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The perturbation theory of infrared absorption in simple ionic crystals is extended by systematic con-
sideration of higher-order anharmonic forces. It is shown that the effects of quartic anharmonicity may be
comparable to or larger than the cubic contributions, although the effects of terms of still higher order are
probably negligible. Measurements of the dielectric constant and loss tangent of LiF, NaCl, and KBr
have been made at frequencies of 9.8, 35.4, and 116 GHz between 25 and 750°C, with some additional
measurements at temperatures as low as —130°C. The results of these absorption measurements, and
other published data, are in qualitative agreement with the temperature, frequency, and material depend-
ence predicted by the theory, thus confirming the importance of the quartic effects. Finally, it is shown that
the temperature dependence of the dielectric constant can be accurately described by a simple formula

based on the classical theory of dielectrics.

I. INTRODUCTION

TARTING with the discovery of reststrahl radiation

in 1897 by Nichols,! the dynamics and interactions

with radiation of simple ionic crystal lattices have been

investigated in great detail.? The results are usually
given in terms of the ordinary dispersion formula
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where €*=¢'-1€¢’/ is the complex dielectric constant,
€, and ¢ are its limiting values at high and low fre-
quencies, respectively, w; is the resonance frequency,
and vy/wy is the damping parameter. Although the use
of a constant y/w; in (1) leads to quite accurate predic-
tions of the reflectivity of polar crystals, the absorption
is poorly described except in the immediate vicinity
of ws® Czerny’s observations of nebenmaxima and
anomalous frequency dependences of absorption in
both wings of the resonance* demonstrated that the
damping parameter is in fact frequency dependent,
and subsequent work has been largely directed toward
explaining the frequency and temperature dependence
of ’Y/ wy.

It is known that there are three sources of absorption
not included in the conventional harmonic theory: (1)
third- and higher-order anharmonic terms in the
potential energy,® (2) second- and higher-order terms
in the electric moment,’ and (3) boundary effects due
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to the long-range Coulomb interaction.” Although it has
proven particularly difficult to evaluate the effects of
proper boundary conditions, it appears that the use of
periodic boundary conditions introduces little error
except in special situations such as thin-film measure-
ments with nonnormal incident radiation.® A lengthy
perturbation-theory calculation of absorption due to
cubic potential and quadratic electric moment terms
has been given by Born and Huang.® Unfortunately,
errors in this calculation invalidate the predicted
temperature dependence in the wings of the main
resonance.® The most satisfactory calculation of this
type, considering only the cubic potential, has been
given by Kleinman.!' Although quantitative calcula-
tions are possible only for certain special cases, it is
clear that the cubic potential and quadratic electric
moment terms give rise to an absorption proportional
to the absolute temperature 7' at sufficiently high
temperatures for equipartition of energy among the
participating phonons to be assumed, while quartic
potential and cubic moment terms lead to a 7% depend-
ence. The frequency dependence of the absorption is
due primarily to the joint frequency distribution for
each process; the nebenmaxima or “combination bands”
correspond to singularities at critical points in the
Brillouin zone. A number of many-body calculations,
which confirm these conclusions, have also been
carried out.?

In the present paper, Kleinman’s direct perturbation
calculation is extended to include the effects of both
cubic and quartic potential energy. The resulting
expressions for the extinction coefficient, the imaginary
part of the complex refractive index »n*=n-ix, are
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2T, P, Ipatova, A. A. Maradudin, and R. F. Wallis, Fiz. Tverd.
Tela 8, 1064 (1966) [English transl.: Soviet Phys.—Solid State
8, 850 (1966)]; Phys. Rev. 155, 882 (1967).
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F16. 1. Second-order cubic anharmonicity : representative
diagram for summation terms.

compared to existing experimental data and to the
results of new microwave and millimeter-wave measure-
ments over a wide range of temperatures on three
alkali-halide crystals. It is concluded that in the low-
frequency wing of the reststrahl peak, away from the
subsidiary resonances at nebenmaxima, the effects of
quartic anharmonicity can be comparable to or larger
than the cubic contributions. Just as the experimental
work of Stolen and Dransfeld'® on a number of alkali
halides gave convincing evidence for this conclusion in
the wavelength range from 0.3 to 1.0 mm and tempera-
ture range from 15°K to room temperature, the present
measurements do so in the ranges from 2.6 mm to 3.1
cm and 25 to 750°C.

