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Collision-Induced Anisotropic Relaxation in Gases
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An expression is derived for the cross sections, aj, for the collision-induced relaxation
of the multipole moments of an ensemble of excited atoms in a state of total angular momentum
j. Various general sum rules are obtained for the 0 ~ ~, as well as for the A= =0 " -0", the
cross sections for reorienting collisions. For a j= 1 state, one obtains A& '/A&~ '=+3. This
result implies that the cross section for collision induced I&m I =2 transitions is always
twice that for l&~ I =1 transitions, independent of the assumed interaction potential. Absolute
cross sections are obtained using the van der Waals collision model. Translational motion is
treated in a classical linear path approximation. It is shown that the cross sections can be
written in the form o&(s') =Dp&(&)(u )/ (u), where v is the relative velocity between the col-
liding atoms, D depends on the particular atoms and states considered, and Qj~&~ is a geo-
metric factor which is tabulated for j values up to j=8. The A. ~&) are related to the cross
sections for transfers between magnetic sublevels. It is shown that in the present model a
transfer from sublevel 0,' to -G. is forbidden for states with half-integer j values.

I. INTRODUCTION

Atomic collisions causing reorientations of the
angular momentum of an atom are important re-
laxation processes in understanding the experi-
ments of double resonance and Hanle effect, '
line shapes for scattering and absorbing of radi-
ation, ' and nuclear spin relaxation. ' (We use
the word "atom" even though the discussion
given in this paper applies to molecules equally
well. ) Recently, it has also been shown that re-
orienting collisions are responsible for the
"strong coupling" of .the two circular polariza-
tions of the 1.52- p, Ne transition of the He-Ne
laser. '~ '

The collision cross sections for mixing of the
Zeeman sublevels (or reorientation of the angular
momentum vector) caused by resonant collisions
mere calculated numerically by D'yakanov and
Perel' ' for the case of a j = 1 state colliding with
a ground-state atom of j =0. Generalizing the
theory of resonant and nonresonant collisions of
Byron and Foley, ' Omont' has derived a general
expression for the cross sections for the relaxa-
tions of the multipole moments, c (&) (to be de-
fined in Sec. II). He also worked out explicitly
the j=1 case. However, no general method has
previously been given for calculating the cross
sections for states of arbitrary angular momen-
tum.

In this paper we give a method for calculating
these cross sections. We first derive, in Sec.
II, a general formula for the cross sections in
the spherical tensor representation. In Sec. III
we obtain general sum rules for a&(&). Finally,
in Sec. IV the calculation is specialized to the
case of van der Waals collisions (or nonresonant

collisions). We then develop an algorithm for
calculating cross sections for a state mith arbi-
trary tota1. angular momentum j.

II. GENERAL FORMULA

At low densities the time rate of change of the
density operator p(t) describing an atom, in a
state of total angular momentum j, due to uncor-
related binary collisions can be written as

sp(t) = —2m+. n. fd'v Iv. I.8t 2 2 2 2

x f(v )b db. (&..p. (t))
2 2 2 av

where bz is the impact parameter corresponding
to the collision of the specifically considered
atom with a perturbing atom of the ith kind; v.
is their relative velocity, f(v ) is the relative
velocity distribution of the perturber, and nz is
its number density. The ( ~ )av indicates the
angular average of all the collisions at different
angles. Here 4z p is given by

&.p(t) = p(t) - (u, I s, I tt,.) p(t)( p . l &'. I tt .), (2)

where the collision operator S;(t, to) satisfies the
operator equation

».(t, to)/et= ts (t, t )v.(t). -
with the initial condition given by

S.(t, t )=l.
z 0'0

The operator Vt(t) is given by

v.(t) = e
' ' ft.(t)e' '

,
2 2
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where H, is the unperturbed Hamiltonian of two
colliding atoms, and Ut(t) is the interaction po-
tential acting between atoms during the collision.
The time dependence in Ut(t) is due to the trans-
lational motion of the atoms.

