account for spontaneous
decay of the laser states and the feeding of the
lower state by the spontaneous decay of the upper
laser state respectively. The pius and the minus
signs in the subscripts indicate an anticommutator
and a commutator respectively. The operator A+
is Hermitian conjugate to A. %ith regard to the
eigenstates of X, 1" is diagonal and A has no non-
zero elements on the diagonal or above it. The
X term represents the pumping excitation, and,
finally, the remaining term describes the changes
of the density operator by atomic collisions. (Ra-
diation trapping has been neglected for the reasons
discussed above although its inclusion here would
not complicate the development in this and the
following sections. )

It has been shown by D'yakonov and Perel' "~'
and by Omont" that in a representation in terms
of irreducible tensor operators the collision, ra-
diative trapping, and spontaneous emission feed-
ing terms are all diagonal, and depend only on the
tensox order. %'e therefore expand the density
operator p(z, v, t) by
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( jml T lj'm')(x)

x
= (-1)j q(2X+1)"'i, (3)

—wl +q

and where the quantity in the spherical bracket is
the Wigner 3-j symbol. '4

Taking the matrix elements of Eq. (1) in a, co-
ordinate system quantized with respect to-the ex-
ternal magnetic field direction and then making
the transformation described by Eqs. (2) and (3),
one obtains the equation for the reduced density
matrix p X) (n, P, Iz, v, t) as

p (n, pie, v, t)=x (nlrb, v, t)b~ (x) —(x)

+I' p (p, , viz, v, t) 5 5(x) (x)
q

' ' '
p,a pa

—y p (n Plsv t)(x) (x)
n q

—i [ ar —qn] p (n, P la, v, t)(x)
n q

+ [field-medium interaction], (4)

where in the notation for p, n (or P) index either
the upper level a or the lower level b, and p, and
p index the levels with parity opposite to that of
n and P, respectively. (For example, if n=a,
then g = b, etc. )

The first term on the right-hand side of Eq. (4)
is the external pumping excitation, and assuming
isotropic pumping Xq(

)(nlrb,

v, t) is given by

X (nl~, v, t) =X (~, v, t)(2, +1)»'b b, (5)
q Q yO qO'

where xn(z, v, t) is the rate of excitation of atoms
into state z at position z, with velocity v, at time
t.

The second term describes isotropic as well as
anisotropic pumping of the lower level by the spon-
taneous decay of the upper level, and I'(X) is given

by

Here y is the rate of spontaneous decay of atoms
from state n to all other states. Collision-induced
relaxations are represented by (yn(X) )col and

(y b(X))col. From the discussion above, it
should be clear that since m - mixing collisions
do not remove the atom from the ensemble of
atoms interacting with the laser field they cannot
contribute to (y '")col. On the other hand, col-
lisions in which the excitation is transferred will
contribute equally to all the (yn(x) ) col. There-
fore y~ "& is the sum of the spontaneous decay
rate and the rates of excitation transferring col-
lisions, while the quantities yn(x)-yn(0) for X) 0
describe the effects of mj —mixing collisions.
The quantity (y b

X ) 1
represents the collision-ab col

induced relaxation of the coherence between the
two laser states, and for electric dipole radiation
only the case y =1 is important. For simplicity
we shall write ya~ for ya~

&'& .
The fourth term of Eq. (4) describes the motion

of the free atom in the magnetic field; &unp is
the transition frequency of the free atom in the
absence of the magnetic field, and 2 =gHpB,
where g is the g factor, JU,B is the Bohr magneton,
and H is the external magnetic field. To derive
this term we assume that the g factors of the
upper and the lower levels are the same. This
assumption is justified provided

(g -g )«y Iv &(x)
a b a B

and of course is always valid if one of the states
has j =0.

Finally, the field-medium interaction term of
Eq. (4) is given by

q+j +j
[field-medium interaction] =i (- 1)

E ZE (~, t)[(2X+1)(2X +1)]'i
y'q' M

x 1 P(n, p)p (p, p lz, v, t)
—M q' —

q)

() a+b+"+ a a"r " =r(2j +1)(-1) ' '
(6)

jg jb
x + (- 1)"+"

where y is the reciprocal lifetime for the spon-
taneous transition between the laser states.