II. THEORY

We shall follow Kleinman’s excellent paper! closely
in setting up the calculation, since we also are interested
only in cubic crystals containing two kinds of atoms, and
hence we may omit here all of the argument up to the
extension beyond two-phonon summation processes.
The use of ordinary time-dependent perturbation theory
rather than the modified technique of Born and Huang?®
is justified because we consider only the wings of the
reststrahl peak. The use of an effective charge is
equivalent to assuming rigid ions; the inclusion of
nonlinear electric moments would require the use of the
shell model. Aside from possible differences in the
constants and the presence of a resonance denominator
(wfr—aw?), it can be seen by inspection of Kleinman’s
Hamiltonians that the multiphonon processes of a
given order will have the same temperature dependence
and the same general frequency dependence whether
they are due to the anharmonic potential or to the
nonlinear electric moment mechanisms. Hence we shall
consider explicitly only the former. The anharmonicity
is introduced using Kleinman’s simple model, including
terms in the potential energy which are cubic and
quartic in the relative displacements of nearest-
neighbor ions.

The calculation of the extinction coefficient due to a
given type of multiphonon process is carried out by
first evaluating the appropriate matrix elements of the
interaction Hamiltonian 3¢’ and the anharmonic terms
3" and 3", which can be done by inspection of the
appropriate diagrams. From these matrix elements the
total transition probability @ for the process can be
found. By invoking the correspondence principle,'* one

13 R. Stolen and K. Dransfeld, Phys. Rev. 139, A1295 (1965).
1 Note that V73 in Kleinman’s Eqgs. (26) and (27) should be
V1. This does not change his results.
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TaBLE I. Summary of contributions to extinction coefficient.

Cubic anharmonic contributions:
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can obtain the extinction coefficient «, given by
k=(Vex)2/ 2N o, 2

where &V, is the number of photons in the initial state.
For the case ©*<n?, the loss tangent (tand=¢"/¢') is
given by

tand=2x//¢€ . 3

We first consider the contributions due to cubic
anharmonicity, the two types of two-phonon terms.
The summation terms are those in which a photon k
is destroyed and two phonons q¢ and —gq¢’ are created,
or vice versa (k denotes the wave vector of the photon,
q¢ the wave vector and branch of the phonon), while
the difference terms are those in which one phonon is
created and one destroyed. For each type there are four
diagrams representing photon absorption and four
representing emission; in each set there are two dia-
grams in which 3¢’ precedes 3¢” and two having the
other order. The diagrams for the summation terms, as
well as an example of the evaluation procedure, are
given by Kleinman. In Fig. 1 we show only one of
these diagrams.

The extinction coefficient x, due to the entire set of
summation terms is given in Table I, in which the
notation is the same as Kleinman’s except for the
symbols 4 and D,(qi'). The first one, 4, is the cubic
potential energy parameter (Kleinman’s G). The second
is a sum over the j nearest neighbors (in our case 6) of
a given ion, similar to Kleinman’s X4 but different
because we choose to keep all constants explicit by
normalizing the annihilation and creation operators for
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F1G. 2. Second-order cubic anharmonicity : representative
diagram for difference terms.

photons as well as phonons to unit commutator, and by
redefining the phonon polarization vectors b,q so that
no constants appear in the first of Kleinman’s ortho-
normality relations (4). Hence our derivation begins
with Kleinman’s Egs. (1) and (3), of course, but with
the right-hand side of (1) multiplied by (2n7c?/ e w)'?
and that of (3) multiplied by (%/2m.wq,)!? inside the
summation. The factor D,(qit’) then turns out to be

D,(qit) =Z_ (- wCiaCir, @)
J
where Cjq. is given by
b; b,
Caemir(eii =) ©®)
\/Mj N/ Mg

The evaluation of the difference terms, for which one
diagram is shown in Fig. 2, is identical, except that we
now have

Da(qit’) =Z(i'u)qutC'—qu* (6)

rather than (4), and energy conservation permits us to
write the nonredundant summation as 2 ,5,® to
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F16. 3. Second-order quartic anharmonicity : representative
diagrams for the three types of terms.
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Fi1G. 4. Representative diagram in third-order perturbation theory.

indicate that the sum is taken only over those phonon
pairs for which wq>w_qr. The resulting extinction
coefficient g is given in Table I.