In writing Eq. (1), we assume that the perturb-
ing atom is initially in the ground state I pt& de-
scribed by a relative velocity distribution f(v~).
The density operator p(t) in Eq. (1) is obtained
by making a Stosszahlansatz, namely, one re-
places p(t, ) by p(t) where t, is the time when a
collision event takes place. This assumption is
justifiable only if ht= t- t, is short such that the
density operator p(t) does not change significantly
in 4t.

Since we are interested only with m mixing
collisions, the specific density matrix for this
purpose is obtained from Eq. (1) as

&r (j.lnP;y5)&„

where G.(J) is given by

x(5 5 —&j I IS.I .j
Em pq E i i m i

x&j p,.lS,'. Ij p,.&),

and the quantity within the curved br~~.~,-:t i ~',~~.

Wigner 3-j symbol. '
We see from Eqs. (4) and (7) that| fQ&:ge«', «~-::;«t

—(p. . (t)j = —2m+. n. Jd'v Iv. lf. (v.)

xb. db.g &I".(jl np;y5)) p. . (t),i i y5 i ' av j j
y 5

(4)

where the four index matrix (tetradic) is given by

&r.(jI nP;y5)& =&5

-&j u,.IS,.Ij p;&&j5p,;IS,'. Ii p,.»„
Here we have labeled the angular momentum of
a state by the letter j and its projection along the
quantization axis by a subscript. Other quantum
numbers are not explicitly specified.

To evaluate Eq. (5), we express the interaction
potential Ut(t) in a coordinate system fixed in the
collision plane, i.e. , the plane of the impact
parameter bz and the relative velocity v . We
then rotate the state vectors to this new coordi-
nate frame with the help of rotation matrices.
Therefore Eq. (5) becomes

&r.(jl nP;y5)&

(j) *(j) (j) *(j)&
nl ym 5p pq av

Empq

x(5 5 —&j p. lS.lj
Em pq l z z nz z

x&j I .IS'.Ij t .&).
P z z g z

The angular average can be carried out by first
expressing the four rotation matrices in terms
of two rotation matrices by means of the Clebsch-
Gordan series, ' and then performing the angular
integration with the help of the orthogonality
property of the B matrices. The final result is

( )j—n~q( )I/2 j x j-n +q p

The expansion in terms of the p (x) has direct
physical meanings. For example, p,"& is simply
the population of atoms in the state I j); p & '& is
proportional to the qth component of the total
angular momentum (or magnetic moment) of the
ensemble of the atoms in the state I j). In short,
pq(x) is proportional to the qth component of the
2&-pole moment. of an ensemble of atoms in the
state I j&. (The range of x is from 0 to 2j. )

Substituting Eq. (7) into (4) and performing the
transformation to the spherical tensor basis de-
scribed by Eq. (8), we obtain the result

e (x) (x) (x)
etP = —'Y- P (10)

where

y. =2wP n Jd v Iv. ).f(v).. .
z z z z

is anisotropic; therefore it ie g,@@vg@j~:"p ~~& ep. .

pand the density matrix in a i'~, .~~~&~@~~w, 'III'

that the equations are deco':~, , ~Q ea44Iz„.sion
can be accomplished by the fe"'l.:~~kg~/t~jI ~we=.

tion'.

(x)t T (x))
fnfp q q Snap

where p (x) is a c number, and T (x) is an irre-
ducible tensor operator of rank x with matrix
element normalized to

(x)
j j
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xb.db. +G (J)i i z J j j
or y. =2m+. n. Jd v. b.db. lv. l

(x) 3ii zz $ z

x f(v )(r . .(b.v.),
(x)

z j zz'

(iia)

(11b)

=-(&i+ ))E( T +T' )-(Zr )(Zr" ),

(18)
2'

(b) (-1)"' ~(2x+1)v. "
x=0

and the quantity in the curly bracket is the Wigner
8-j symbol. ' The cross section o&(x)(hived) is given
by

(12)

The expression for the cross section given by
Omont' [cf. Eq. (32) of Ref. 8] can be derived
from Eq. (12) by first expanding further the S
matrices appearing in Gf(J'} [cf. Eq. (8)] in the
spherical tensor representation and then making
use of the properties of 6-j symbols. However,
for analytical or numerical calculations of the
cross sections, for a state with an arbitrary
angular momentum, it is more convenient to use
the form given in Eq. (12) because the symmetry
property of the S matrix in the "fm" representa-
tion eliminates large efforts in the calculation,
as will be seen below.