The quantity y (X) in the third term is given
by

(x&) x x
x p (n, v I z, v, t)p(v, p)

2p

=rb = (r +rb)+(-r
b

)col.(x) (x) ~ (x) (8)

where P(n, p, ) is the reduced electric dipole matrix
element between the levels n and p, , defined ac-
cording to the convention used by Edmonds. ' The
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quantities in curvy brackets are Wigner 6-j sym-
bols. '4 E~(z, t) is the Mth circular component
of the field given by

and E(z, t)={X(t)e + h*(t)e )sinks, (10)

where &~ is the unit vector in the spherical tensor
basis, and k is the reciprocal wavelength of the
transition. We have neglected any circular bire-
fringence in the cavity, or the presence of more
than one spatial mode of the cavity as these are
unimportant for the experimental situations we
consider. In the next section we solve Eq. (4)
to obtain expressions for the amplitude and polar-
ization of the laser field.

III. LASER THEORY

In this section we derive theoretical expressions describing the laser field by means of the technique
developed by Lamb. We solve Eq. (4) by iteration to obtain an expression for the macroscopic polariza-
tion induced in the laser medium by the optical field. This expression is then substituted into Maxwell's
equations to obtain a set of expressions for the amplitudes and frequencies of the polarization components
of the field.

The qth circular component of the polarization induced in the medium by the field can be written as

&P (z, t)) ={(P (t)) e +(P*(t))e
' )sinks.

q

The positive frequency part is related to the reduced density matrix p "&(a, b )z, v, t) by

(P* (t)) e = (—1) 3-' 2 f dvf (v)P(a, b) p (b, a, ~z, v, t),
—i~t Aj (1)

(12)

where f (v) is the velocity distribution of the active atom. Iterating Eq. (4), in the rotating wave approxi-
mation, to the third order in the electric field amplitudes, we can write the result for (Pq(t)) in the form

(P*(t))=(P*(t)) &'&+(P*(t)) &' .
q q

(i3)

The first order or linear polarization is given by

(P*(t))&'& =- (-1) ~ ', N(t)(P /uu)Z-(r )$*(t),
q 1 q

(14)

where N(t) is the excitation density given by

~ (t)». (t) „, » (t)
N(t) = — — 1 ~ (»)

'to)
y (0) +

&& (t) y (0)
a b a

where u is the mean velocity of the atoms. The function Z(I') is the plasma-dispersion function defined

Z( r) = iku J d7 exp{- I'7 - —,
' k'u'7' j,

and the quality I', is given in Eq. (21). The third-order term in the nonlinear polarization is given by

/1 y' 1 1 1

(P,*(t)) "& =-, ,„Z & (-1)'" (2~"i)
x'q' ll'q" I -q' q . I' q" q

x [ Y ( &t') .W ( &t

'
( qq 'q "t ')] 8+ ( t) 8,( t) h * „(t),ll (17)

where the Y(&t') vector is given by

Y(X') =

x' 2 x'

b a b

x'
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=-( ~, (x'), F, (x'), F,(x') j .

The W(X'iqq'q "l') vector is given by

W (X' i qq'q "l'
) =-[ W„W„Wzt,

where

(18)

(19)

z(r, ) —z(r, ) z(r, ),z(r, ) s z(r, ) —z(-,'r, ) z(r, )-z(!r, )

) j

z( r, ) —z( r,') z( r,') +z(r, )

w 1
x' (x') 1 z(r.) —z(r, ) z(r )+z(r.) 1 z(r, ) —z(-'r. )

z(r, ) -z(-,'r, ) 1 z(r, )-z(r,') z(r, )+z(r,')

z(r:) —z(-.'r. )

) jI",——,
' T',

W3 same as W, with I', replaced by I

and r =y +i(co —~) —iqQ, r =y —iq'&,(x') (x')
(2o)

r =p +i(N —(()) —iq 0, I =')z ~+i((() —(() )+il Q.3 ab ab 3 ab ab (21)

Equation (17) is a generalization of D'yakonov and Perel's result"' and, in the Doppler limit (ku»y~h),
can be readily reduced to Eq. (13) of Ref. 12 if the superscriptX' is removed from the decay rates in
Eq. (21).