We next consider the contributions due to quartic
anharmonicity, involving matrix elements of 3¢’ and
3¢’ The allowed combinations of terms are of three
types: (1) summation terms, in which one photon is
destroyed and three phonons are created (type I), (2)
difference terms in which one photon and two phonons
are destroyed and one phonon is created (type II), and
(3) difference terms in which one photon and one
phonon are destroyed and two phonons are created
(type III). One diagram of the eight for each type is
shown in Fig. 3, and the extinction coefficients 1, 11,
and k11 are given in Table I. In these expressions B is
the quartic anharmonic energy parameter, and the
factors Ei, Err, and Eypp are given by

Ex(a,9'7,q"") =2 G- )CiailCiq Cigrrer
J
Eu(qt,q’t’,Q"t”) =Z(J : U)qutci’q’t'*ch"t”* ) (7)
i
Em(at,q't,q"t") =2 (G w)CiqCiqrvCigrrar™.
J

The summation in &1 is restricted by the condition
Wqe>werer, Wqrryr, giving a redundancy factor of 3, while
the condition for krir is wqe, wqrer>wq+p» and the factor
is again 3.

Third and higher orders of perturbation theory must
also be considered. A representative third-order diagram
which gives the same over-all transition as the first
diagram of Fig. 3 is shown in Fig. 4. The contributions
from this diagram and its associated set are expected
to be qualitatively similar to those of Fig. 3 but some-
what smaller, although quantitative evaluation is
difficult. The convergence of perturbation theory for
higher-order phonon processes usually depends on a
delicate balance between magnitude of matrix elements
and availability of phase space. It turns out that both
for magnetic-spin-relaxation studies'® and anharmonic

w

A

q
Fi1c. 5. Possible phonon pairs for cubic anharmonic terms.

15 N. Bloembergen, Nuclear Magnetic Relaxation (W. A.

Benjamin, Inc., New York, 1961), p. 116.
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phonon-collision processes'® the results for third-order
perturbation theory are one or two orders of magnitude
smaller than for second order, and hence we shall
neglect them.

III. DISCUSSION OF THEORY

We now consider the temperature and frequency
dependence of the calculated extinction coefficients in
the low-frequency limit.

A. Two-Phonon Processes

The number of interactions allowed by 3C”, involving
net changes in occupation numbers for two phonons, is
severely limited by conservation of energy and crystal
momentum. Several possible types of phonon pairs are
indicated in Fig. 5 on a schematic representation of the
dispersion curves for a crystal of the NaCl type. Except
in special cases, only sum and difference processes
involving pair A—A’, in which both phonons belong
to the low-frequency acoustic branches near q=0, can
satisfy these conditions, and such pairs are expected
to make the most important two-phonon contribution
to the absorption at all frequencies other than the
resonance frequencies of the reststrahl and nebenmax-
imum peaks. Pair B—B’, the only other possibility
giving rise to continuous absorption at very low
frequencies, is expected to be less important because of
the small number of such branch crossings. In addition,
such pairs can participate only in difference processes
and will be unimportant at low temperatures. Umklapp
processes similar to B—B’, but not requiring actual
branch crossings since the vectors q and ¢ can be in
different directions, can occur but will also be un-
important at low temperatures. Pairs C—C’ and
D—D’, in which one or both phonons are at critical
points, cannot contribute at arbitrarily low frequencies.

The temperature dependence of the absorption
comes only from the occupation numbers through
nqr= (e"*at/*T —1)71 if we neglect the small shifts in
phonon frequency with temperature. For a photon
frequency of 100 GHz, the frequencies of 4 —4’
phonons will be of the order of 50 GHz, and hence at
room temperature the occupation numbers and the
extinction coefficients for sum and difference processes
will be proportional to the absolute. temperature 7
For the other three pairs the high-temperature approx-
imation is not necessarily a good one at room tempera-
ture, however. We define a characteristic temperature
0 by k@=hws, and use it as a rough estimate of the
characteristic excitation temperature of phonons near
branch crossings. We find from the reststrahl fre-
quencies” that this temperature is 443°K for LiF,

16 A, Maradudin (private communication).
17 American Institute of Physics Handbook, edited by D. E. Gray
(McGraw-Hill Book Co., New York, 1963), 2nd ed., pp. 6-126.
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236°K for NaCl, and 164°K for KBr. Hence, the
contributions of these three types of phonon pairs to
the extinction coefficient may show a stronger than
linear temperature dependence, becoming linear only
near the melting points of the crystals.