HI. SUM RULES FOR 0) (bp))

It is convenient to introduce a scattering T
matrix which is related to the 8 matrix by

(j p. lS.Ij p. ) =5 +T
E i i m i Em Em

(13)

and (j p IS lj p ) =5 +T4
P & & 9' & Pl' Pl

Substituting Eq. (13) into Eq. (8), one obtains

G.{Z)=-(2m+1) . , Q(T +T* )2j+1

It follows from Eqs. (12) and (14) that

=-Z[(T +T' )+Z( 1) ' '
T T* ].

(17)

If we consider the special case where the condi-
tion

T =( 1)' PT
—n —p pa (i8)

(x) (x) (O)
(2o)

where the cross section A (x} accounts only forj
the collisions which mix up the Zeeman sublev-
els, and gj~'& accounts for the transfer of popu-
lation.

Substituting Eq. (20) into Eq. (19), one obtains
a simple sum rule for Aj(x) as

(2x+ i)A. (x)

x=2, 4, ...

is satisfied, the sum rule (b) reduces immedi-
ately to

2j
(b') Q (- 1) (2x+ 1)o. = (2j+ 1)g. . (19)

x=0

From symmetry arguments, one intuitively
expects that the condition expressed in Eq. (18)
is satisfied by many physical systems. We shall
see in the next section that the van der Waals po-
tentia1. model satisfies this condition.

The sum rule (b') can be simplified further if
one realizes that the relaxation of the multipole
moments are from two contributions: (1}exci-
tation transfer from the atom under consideration
to perturbers, and (2) the mj mixing among
Zeeman sublevels. These two processes give
independent contributions to oj(x); therefore one
can write

where, for brevity, we have not written out the
arguments of the cross section.

By contracting the index x in Eq. (12), one
obtains readily the following sum rules for o (x}:

(a) Z (2x+1)o.
2j

(x)

x=0

X 1y 3) ~ ~ ~

(2x+ l)A. (x}
(21)

Except for the conditions given in Eq. (18),
this result is independent of any specific form
of the interaction potential. The general validity
of Eq. (21), therefore, provides a convenient
check in computing reorienting cross sections
resulting from any specific interaction.



The case j --1 is of considerable interest be-
cause it corresponds to many experiment situa-
tions. One obtains immediately from Eq. (21)

- that

A ( &) /p (2t) —m

IV. VAN DER WAALS t."OLLISIONS
WITH AN r. ~ TYPE POTENTIAL

l

The calculation of the T matrix based on the
van der %aals interaction potential model will be
of the central attention in this section. The equa-
tion of motion for the S matrix can be obtained
from Eq. (3) by taking the required matrix ele-
ment as

i(j tt. l S.l j ti. &
= Q(j p. . l S.lpq. &

Pqt

x(Pq. I P. (t) Ij P, .&, exP[it(E —E. )].
2 2 m 2 Pa'

2 m2
(23)

A similar equation applies to (jap, .l S. I j ti. &.
2 Q' 2For the collision of two neutral atoms, the in-

teraction potential can be expressed in terms of
a multipole expansion containing dipole-dipole,
dipole- quadrupole, quadrupole-quadrupole, etc. ,
interactions provided that the two atoms are
far apart. In general, there is also a hard-core
interaction which becomes important when the
electron clouds of two atoms begin to overlap.
The repulsive hard-core interaction is presum-
ably unimportant in treating the anisotropy of the
relaxatlon rate because as this 1nteract1on be-
comes operative the atomic state is drastically
changed and there will be little correlation be-
tween the state of the atom before and after the
impact, thus the decay caused by these collisions
is expected to be isotropic. [Furthermore, the
cross section due to the hard-core interaction is
small (~10 "cm'). '0] We therefore neglect the
hard-core interaction and take Eti(t) to be the
dipole-dipole interaction for the subsequent cal-
culations.