For the case of a magnetic field oriented along the laser axis, Eq. (17) reduces to

&
P* ) ' =- (-1) 'fi(f)!(~ l~ )&, (2x' 1)+1 x'

1 0 1

x' 2

+ (-1)X i Y(X') ~ W(X'1+1, 0, +1,+1)
(-1 0

1
2

Y(X') ~ W(X'i+1, +2, +1,+ 1) iS
+li—2 lj

x
~

Y(X') ~ W(X'i+1, 0, +1,+1) 8*1 [8 1I
'

(22)

From this expression for the dipole moment we can easily extract the expressions for the coefficients
in the amplitude and frequency determining equations. '~" Dropping scale factors the self- and cross-
saturation coefficients of the axial magnetic field case are given by

P =1m g (2X'+1)
i

Y(X').W ( X')+1,0, + 1, w 1)
0

(23)
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8 =1m' (2)( +1) (-1) Y(g').W(y'j+1, 0, +I,+I)x ~'
1 0 1)

+ Y(x') ~ W(X')al, +2, + l, y 1)
1 —2 1

(24)

respectively. Here Im indicates the imaginary part.
For an isotropic-cavity, single-cavity-mode laser in an axial magnetic field with the cavity frequency

tuned to the atomic line center, there are only two possible solutions for the intensitiesof the twooppositely
circularly polarized components of the electric field in the laser. If the product of the self-saturation co-
efficients of the two polarization components of the field (P P ) is greater than the product of their cross-
saturation coefficients ( 8 8 ), the laser will oscillate on both polarizations simultaneously with equal
amplitudes (but possibly different frequencies). If P P is less than 8 8 the laser will oscillate in
either circular polarization, but in only one at a time. When (P P —8 8 ) passes through zero the
laser will switch between these two modes of operation, so that the condition P+ P = 8+ 8 + gives us an
equation for the critical axial magnetic field strength, Hc, at which this switch will occur. Substituting
the expressions for the betas and thetas in the above equation and taking the Doppler limit, we obtain the
result

( Y (1) Yl(l)

l
( I) y (»

a b

Y2(1)&(I) ') ( r,b' 'I (' 2r,b' ) (
& &»& (» '+& r '+n ' ' (r "') '+4n '
a ab c ( ab c a c

r "' —2I~ '/r r "&r "' —2I~ '[(r "&+r "&)/r +2] ~
c ab

& 2 &» a b c a b ab
1( )

( (2))2 4g 2 2( ) [( (2))2 4g 2] [( (2))2 4II 2] )c
(25)

where Qc = p,&grec.

Equation (25) is a cubic equation in Qc, but only the positive real solution, if any, represents a physi-
cally realizable magnetic field. It can be shown that for reasonable values of the gammas for transitions
of the type j j+1 with j- &, or j= & j =2 there are no such solutions so that lasersoscillatingonthese
transitions always oscillate in both circular polarizations (under the specified conditions). On the other
hand, for transitions of the type j j with j - 1 or j=1 j =0 there is always one and only one such so-
lution. As is described in the next section the critical field is a well-defined experimental quantity which
can be measured with considerable precision. In general it is a function of the six variables y ' ~, yy», y ~", y b, and y, but there is one case for which the situation is considerably simpler. For a
j= 1 —j= 0 transition, Y,(1)= Y,(2) = —, , and Y,(1) = Y,(2) = Y,(1) = Y,(2) = 0. Substituting these values into
Eq. (25) we find that the resulting equation is only a quadratic in Qc, and it is simply a matter of a little
algebra to show that

H =(p, g) '[ —b+(b'+c)"']'",
c B (26)

where b =y '+~zy '"y +~ (y ')'
ab ' a ab ' a

c ——y (2&y 2(y (&) (2&)
a ab a ~a (28)

Note that in this case H depends only on y '", ya"', and yab, and is independent of the spontaneous tran-
sition rate. [We have assumed ja = 1, jb = 0, but for the case ja = 0, jb = 1 one need only interchange the
subscripts a and b in Eqs. (27) and (28). ] In the limiting case y " =y "' it is easy to see that H =0
as predicted by the theories which neglect anisotropic relaxation.



181 ANISQTRQPIC RELAXATIQN IN A GAS LASER

IV. EXPERIMENTAL TECHNIQUES AND
PROCEDURES
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FIG. 1. Block diagram of the experimental
arrangement.

For axial magnetic fields greater than the criti-
cal field strength, and small detuning, a laser
oscillating on a j = 1 to j = 0 transition will oscil-
late simultaneously on the two oppositely circu-
larly polarized components of the cavity mode.
The intensities of these two components show a
rather sharp crossover as the cavity is tuned
through line center. For sufficiently small de-
tuning the difference of the intensities of the two
polarizations is a linear function of detuning with
a zero at line center and a slope inversely pro-
portional to the amount by which the magnetic
field exceeds the critical field. (This phenomenon
is discussed at some length in Refs. 4 and 15. )
This characteristic of a j = 1 to j =0 laser can be
used as a frequency discriminator for a control
system to stabilize the frequency of the laser, "
and it also provides us with a convenient method
to determine the critical field strength. If we
measure the slope of the curve of intensity dif-
ference as a function of detuning for various mag-
netic field strengths, and plot the reciprocal of
the slope versus magnetic field, we obtain a
straight line which intercepts the magnetic field
axis at the critical field strength.