The frequency dependence of k, may be estimated,
since only low-energy acoustic phonons are involved,
by changing the sum to a double integral in reciprocal
space and using an isotropic Debye model for the
crystal. If we assume that D;(q#’) is independent of w,
which is not unreasonable, we find «, to be proportional
to w?.

B. Three-Phonon Processes

It is well known that there is an important difference
between the two-phonon and three-phonon processes:
for the latter, the conservation rules are far less restric-
tive in that there are many more satisfactory combina-
tions of phonons which can contribute to the absorption.
Essentially, the whole Debye spectrum of acoustic
phonons is now available, and optical phonons will
contribute as well. A study by Maradudin'® of the
density of final states for both types of processes, using
a simple set of dispersion curves and actually counting
the possible sets of phonons, has indicated that the
density of states for quartic difference processes is
between one and two orders of magnitude greater than
that for the cubic ones. Thus, although the ratio of the
corresponding matrix elements may be small, the
quartic processes may nevertheless dominate the ab-
sorption at high temperatures.

The behavior of the extinction coefficient for three-
phonon summation processes may be. estimated in the
same way as before. It can be seen by inspection that
the temperature dependence of x; is quadratic at
ordinary temperatures. If we assume that Ei(qt,q'7,
q’’t") is independent of w, we find that «r, like &, is
proportional to w?. This analysis is not valid, however,
for the difference terms, for which the most important
contributions will probably be made by processes in
which at least one of the phonons is of high energy
and provides a large density of final states. For the
extinction coefficient due to these processes we expect,
first, a weak frequency dependence, because the phonon
energies will in general be large, and hence the density
of final states and the matrix elements will be insensitive
to the photon energy. Second, the difference terms are
expected to be more important than the summation
ones because of their large number. Third, the limited
validity of the high-temperature approximation will
make the temperature dependence of «kir and kpx
stronger than quadratic at ordinary temperatures.
However, the ionic mass ratio and other factors
affect the density of final states, and hence it will not
necessarily be the case that the temperature dependence
will be strongest in the crystal having the highest
reststrahl frequency.
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TasLE II. Room-temperature dielectric properties of alkali-halide crystals.

Frequency LiF NaCl KBr
Source (GHz) ¢ 10°tans v/ /wy 4 10¢tand  v/wy 4 10¢tand  v/wy
Present work 116 9.14 7.9 0.08 5.90 17.2 0.12 491 10.7 0.06
Genzel, Happ and Weber 100 28 7.5
Dye 50 8.73 2.6 5.83 48 4.79 2.2
Present work 354 9.14 4.1 0.14 5.90 49 0.12 4.91 4.5 0.09
Smith 24 5.90 29 4.85 13
von Hippel 25 . 5.90 <5
10 1.8 4.90 2.3
Present work 8.9 9.14 1.74 023 5.90 2.27 0.21 491 236 0.18

IV. EXPERIMENTAL PROCEDURES

In order to achieve high sensitivity in the measure-
ment of these low-loss materials, a filled resonant cavity
method was used at 10 and 35 GHz. The single-crystal
blanks'® were ground to cylindrical shape with a 500-grit
diamond wheel and then coated with an evaporated
layer of silver to form the cavities. A simple frequency-
insensitive gear-driven variable iris between the wave-
guide and the cavity permitted coupling adjustments to
be made. The dielectric constant €' can be found from
the dimensions and resonant frequency wp of the cavity
using standard formulas' after extrapolating wp to zero
iris diameter to eliminate cavity pulling effects. The loss
tangent of the sample can be found from the measured
unloaded Q of the cavity after wall losses are eliminated.
Large cavities resonating in high-order high-Q modes
such as TE¢; and TEss were used, but even so the
wall losses were not negligible and required separate
determination, which was done in two ways. First,
cavity perturbation measurements were made at room
temperature using small rod-shaped samples in TMyo
and TM,q; cavities. As is easily shown, the value of
tand obtained in this way is more accurate than the
values of ¢ and €¢’, and is independent of the cavity
filling factor and any depolarization corrections as
long as the general assumptions of the perturbation
theory are satisfied. For a cavity filled with the same
material at the same temperature, any decrease in Q
below the previously measured value of (tand)™ must
be due to wall losses. The ratio of measured to theoret-
ical® wall losses determines an effective resistivity for
the cavity walls, and the known temperature depend-
ence of the resistivity? can then be used to calculate the
wall losses as a function of temperature and frequency.
Second, the wall losses were independently determined
from Q measurements on two different modes resonating
at slightly different frequencies by assuming that for
both modes the ratio of actual to theoretical loss was
given by the same number. To facilitate the use of this
method, the cavity shapes were chosen so that one
high-Q and one low-Q mode fell reasonably close
together.