Therefore in the classical path approximation
for the translational motion, one writes

[p r (t)][p r (t)]
u.(t)= ' —3= '

'(t) . r '(t) (24)
2 2

%'e show in Appendix I that this ratio implies that
the cross sectionfor collision-induced l &ynI =-2

transitions is twice the cross section for I hm I
= 1

transitions. Coupling this &3 ratio with the experi-
mentally measured critical magneti. c field and the
spontaneous decay rates in the 1.52- p, He-Ne
laser line, we have determined the anistropic re-
laxation cross sections for the 2s, state (j =1)
of the Ne atom in a He-Ne laser discharge. '

where in the collision coordinate system x;(t) is
given by

r (t)= Ib ~ f v (t')«'l=(b '+v't')"'
2 2 0 2 2

The last equality is the result of the linear-path
approximation. In the case of states with energy
satisfying

DE. =E -—E « 1/7'
2 Pg'. Pl P- .

(25)

where 7 is the average duration of collision, the
phase factor in Eq. (23) can be set equal to unity
and one has the condition for the "sudden approxi-
mation. " The S matrix can then be approximated
to be"

( tt .IS, I „,t,.&=( tI t
',.),

where

q,. = f dtV.(t)=, (P P. -P P. ), (27)
2 2

hE. =E —E—»1/r
Pg. Pl g . c

2

is satisfied, one can use the "adiabatic approxi-
mation" and the S matrix can be approximated to
be 11

(23)

(j p, . l S.I j ti, & =(j I e il j ),,

where W. is the effective potential for van der
2 .%'aals collisions given by

~.=&~,.&-'f „&t,. l U,.'(t) II,.&«

= [4(~)"'p.'p'/16(~. &v. t .']

x(»„(e,y). -'. (-.')'"Y„(e,e)

——,'(~)'"[Y„(~,0).Y, ,(e, ~)]], (30)

where pi =(Ilail Pi 'I iii&»d e»d ~ »«he po lar
and azimuthal angle of p =er with respect to the
coordinate system (b &&vi, vi, bi). The term Y»
cannot contribute to the cross section because it
only perturbs the Zeeman sublevels of the state
with equal shifts in energy. It can therefore be
ignored in the calculation of S matrix. The quan-
tity (~;&, the average of bE;, is the result of

provided that one includes only states which are
connected by the operator Qi and have energies
such that Eq. (25) is satisfied. [This case is
also known as the resonant collision. The coordi-
nate system used in Eq. (27) has the x, y, and z
axes in the directions v2 &&bz, v2, and b2, respec-
tively. ] On the other hand, if the condition
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the closure approximation used in deriving Eq.
(29), and it can be estimated from the energy-
level diagram if the information about oscillator
strengths of the state !j) is available. [The case
described by Eq. (29) is also known as the non-
resonant collision. ]

For the (electric) dipole-dipole interaction
model, the resonant collision is possible only
when the angular momenta of the colliding pair
of atoms satisfy l Ej!=0, 1. Quite often the per-
turbing atom is in a ground state of zero angular
momentum, and in order for the dipole-dipole
interaction potential to be an important mechanism
the other atom must be in a state with j =1. This
is the case in the He-Ne laser oscillating on the
1.52, 1.15, or 0.633 p, , etc. , transitions, but the
coBision cross section is not particularly large,
so that resonant m. mixing collisions are pre-
sumably insignificant in He-Ne gas lasers be-
cause of the low Ne/He density ratio in the system.
However, if allowed by the dipole-dipole selection
rule, the resonant collision can be one of the im-
portant mechanisms contributing to the decay of
PoPulation in a laser due to the small probability
of collisions between an active atom and an iden-
tical ground-state atom having a similar z com-
ponent of velocity Only. the active atoms in a
small region of the Doppler profile contribute to
the intensity of a single-mode laser. The reso-
nant collisions we considered here are the type
of collisions in which the atoms exchange excita-
tion but do not significantly alter their velocities.
Therefore a collision between two atoms of the
same kind is more likely to annihilate the ex-
cited atom of "right" velocity and to create a
new active atom elsewhere in the velocity distri-
bution. The excitation of the atom contributing
to the laser intensity is then lost. This case is
quite different from experiments using the Hanle
effect, where resonant collisions cannot contrib-
ute to 0 "& because there the atoms of every ve-
locity class contribute to the depolarization of
electromagnetic radiation. The calculation of the
cross section for multipole moment relaxation
by resonant collisions for the case of the Ne 2s,
state is given in Ref. 5; for other cases the
method developed below can be used equally well
and we will not consider it in this payer.