The relative slope can be measured by modu-
lating the length of the cavity and measuring the
amplitude of the modulation of the intensity dif-
ference. The only problem is that as we approach
the critical field the width of the intensity cross-
over region approaches zero so that we must use
a low-amplitude modulating signal and keep the
laser tuned to the line center to within about a
part in 10'. The method for accomplishing this
in illustrated in Fig. 1. The beam from the laser
passes through a X/4 plate which converts the two

circular polarizations into orthogonal linear po-
larizations. The yttrium-iron-garnet modulator

rotates the planes of polarizations +45' so that
they are alternately parallel or antiparallel to the
axis of the linear polarizer. In this way the Xj4
plate, the modulator, and the polarizer act as an
optical polarization chopper alternately passing
the two circular polarizations to the detector.
This signal is then demodulated in a lock-in syn-
chronous amplifier to produce an output signal
proportional to the difference of the intensities
of the two opposite circular polarizations. The
lock-in is operated at a carrier frequency of
about 100 kHz to provide a difference signal with
a bandwidth of the order of 10 kHz. The differ-
ence signal is amplified and integrated to provide
a correction signal to keep the laser tuned to line
center. This control loop is identical to that de-
scribed in Ref. 15 as the slow loop and the reader
is referred to that paper for further details on the
control system. The signal generator shown on
the left side of Fig. 1 drives an electrostrictive
transducer to modulate the cavity length at a fre-
quency of about 500 Hz. The gain of the control
loop is kept sufficiently low that it has negligible
response at this frequency, thus the intensity dif-
ference signal from the lock-in amplifier will
contain a signal at 500 Hz with an amplitude pro-
portional to the slope of the curve of intensity
difference versus detuning. This signal is then
demodulated in a second lock-in amplifier to ob-
tain a signal proportional to the slope. An X- F
plotter records this signal as a function of mag-
netic field. The 500-Hz modulation frequency
was picked to be above the response of the con-
trol loop, but below the frequency at which the
laser-medium response-time effects (described
in Ref. 15) become appreciable. The amplitude
of the modulation is chosen to produce a frequency
modulation less than the width of the linear slope
region at the lowest magnetic field at which data
are recorded.

The laser was the same as was used for the ex-
periments described in Ref. lb. It is an internal
mirror laser with a mirror spacing of 26 cm and
a 20 cm long x 2-mm diameter capillary discharge.
The laser was connected to a gas-handling system
so that gas pressures and mixtures were readily
adjustable. Qnly isotopically pure gases were
used (99. 99%%uo Ne", 99. 97'%%uo He', 99. 99'%%ug He'). The
gas pressures were measured with an MES Bara-
tron model 90 capacitance manometer for which
the manufacturer's calibration indicates an abso-
lute accuracy of better than 0. 05 Torr in the pres-
sure region covered by the present experiments.
The magnetic field coil was wound directly on the
capillary discharge tube thus it was not possible
to measure the magnetic field directly. However,
at the same time as the coil was wound, an "iden-
tical" coil was wound on a tube with the same out-
side diameter as the capillary but an inside diam-
eter sufficient to admit a Gaussmeter probe. Cali-



WANG, TOM LINSON, AND GEORGE 181

V. REDUCTION OF THE EXPERIMENTAL
RESULTS

As shown in Sec. III, for a j =1 to j = 0 transi-
tion the critical axial magnetic field depends only
on the three relaxation rates ya'", ya ", and

y &. However, each of these rates depends on
the partial pressures of the various gases in the
laser. In general the rates can be written in the
forms

(2) y (0) +gPa a T' (28)

brating the Gaussmeter against a standard magnet
it was possible to calibrate the second coil to with-
in 1 or 2%. Although there are undoubtedly small
variations in winding density between the two
coils, we feel that these do not amount to more
than a few percent.

Figure 2 shows a typical plot of inverse slopes
versus magnetic field strength for various pres-
sures. No effort was made to calibrate the verti-
cal scale since only the horizontal intercept is of
interest. It is clear from the figure that the ex-
perimental points fall on straight lines and that
very little extrapolation is required to obtain the
intercepts. A typical set of results is shown in
Fig. 3 along with a theoretical curve obtained by
fitting Eqs. (26)-(28) to the experimental points
as described in Sec. V. The error bars on the
experimental points represent the standard devia-
tions of five different runs made over a period of
several months.