18 Obtained from the Harshaw Chemical Co., Cleveland, Ohio.
1 Technique of Microwave Measurements, edited by C. G.

Montgomery (McGraw-Hill Book Co., New York, 1956), Chap. 5.
20 Reference 17, pp. 4-13.

A disadvantage in practice, but advantage in inter-
pretation, of the filled cavity method is that the cavity
resonance frequency decreases with increasing tempera-
ture and hence the temperature range over which a
given mode can be followed in a given sample is
determined by the tuning range of the oscillator. It can
be seen easily from the dispersion formula (1) and the
formula for cavity resonance frequency, however, that
the ratio wo/w; remains approximately constant during
the measurement. Thus what is measured is principally
the change in absorption at fixed wy/ws due to increased
damping, and the measurement is insensitive to the
additional increase in absorption which would be
observed at fixed wo due to the decrease in w; with
increasing temperature.

The measurements of we and Q at 10 GHz were made
using a swept reflectometer circuit, standard except for
the use of a special isolator and several tuners to
suppress line resonances. The cavity bandwidths were
measured using heterodyne marker pips generated in
a variant of the well-known “cavity Q-meter” circuit.2t
A new and simple method of directly measuring the
unloaded Q of a reflection cavity, requiring only one
universal graph and no reference short circuit even if
there are series losses, was developed by extending
Reed’s analysis.? At 35 GHz, a matched-magic-tee
bridge circuit was used instead, one arm containing the
sample in a transmission cavity and the other arm a
precision attenuator and phase shifter. After balancing
the bridge at wo and measuring the cavity transmission,
the reference arm power was reduced by 3 dB and the
bridge rebalanced at the half-power points by adjusting
the phase shifter. The same marker pip circuit as before
was then used to determine bandwidth. From these
measurements of loaded Q and transmission loss the
unloaded Q could be determined.?

Because the dielectric losses in these crystals increase
more rapidly with frequency than do wall losses, a
simpler method of measurement could be used at 116
GHz, requiring only measurements of transmission
through a dielectric plug 70-80 wavelengths long which
filled a section of waveguide. For dielectrics of fairly

2 Reference 19, p. 396.

2 E. D. Reed, Monograph No. 1953, Bell Telephone System,
1952 (unpublished).

B E. L. Ginzton, Microwave Measurements (McGraw-Hill Book
Co., New York, 1957), p. 404.



181

TastE III. Temperature dependence of ¢':
parameters for Eq. (44).

4 (°C) B (°C) €

LiF, 10 and 35 GHz 215X10¢  3.01X108 1.940
NaCl, 10 and 35 GHz 6.86X10°  1.98%10° 2.385
KBr, 10 GHz 426X10° 174X 108 2431
KBr, 35 GHz 463X10°  1.89X108 2431

low loss, € can be found from two successive frequencies
at which the transmission is a maximum, and €’ or
tand from the transmission at such frequencies. It was
found that imperfect fit of the sample in the holder had
little effect on the measured values of tand because €
and ¢’ were similarly affected, although the errors in
€ could be as large as 109,. Once the total number of
wavelengths in the sample had been determined at
room temperature, further measurements could be
made at fixed frequency by monitoring the sample
transmission as the temperature was varied. Trans-
mission maxima were recorded at intervals of 25-50°C.
Wall losses in the sample holder contributed a correction
of about 109, to the measured tand values.

V. RESULTS AND DISCUSSION

A. Frequency Dependence of Dielectric
Constant and Loss

The values of ¢ and tand measured at room tempera-
ture are listed in Table IT along with other reported
values.2* No dispersion in ¢ was expected or found.
The present measurements of ¢ at 10 and 35 GHz have
an estimated error of 0.5%, due to wavemeter and
dimensional inaccuracies, while at 116 GHz the error
may be as large as 10%,. The values of tand are believed
to be accurate to within 109, at all three frequencies.
The damping parameter v/w; of classical dispersion
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F16. 6. Extinction coefficient of LiF at 25°C.