We now consider the van der Waals collision
calculation. With the help of the Wigner-Eckart
theorem, ' the matrix element for the operator
8'is easily found, for integer j, as

(j ! W. !„' ) = W (j) = (- 1) a.(2j+1)in lm i

and, for half-integer j, as

(j l W. !j ) =-- (—1) 'A. [(2j+4)(2j—1)]'

x j+' j+'

e
' =5 [(-1)"/n!]W", (33)

then the crux of the calculation lies in the reduc-
tion of the matrix 8'&. According to the Hamil-
ton-Cayley theorem" any symmetric square ma-
trix satisfies the equation

II.(~.f- W) =0,
'L

(34)

where the X~ are the eigenvalues of W, and the
product goes over all distinct eigenvalues. From
Eq. (34) it follows that W~ can be reduced to
contain powers of S' only up through one less
than the number of its distinct eigenvalues. Also,
from Eq. (34), one can show that, for distinct
eigenvalues, the set of operators

z.= rr b.,I- w)/(&, -~.)
lWz

form a complete sei of projectors into the eigen-
values of W'. Hence

Z, Z. =Z.r, and W=Q. ~.Z. , (35)i j z lj' j j
so that W =Q. X. Z. , and e =Q. e jz. .

The reduction of W~ in terms of projectors Zz's
is the reduced form of Sylvester's theorem. '~

From Eqs. (13), (29), and (36) it then follows that

2 =Z. (e
' j-l)(Z. ),lm j

Substituting Eq. (37) into Eq. (14), we obtain

G.(Z)=(2m+1) — -Q d sin'(X /2)22+1 a aa

(37)

where

~.= ~p'p. '/16(nZ. ) t .'~ . .i i 2 g i

The properties of the 3-j symbol give immediately
that the nonzero elements in the matrix Wf~(j)
are those with I l —m I =2, 0, and that W is a sym-
metric square matrix. Therefore the eigenvalues
of Wf~(j) are real.

If we make the power series expansion of the
operator e —~& in the form
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— ~,(','.')(.','.')l pnmqn
2j+1 2j+1

x 2 Z (Z)I (Zb)

x [sin' —', &(. + sin'2 &( —sin2'2 (&(. —&&. )] . (38)

To obtain Eq. (38) we have used the identity

where d is the number of degenerate eigenvalues
corresponding to Xa. The cross section o& (x)(bit/i)
is then

Using the ~2 ratio for A, "&/A, "&, we obtain from
Eq. (42)

(j)=~.X (j) (44)

A "& =+A &2&= —'[sin2(8. /eb. ')
i i

+ sin2(48 /5.bi') + sin'(Bi/bi ')] .
'E

This result agrees with that of Omont for the
j =1 case.

It is now possible to develop an algorithm for
calculating the cross sections for a state with
arbitrary j .

If one defines a matrix Xlm(j) which is related
to the WI (j) given in Eqs. (31) and (32) by

o. (b. v.) =
2

. 1+d sin (&(. /2)(x)
j i i 2j+1 a a where

'p'p '
a =Ab5= 16(~.)~.

g

sz r, (2..o(& &;)(//;)
Jn' bnPq

2j+1 2j+1
x '. '. " Q Q (z) (z)aim bpq

x[sin —,x + sin —,'x —sin' —,(X —&( )]. (39)

By means of the properties of the j symbols
and the projection operators, one obtains from
Eqs. (16) and (i9)

=Z (-1) (2x+ i)a. =0.(O) x (x)
x (40)

2j+1
( )

2/+I
( )(2x+1)(x. = Q (2x+1)A.

x x=1

2j+1 2j+1
d d sin2-2'(&(. —&(. ).

a=1 5=1 a b a

This is because the effective potential 8'i used
for van der Waals collisions is of even parity
and cannot change the population.