(1) y (0) +gPa a T' (80)

y = '(-y'" y'") ~P,ab a T'

where

y =y +DP, y =y +EP

A=a P B=b ~ P, C=c ~ P, D=d ~ P,

E=e ~ P
P~ ' P

where PZ is the total pressure, and PNe20,
PHe3, and PHe4 are the partial pressures of the
gases in the laser.

Equations (29)-(81) contain a total of 17 constants,
far more than we can determine from our experi-
mental data, so that wemust findways to eliminate
some of the unknown quantities. Fortunately, for
the conditions of our experiment, the critical
field is very weakly dependent on yzf, ( sHcl&y~f,
-10 ' G/MHz), thus we can use a very simple
approximation for y h without affecting our re-
sults for ya

') and ya~".. Using the experimental
result from Ref. 8 that y~f, /2w = 100 MHz for a
total pressure of 2. 2 Torr (PHe3/PNepo 10),
and estimating that the radiative linewidth is of
the order of 10 MHz we have assumed that

l, 2
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FIG. 2. Experimental values of the reciprocal of
the slope of the difference of the intensities of the op-
posite circular polarizations as a function of cavity
detuning, plotted as a function of the current in the
magnet coil for various gas pressures. The straight
lines are least-squares fits to the experimental points,
and intersect the current axis at the current corre-
sponding to the critical axial magnetic field strength.

2
PT (TORR)

FIG. 3. Critical axial magnetic field strength as a
functionof totalgas pressure for a 10 to 1 mixture of
He and Ne . The solid curve is a plot of Eqs. (26)-
(28). The error bars on the experimental points repre-
sent the standard deviations of five different runs made
over a period of several months.
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yaf, /2v = [10+(90/2. 2) PZ ] MHz. This is clearly
a rather crude assumption, but more than suf-
ficient for our present purposes. In the preced-
ing paper' it was shown that for a j = 1 state b
=(+)a under rather general conditions, thus we re-
place B in Eq. (30) by (+)&. The experimen-
tally determined cross section" for de-excitation
of the Ne 2s2 state by collisions with He is of the
order of 10 "cm' which is much smaller than
any of the other cross sections, thus we simply
set d =(d, 0, 0). With these simplifications we
can write ya " and ya"' as

y & &=y & &+~P
a a T (32)

(1)
y (o) +~ gP

a a T (33)

with y ~'& =y +dPa a Ne' (34)

The theoretical calculations in Appendix I give
the result d/ya=0. 0312 Torr '. To show the
dependence of the final results on the value chosen
for d we have carried out the calculations for the
three values d/ya = 0, 0. 0312, and 0.312 Torr ' To.
obtain a value for ya we can make use of the re-
sult from Ref. 8 that for a 10: 1 mixture of He'
and Ne", ya"'/2w = 20 MHz at a total pressure
of 2. 2 Torr. We therefore fitted the critical field
data for a 10: 1 mixture by varying A to minimize
the root-mean-square (rms) deviation between the
experiment and theory with ya determined by the
condition ya~ "/2m=20 MHz for PT=2. 2 Torr. The
best fit is for A/2v = 1.8 MHz/Torr which implies
ya/2v = 16 MHz, or a radiative life time of 10 nsec.
An alternate technique is to make use of measure-
ments of ya~ as a function of pressure for the
1, 15-pm line" (2s2 —2p~ transition) v.-hich have
shown that the extrapolated zero-pressure limit
is yap/2v = 12 MHz, and the direct measurement
of the lifetime of the Ne 2P4 state" which gave the
result y&/2v = 8.3 MHz. Combining these results
we obtain ya/2v =15.7 MHz (2s, state), in good
agreement with the value given above. To show
the dependence of the final results on the value
chosen for ya we have carried out the calculations
for the three values y /2v = 14, 16, and 18 MHz.

We have now reduced the problem to the deter-
mination of the three components of the vector a.
For each mixture of gases (defined by the vector
P) we fit the experimental data on critical field
as a function of total pressure to determine the
value of A for that mixture. From a series of
results for different mixtures we then use stan-
dard linear regression techniques to solve the
equation A = a ~ P for the vector a.