# L. Genzel, H. Happ, and R. Weber, Z. Physik 154, 13 (1959);
N. E. Dye, Laboratory for Insulation Research, Massachusetts
Institute of Technology, Technical Report No. 114, 1957 (un-
published); G. C. Smith, Materials Science Center Cornell
Unlver51ty, Report No. 51, 1962 (unpublished) ; A. R. von Hippel,
Dielectric’ Materials and A pplications (Wlley—Intersmence Inc.,
New York, 1954), p. 301.
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F16. 7. Extinction coefficient of NaCl at 25°C.

theory, which can be shown to be related to the loss

tangent for the case w/w;<<1 by the simple expression
¢ w ¥y

tand=——,
Wy wf

®

e —é€,

is also given in Table II.

A summary of the absorption measurements reported
in the literature®'®24?% in the wavelength range from
10~% to 10® cm is given in Figs. 6-8. The extinction
coefficient decreases with decreasing frequency some-
what more rapidly than linearly in the far-infrared
range beyond all distinct nebenmaxima, approximately
linearly in the millimeter-wave region, and approaches
a constant value of about 1X10~* below 1 GHz. The
origin of this constant “background” loss, which appears
from the present work to be independent of tempera-
ture, is unknown, although it may be due to imperfec-
tions in the crystals. The weak frequency dependence
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F1c. 8. Extinction coefficient of KBr at 25°C.

25 R. G. Breckenridge, J. Chem. Phys. 16, 959 (1948); C. H.
Cartwright and M. Czerny, Z. Physik 90, 457 (1934); H. Détsch
and H. Happ, ¢bid. 177, 360 (1964); R. Geick, ibid. 166, 122
(1962); L. Genzel and M. Klier, #bid. 144, 25 (1956) M. Kher
ibid. 150 49 (1958); B. Koch, Ann. Phy51k 33, 335 (1938) T. K.
McCubbin, Jr., and W. M. Sinton, J. Opt. Soc. Am. 40, 537
(1950) ; E. F. Nichols and J. D. Tear, Astrophys. J. 61, 17 (1925);
G. Seger and L. Genzel, Z. Physik 169, 66 (1962),
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suggests that the quartic difference processes, rather
than the cubic processes, dominate the absorption in
this frequency region. No significant change in fre-
quency dependence with temperature was observed for
temperatures high enough to make the background
loss negligible.

B. Temperature Dependence of x

The measured loss tangents were first corrected by
subtraction of the loss due to ionic conductivity, given
by

(tand)ic=(1.13X10"3/€'w) A& BIT )

in which the parameters® 4 and B for LiF and KBr are,
respectively, 1.57X105, 2.310X10* and 1.22X105,
2.171X 104, while those for NaCl are 4.76X10%/T,
2.194X10% The corrected 10-GHz results may still be
too high by a few per cent near 700°C due to uncertainty
in this correction and to the effect of the relaxation of
vacancy pairs. Next, the fixed-frequency 116-GHz data
were made more directly comparable to the lower-
frequency data through multiplication by wo(Z")/wo(25°)
=[€'(25°)/€(T) ]2, the cavity frequency shift as a
function of temperature observed at 10 and 35 GHz.
This factor changes by about 99, in the range from 25
to 500°C. The data were then converted to values of
extinction coefficient, the estimated background loss
ko subtracted, and the resulting values normalized by
the remaining loss at 25°C. These normalized results
are shown in Figs. 9-11. The three curves for each
material are generally parallel, showing that the
temperature dependence is similar at each frequency,
although the 10-GHz LiF and 35-GHz KBr curves are
somewhat anomalous.
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F1c. 9. Temperature dependence of normalized extinction
coefficient of LiF. Experimental curves are labeled with nominal
measurement frequency in parentheses. Dashed lines are guide
lines corresponding to successive integral powers of temperature.
Error bar indicates estimated experimental error.