The substitution of Eq. (37) into Eq. (16) gives

then the eigenvalues of the XI (j) matrix 6„6„
~ ~ ~, and 52 +1 are related to ~y, A2& o o

& ~2j
[the eigenva/ues of the WI~(j) matrix] by

=6 /b. ', with a=1, 2, ... , 2j+1.a a i' (46)

z (, )(' i('' „;)
2j+1 2j+1

Z (z)& (z)
cJ j j 1 ~ 1

a lsd 5Pg

The projector Zi remains unchanged.

Rewriting the T matrices given in Eq. (37) in
terms of 5a and then substituting them into Eqs.
(38) and (12) and carrying out the bi and the ui
integrations, we obtair' the cross section due to
the ith perturber at all impact parameters as the
following:

(i) =A. (i)=y (i-) /. n(e. )
(x) . (x) . (x) .

j j j i i

(& 2/2)
v csc2&/ i 4

i 4 I'(') (e.) 2j+1 a a

For j=1, one has

3A ~'&+5A ('&=4[sin' —'(&( —&( )

+ sin' —
2(&(., —&(.2) + sin' —

2(&(.2
—&(.2) ] . (42)

x [6 2/5+ 6 2/2 (6 6 )2/2]
a b a b

where I).= (gp2p 2/16(AE ))'/'
2

(46)

One readily shows from Eq. (31) that the eigen-
values of the Wlm (1) matrix

6B. —48. —28.
1 5y 5s 2 5g 5 & 3 5b

Except for the quantity in front of the square
bracket, the rest of the right-hand side of Eq.
(46) is simply a geometric factor. Namely, we
have obtained an algorithm for calculating the
cross section for any j. It is convenient to define
a geometric factor, Pj(x), such that one can write
Eq. (46) as
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e. (A D((&s',.&/&v &).y
4) l (z) (47)

The gsezsetric factor Qj(&) is tabulated in Table I
for j= 1 up to j ~ 8 in increments of —,

' .

+, 9'~%&M% OF THE RESULTS

As diseuse% fN A~mehx I, it is always possible
to express the ~~s@kW@transfer cross sections,
oj(&,y), in ternss Of the multipole moment relaxa-
tion cross sections, ~„'&-"). [The quantity oj(n, y)
describes collie&0@ 'Wke@ reorient atoms from
a state l j~& to a state Ij&,& and vice versa. ] In
Fig. 1 we show the geMAe transfer cross sec-
tions for j = 1, j = j, ~jr ~r states as obtained
from the results in Table K and Eq. (A5). We
emphasize that fox' NI j~ 0 ~~e the transfer cross
section for I 4m) -"-.8 4g~Qt$ges is twice that for
I &m I = 1 transkt@@N. Ag yyQted out in Sec. III,
this ratio is a M~K M ~evwetry and is therefore

independent of any collision model. For a j = 2

state we note that the a», (m, —m) are zero as
discussed in the Appendix, and that the remaining
cross sections are all equal. For j=2 the situa-
tion is more complicated, but it is clear that the
population transfer collisions are quite anisotropic.
From calculations of the oj(n, y) for higher j val-
ues, we have obtained the following results. For
integer j values the largest cross section is &rj(1,
—1), the next largest is o&(j,j —1), and the
smallest is a&(j, —j + 1) =, o&(j,-—j ). For half-
integer j values the largest cross section is
v&(j,j —1), the next largest is oj(,', ———,'), the
smallest is o&(j, —j+1)=oj(j, —j+2), and all the
oj(m, —m) are zero. These relationships are
indicated in Fig. 2.