In Table I we list the values for A determined
by means of least-squares fits of Eqs. (32)-(34)
and (26)-(28) to all the data. The rms deviations
between the theoretical and experimental points
are between 0. 02 and 0.03 G (= I%%uo of Hc) and are
of the order of the scatter of the experimental
points about a smooth curve (see Fig. 3). In
Table II we list the derived values for the vector,
a, of collision-induced relaxation rates. We found
that the values for a, and a, were essentially inde-
pendent of the value assumed for d/ya. The error
limits given in the table are the standard errors
of the fit to the data from Table I. Because of the
many possible sources of error in the final re-
sults it is somewhat difficult to assign realistic
error limits. The random errors in the experi-
mental measurements appeared to be less than
1%, but there is a possibility of larger system-
atic errors in the pressure and magnetic field
calibrations. Making a rather subjective esti-
mate of such effects, and our uncertainty con-
cerning the values of ya and d, we arrive at the
final result

a/2a =(1.5+1.0, 1.85+0.20, 1.52+0.20) MHz/Torr

(35)

The large uncertainty in the result for Ne - Ne
collisions (a,) is a reflection of both our uncer-
tainty concerning the true value of d, and the fact
Ne was always a minority constituent of the dis-
charge. The rms deviation between all the ob-
served values of H~ and those calculated from a
as given in Eq. (35) is 0. 04 G, or about 2% of H .

Defining a vector of cross sections for quad-
rupole relaxation by oi"' = ai/(ni ( vi ) ), where
n~ is the number density of colliding atoms of the
ith type, and (vi ) is their mean velocity relative

TABLE I. Experimental results for A for various gas mixtures.

A/27' (MHz/Torr)

He

P 20Ne

P
He

P
He 14

d/y~ = 0

P /2m'= (MHz)

16 14

d/y~=0, 0312 (Torr" )
yg/2m'= (MHz)

16

d/p~-"0. 312 (Torr )
/2&= (MHz)

14 16 18

10
10
10
10
7.5

5

1
0.75
0.60
0.25

1
1

(0.091, 0.909, 0.000)
(0.091, 0.682, 0.227)
(0.091, 0.545, 0.364)
(0.091, 0.227, 0.682)
(0.117, 0.883, 0.000)
(0.167, 0,833, 0.000)

1.938
1.866
1.893
1.709
2.046
1.929

1.797
1.731
1,759
1.593
1.892
1,789

1.674
1.614
1.641
1.489
1.763
1,666

1.930
1.857
1.885
1.700
2.030
1.914

1.789
1.723
1,751
1.583
1.882
1.774

1.666
1.606
1,632
1.480
1.753
1.652

1.861
1.787
1.812
1.623
1.941
1.790

1.720
1.653
1.678
1.505
1.794
1.651

1.598
1.536
1.561
1.402
1.667
1.531
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0

0.0312
0.312

1.7 + 0.8

a/27( (MHz/Torr)
Qp

1.6 + 0.8 2.00 + 0.10
0.9+ 0.8

TABLE II. Experimental results for the relaxation-
rate vector a.

experimental values or the theoretical values for
van der Waals or nonresonant collisions, thus we
will neglect resonant collisions in the following.

As given in Eq. (47) of Ref. 9, if we assume
that the motion of the colliding atoms follows a
linear classical path, the rn- —mixing cross sec-
tions o (X)(i) for an atom in a state of angular mo-
mentum j colliding with the ith perturbing atom
are

16
0

0.0312
0.312

1.6+ 0.7
1.5 + 0.7 1.85 + 0.10 1.52 + 0.09
0.8 + 0.7

(37)

18
0

0.0312
0.312

1.5 + 0.7
1.4 + 0.7 1.72 + 0.09 1.42 + 0.08
0.7+ 0.7

to the Ne" atoms, and assuming a gas tempera-
ture of 500'K, we obtain the result

o ~"(experiment)

=(5+3, 2.99+0.32, 2. 78+0.37)x 10 "cm'. (36)

The components of this vector are then the cross
sections for the collision-induced relaxation of
the electric quadrupole moment of the Ne" 2s,
state as a result of collisions with ground-state
Ne", He', and He atoms respectively. The cor-
responding cross sections for the magnetic dipole
moment are simply ~3 times those for the quadru
pole moment. Note that these cross sections are
only for collisions in which the electronic excita-
tion is not transferred to the colliding atom. or
what we have defined as mj - mixing collisions.