26 Reference 17, pp. 9-65; R. W. Dreyfus and A. S. Nowick,
J. Appl. Phys. Suppl. 33, 473 (1962). '
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Fic. 10. Temperature dependence of normalized
extinction coefficient of NaClL

It is difficult to estimate the relative importance of
the cubic anharmonic terms, the failure of the high-
temperature approximation, the presence of anhar-
monicities of higher order than quartic, and the effects
of incomplete experimental corrections in discussing
the large deviations from the expected quadratic
temperature dependence shown by some of the data.
Several measurement runs were made at each frequency
using different samples, and although the background
loss varied somewhat from sample to sample, the general
shape of the curves obtained was very similar. Never-
theless, it is believed that imperfect cancellation of the
background loss rather than the presence of cubic
anharmonicity is the reason why the lower-frequency
curves for LiF and KBr are somewhat low and appear
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Fi1G. 11. Temperature dependence of normalized
extinction coefhicient of KBr.
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to have a linear temperature dependence at low
temperatures. Within the estimated error of 109,
(which corresponds to a fixed vertical distance on these
graphs) it is not possible to say whether the curves for
a given material coincide quite well in slope or are
really different, although it is believed that in this
wavelength range, the curves should probably coincide
except possibly at the highest temperatures, where ionic
conductivity or vacancy-pair effects may cause the
lower-frequency curves to turn upward.

The average temperature dependence of « at the
higher temperatures may be represented by 7%, where
the exponents & for the three materials are 1.7-2.3
(LiF), 1.8-2.0 (NaCl), and 2.5-3.5 (KBr). The only
other data to which these results may be directly
compared are those of Smith,* who found the exponents
at 24 GHz to be 2.5 for NaCl and 3 for KBr. The curve
of k(T) which may be deduced from his data, however,
is not parallel to the curves found in the present experi-
ments at the two lower frequencies. Both sets of data
agree, however, that the temperature dependence is not
linear, as it would be if cubic anharmonicity were the
dominant source of absorption, but quadratic or
stronger, as predicted by the present theory. It seems
probable that the deviations from §=2 unexplainable
by experimental error are due at least in part to
inadequate phonon excitation in the optical branches.
The characteristic temperatures of the highest-energy
phonons, which can be found from the earlier values 6
by using the Lyddane-Sachs-Teller relation,® are
973°K (LiF), 382°K (NaCl), and 235°K (KBr). We
see that the high-temperature approximation is not a
good one for all phonons in LiF even at the melting
point, although it should be for KBr. This does not
explain, of course, why the slopes are systematically
larger in KBr than in LiF; it may be that in KBr there
are significant anharmonic terms of higher order than
quartic.

It was not possible to make reproducible loss measure-
ments much below room temperature at 10 and 35
GHz, but such measurements were made at 116 GHz.
These data showed no significant changes in the
exponent § at the minimum temperatures reached,
—130°C (LiF), —100°C (NaCl), and —65°C (KBr),
and could be extrapolated to zero at temperatures
between —225 and —125°C for the three materials.
Evidently, the exponent § decreases at temperatures

below those achieved in this work, when the cubic .

processes become dominant. Détsch and Happ® have
indeed found the temperature dependence of « in
NaCl at 3 mm wavelength to change from quadratic
to linear to temperatures below —130°C. Similar
behavior has been observed between 0.3 and 1.0 mm
wavelength in a number of alkali halides by Stolen and
Dransfeld,d who noted that the quadratic temperature
dependence was generally more marked at the longer
wavelengths. This would be expected because the
nebenmaxima, which are due to cubic processes and
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much show a linear temperature dependence, become
less important at long wavelengths relative to the
nonresonant quartic absorption.

A further comparison with theory may be made by
considering the relative absorption of the three materials
at a given frequency. At low temperatures, NaCl
exhibits the largest value of « at all three frequencies.
At high temperatures, NaCl remains highest only at
116 GHz, possibly due to a nearby nebenmaximum,
while KBr has the largest absorption at the lower
frequencies. It is understandable that LiF should have
the lowest loss on the basis of both phonon excitation
and ionic mass ratio, while the crossover of the NaCl
and KBr curves is evidently due to a competition
between these effects. We must, of course, also consider
the ratios of the constant factors in the expressions for
extinction coefficient of Table I. Using Szigeti’s data,
the ratio of the factors 42(8)%/ Ve, /2 (mw;*)? for the cubic
terms and B%(2)%/e, 2 (mw?)? for the quartic may be
shown to be 1.004r2: 0.4345%: 0.344x* and 1.00B.2%:
1.08By?: 1.36Bg? where A, Ay, and Ak are the cubic
anharmonicity parameters and By, By, and Bk the
quartic for LiF, NaCl, and KBr, respectively. If we
assume that the sum over phonons is the same for all
three crystals, which is reasonable for the cubic pro-
cesses and the quartic summation processes and may
even be satisfactory for the quartic difference processes,
then if the cubic processes were dominant and A, =4y
= Ak, the order of increasing x would be KBr, NaCl,
LiF, while if the quartic were dominant and the B
constants equal, the order would be reversed and the
differences smaller. The ratios of the observed values
agree with the second case; if the cubic contributions
were dominant it would be necessary to have 4, <Ay,
Ag and at high temperature, Ay<Ax as well. This
order is inconsistent with the observations by Lax and
Burstein® and by Fuchs® that the width of the reststrahl
band, the strength of the first high-frequency neben-
maximum, the deviation from the Cauchy relation, and
the strain polarizability constant are consistent with
cubic anharmonicity increasing in the opposite order.
Hence, we again find a suggestion that the quartic
effects are more important than the cubic in millimeter-
wave absorption.

C. Temperature Dependence of ¢’ at
10 and 35 GHz

The value of ¢ as a function of temperature at
constant pressure is easily obtained from the cavity
resonance condition and the linear coefficient of thermal
expansion. It was found that the measured values
could be fitted to within a few tenths of 1%, by an

27 B. Szigeti, Trans. Faraday Soc. 45, 155 (1949); Proc. Roy.
Soc. (London) A204, 51 (1950).

28 R. Fuchs, Laboratory for Insulation Research, Massachusetts
Institute of Technology, Technical Report No. 167, 1961 (un-
published).
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TasLE IV. Temperature dependence of ¢'.
25°C  75°C  400°C 600°C
(X107 (X107 (X10™) (X107
Present LiF 274 279 322 356
measurements of NaCl 3.08 3.17 4.04 4.86
(1/€)(d€/dT) KBr> 2.86 3.01 4.04 4.98
Smith NaClP 3.0 4.1 5.4
KBrP 2.9 4.6 5.6
Eucken & LiF 3.75
Biichner NaCl 3.40
Bosman & NaCl 3.24
Havinga KBr 3.14
Panchenko NaCl 3.1 10.0
KBr 3.2 10.0
8 Average of X-band and Ka-band values.
b Smoothed values.
expression of the form
e'—ew=A/(B——T), (10)

for which the constants 4, B, and ¢, are given in Table
ITI. An unexplained discrepancy between the 10- and
35-GHz values for KBr, ranging from zero at 25°C to
29, at 500°C, was observed in repeated measurements.
It can readily be shown that this form for the
temperature dependence of € is reasonable using
classical theory. At frequencies much less than the
reststrahl frequency the contribution to the dielectric
constant from ionic motion is¥

'=e, =[5 +2) P[4nN (¢*)/ Mws],  (11)

where 7 is the optical refractive index, V is the number
of ions pairs per unit volume, ¢* is the effective charge,
and M is the reduced mass. If the temperature is
increased at constant pressure, both V and wy decrease.
We may write the temperature dependence of wy as

wy= (wr)o(1—ByAT), (12)

where 8 is the volume coefficient of thermal expansion
and vy is the Gruneisen constant. The temperature
dependence of N is given by N=N,(1+8AT)
Substituting these into (11) and expanding the denom-
inator to first order in BAT, we find

€—e,=(¢—e)o/[1-6Q2y—1)AT],  (13)
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which is easily changed to the form (10). For the alkali
halides, the approximate values of the parameters at
room temperature are?® B=1.2X10"%, y=1.6; with
those values, the factors 4 and B are too large by about
a factor of 2. However, if the proper value of v for the
fundamental mode of NaCl were 2.82 rather than 1.6,
(47) would agree very well with the measured values.

The quantity (1/€)(d¢'/dT) obtained from the
present measurements is tabulated in Table IV along
with values from other sources.?®

E. Summary

It has been demonstrated by a systematic series of
measurements of the frequency and temperature
dependence of the dielectric constant and loss tangent
of alkali-halide crystals in the microwave and millimeter-
wave region, that simple theories of infrared absorption
which consider only the lowest-order anharmonic effects
are inadequate. A more complete theory is presented in
which the effects of higher-order anharmonicity are
systematically considered, using a simple model for
the crystal, and it is shown that the contributions to
the absorption due to quartic anharmonicity may be
expected to be comparable to or larger than the con-
tributions due to cubic terms. Although quantitative
comparisons are not yet possible, the results of the
present experiments are in general agreement with the
predicted temperature, frequency, and crystal depend-
ence of the absorption due to quartic anharmonicity,
and strongly disagree with the behavior to be expected
from cubic effects alone.
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