Decomps and Dumont have recently reported
measurements of the relaxation of the Ne 2s,
state by means of a Hanle effect experiment with
laser excitation. " Their results are oNe "&
= (9. 5 s 2. 0) x 10-"cm', oHe" ' = (1, 7 s 0. 7) x 10 "
cm', y~ /2a' = (18.7 + 2. 0) MHz, and d/yz = 0. 008
Torr '. (They do not specify what isotopes were
used in their experiment. ) The error limits on
these results overlap those on our results, al-
though we would have expected somewhat closer
agreement. However, the He cross sections are
in better agreement if we use their values for
y~ and d/y~ (see Table II).

where

D. = (wP'P'z/16h ( nE. ) )'~',
2 2

and g X) is a geometric factor which is tabulated
in Table I of Ref. 9. For j=1, P, "=4.062, and
g, "& =2. 437. If we assume a Maxwellian distri-
bution for the relative velocity, we then have

&v /5) 2I(a)~ ~z(2kT/p )3~'o
i i (38a)

and &v.) = (8kT/mp, . )'~', (38b)

where p.i is the reduced mass for the colliding
pair of atoms, 0 is the»ltzmann constant, and
T is the temperature of the medium, which is
taken as 500 K in our experiment.

As for calculating P' and Pi', we use the Slater
radial wave function' given by

i exp( —Z~ z/n
(n*. —1)

2 2
(39)

p. '=e'a '(n++I) (n+ + ,')n+'/S+'- (4o)

The basis for this wave function is the fact that
an electron in an atom does not "feel"the presence of
the nucleus completely, inasmuch as the electron
is screened from the nucleus by the other elec-
trons. Hence an electron in the atom moves as
though in a field of effective nuclear charge Z*. e.

2
At large distances, this wave function behaves
like a hydrogenlike wave function of the effective
principal quantum number &*. It is easy to show
that

VI. COMPARISON VfITH THEORETICAL
RESULTS

We now compare the experimental cross sec-
ions with theoretical values for the cross sections
for van der Waals collisions using the theoretical
expressions obtained in the preceding paper. ' In
the Appendix we show that the m —mixing cross
sections for resonant collisions between a Ne
atom in the 2s, state and one in the ground state
are an order of magnitude smaller than either the

and a similar expression applies to P'. The ef-
fective principal quantum number z* and the ef-
fective nuclear charge Z* can be found from the
Slater rule. " For He in the ground state, n*= 1
and Z* =1.70. For Ne in the ground state &~=2
Bnd Z*=5.85. For Ne in the 2s, state, n*=3. 7
and Z*=1. On the basis of these parameters, we
obtain 1742 D' for P', and 6. 69 and 5. 65 D' for
the Pi' of He and Ne, respectively.

Finally, we need values for & SEE) for the com-
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piete determination of the cross sections. From
the definition of ( ~.) given in Ref. 9, for an
accurate determination, one requires information
about oscillator strengths of the states involved
during the collision. The oscillator strengths of
various low-lying states of atoms significant in
gas lasers have been measured by Benneii and
co-workers, "but they are noi sufficient to esti-
mate an accurate value of ( ~f). As far as the
Ne-He collision is concerned, the excursions
from the ground state to the 2'P state of He (simul-
taneously the Ne making a transit from the 2 s,
state to the ground state) are expected to give a
large contribution to the dispersion potential;
however, other states such as 3'S, 3'P, etc. , of
He, and 2p, 3s, etc. , of Ne will also give signifi-
cant contributions. A similar complication applies
to the Ne-Ne collision. A more appropriate way to
determine ( hE. ) is through experiment if one is
sure the van der Waals collision describes the
collision process correctly. However, the cross
sections are proportional to ( (bbE,.) -'15, thus a
small uncertainty cannot significantly affect the
values for the cross sections. Since the 2s, state
of the Ne atom is optically connected to the levels
immediately above and below it, as an approxima-
tion we set ( M ) equal to 1.98 x 10' cm ' (the
first ionization potential of He) and 1.74 x 10'
cm ' (the first ionization potential of Ne), respec-
tively. This approximation was also used by
Hansch et al. "

On the basis of the above atomic parameters,
we calculated the cross sections for the quadru-
pole relaxation of the Ne" 2s, state as a result of
collisions with ground-state Ne", He', and He
atoms. The result, in the same notation as Eq.
(36), is
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APPENDIX

Calculation of the Cross Sections for
Resonant Collisions

As given by Eq. (19) of the proceeding paper, '
the multipole moment relaxation cross sections
should obey the sum rule

2j
Q (-1) (2}(+1)o." (b.v. ) =(2j+1)o."&(b.v. ).x (x)

Z Z

x=o

For the Ne 2s, state (a j =1 state), Eq. (Al) be-
comes

5o "&(b.v. ) —3o &' (&b. v. )
1 i i 1 i i

=2o «&(b. v. ) .
1 i i

It was shown by Omont" that for resonant colli-
sions ol('& ( bf vf ) and ol &'& ( bf vf ) are given by

o &'& (b.v. ) =+ sin', ——, sin, , (A3)
Z

o & &(b.v. ) =~ sin' ——' sin4 (A4)

v "& (theory) = (7.75, 5. 76, 6. 00) x 10 "cm' . (41)

The result for Ne-Ne collisions, 0, "& falls with-
in the error brackets on the experimental result
given in Eq. (36); the Ne-He cross sections, o2&'&

and o3~'&, are about a factor of 2 larger than the
corresponding experimental results in Eq. (36).

'However, in view of the many approximations in-
troduced in the calculation of the absolute cross
sections, a discrepancy of this order is not sur-
prising. For example, one sees from Eq. (40)
that the quantity P' (or Pf') is a strong function
of the effective charge Z, and therefore the cross
section varies with the effective change as (ZZf )4~'.

An error in the assignment of the effective charge
would result in a corresponding error in the cross
section. An accurate cross section can be calcu-
lated only when one has accurate numbers for P',
pf', and ( ~,). Nevertheless, the results strongly
suggest thai van der Waals collisions are responsible
for the observed effects.

where

A = l(OII pl I 1) I'/3}iv. .

Integrating over the impact parameter and also
averaging over the relative velocity, we obtain
the total cross sections as

o «&=(~3/48v(v. ) )r,
1

o &'& = (3&). /96&) (v. ) )r, (A6)

The results in Eqs. (A3) and (A4) ca.n also be

readily obtained by the method described in the
preceding paper. '

Substituting Eqs. (A3) and (A4) into (A2), we ob-
tain the cross section for the population relaxation
as

v ~ '(b. v. )=~ sin' —sin I. (Ab)
A . A

1 ii ' b'
Z
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o &'& =(13&'/460~(~. ) )I"
1 i

& & =1.60x10 cm

g, &'& = 2. 40x10-" cm', (A7)

2. 08x10-i5 cm'.

The contributions to the 0 due to m - mixing col-
lisi.on are thus

A, ~~&=0. 80x10- 5 cm2

(As)
A &»=0.48x10-» cm2.

Comparing these cross sections with those for
van der Waals or nonresonant collisions calculated

where I' is the rate of the (electric dipole) transi-
tion of the atom in the excited state to the ground
state and is given by I'=32m'l( l[ip(~ 0) I' '/3X'. The
quantity A. is the wavelength for this transition.
For the Ne 2s, state, I" is essentially identical to
yz (within about 10%, because of branching to other
states) described in the text, and y /2m is given a.

value of 16 MHz. The wavelength corresponding
to the transition from Ne 2s, state to the ground
state is 625 A. The relative velocity of Ne atoms
at 500'K is 1.025 x10' cm/sec. The substitution
of these values for I", X, and (u. ) into Eq. (A6)
give s

in Sec. VI we find that the resonant cross sections
are about an order of magnitude smaller than the
nonresonant cross sections. They are also about
an order of magnitude smaller than the experi-
mental results given in Sec. V. Therefore, we
can neglect the effects of resonant collisions in
the calculation of the m —mixing collision cross
sections.

Since the nonresonant collisions do not contri-
bute to the decay of the population of the excited
state, the most significant contribution to the
monopole cross section is the resonant collision
term. From the cross section given in Eq. (A7)
we obtain the result d/y = 0.0312 Torr ' which is
used in Sec. V. This value is of the same order
as that measured by Decomps and Dumont. " If
we interpret the "hard-collision" cross section
reported in Ref. 17 as including resonant colli-
sions as well as other effects, we can obtain an
upper limit on d/y~ of about 0. 3 Torr '.

As pointed out by D'yakonov and Perel' " in
order for the above calculation to be meaningful,
the cross sections given in Eq. (A6) should be
small compared with the square of the mean dis-
tance between atoms, which leads to the condition
nX'( I /bv)'~' «I, where b,e is the Doppler width
for the resonant transition. For a pressure of 1
Torr (somewhat higher than used in our experi-
ments) the left-ha. nd side of the above inequality
has a value of about 3x10-4, thus the condition
is well satisfied.
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