The multipole moment relaxation cross section
can be measured by various experiments. In
Hanle effect and optical double-resonance experi-
ments, ' the line shape of the fluorescent light

TABLE I. Co~@~v~o6 of Qj and oj /0'j for j from 1 to 8 in steps of y. The calculations were performed
using double jpx'eek@ol) aj|Q@vnetic (approximately 17 decimal digits) to reduce the buildup of round-off error for the
higher-j mimed. Abo»e o&mut j= 5 the computer time required for the calculation scales approximately as j . Since
the j= 8 eQOMetiom ~lvkeed about 22 minutes of time on an IBM model 360-65 computer, we did not carry the calcu-
lation hey~ f~ ~I%,,

4lltSIIRWRRW&alQltltHSA:ElClWESSglWOI38batF~. ANSÃa

4.062
2,437

9
e p'eg~~~ 1.667

M~~ggQQg ~~%4ggygggggg

1.640
3.281
1.640

0.500

2.532
2.871
3.860
2.251

0.882

1.565
2.798
2.816
3.499
1.915

0.559

2.009
2.586
3.335
3.163
3.696
2.203

0.777

1.417
2.476
2.767
3.285
3.078
3.495
1.993

0.572

1.716
2.346
2.990
3.076
3.500
3.229
3.574
2.164

0.731

1.308
2.258
2.612
3.056
3.104
3.442
3.148
3.436
2.020
0.579

3
4
5
6
7
8
9

10
11
12
13
14
15
16

~.(&) j~.(2)

1.521
2.165
2.737
2.912
3.285
3 ~ 254
3.545
3.230
3.472
2.131

0.703

1.228
2.099
2.462
2.863
3.003
3.299
3.236
3.487
3.161
3.368
2.027

0.585

1.388
2.026
2.546
2.755
3.095
3.158
3.417
3.325
3.543
3.209
3.384
2.103

0.685'

1.160
1,973
2.331
2.702
2.884
3.151
3.184
3.411
3.298
3.490
3.151
3.303
2.022

0.588

1.284
1.914
2.393
2.616
2.933
3.041
3.278
3.279
3.479
3.352
3.523
3.180
3.309
2.076

0.671

1.101
1.868
2.220
2.568
2.767
3.013
3.096
3.303
3.284
3.463
3.326
3.475
3.129
3.243
2.011

0.589

1.204
1.820
2.267
2.497
2.796
2.925
3.147
3.197
3.382
3.346
3.506
3.359
3.494
3.147
3.242
2.051
0.661
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FIG. 1. Relative population transfer rates for j= 1,
j=2, and j= 2 states. The horizontal lines represent
the magnetic sublevels, labeled by their m values, and

the numbers on the lines joining them are the relative
cross sections for collision-induced transfers between
the indicated sublevels. Different scale factors have
been used for the different j values. Use the results
in Table I and in Eqs. {47) and (A.5) to obtain absolute
cross sections.

emitted from an ensemble of excited atoms in a
sufficiently weak magnetic field provides informa-
tion on the cross sections v &'& and 0 "& more
commonly referred to as the "orientation" cross
section and the "alignment" cross section, re-
spectively. In the following paper we describe a
new method of measuring o.&'& and o. &'& for states
involved in laser oscillations. ' In Fig. 3 we plot

Q."& and the ratio g"&/o "& as functions of
.j ' jj. For integer j the ratio decreases drastically

j 0 8 8

) = I/2 INTEGER

FIG. 2. Schematic population transfer cross-section
matrices, Oj(n, y). The L indicates the largest cross
section, the N the next to largest, and the S the smallest.
The 2S indicates a cross section twice the smallest,
The main diagonals are shaded to indicate that these do
not represent population transfers. Note that for half-
integer j values all the elements on the cross diagonal
are zero.

from +3 for j=1 to 0.88 for j =2 and then slowly
approaches its asymptotic value. For half-integer
j the ratio is —,

' for j = —„and reaches its asymp-
totic value somewhat earlier. The ratio ~ for
j = & is in good agreement with the experimental
results of Gallagher" for Rb atoms in the 5p'P, &,
state colliding with Ne or Ar atoms.

The higher multipole relaxation cross sections
have not yet been measured. As one sees from
Table I, these are comparable with or larger
than 0"& and 0"&, and are important to provide a
complete understanding of the collision-induced
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4.5 p. . (f) = —Z (I'(jInP;y5)) p. . (&).
r&

(A1)

4.0

3.5

3.0

2.5

Here the angular bracket is defined by the equiv-
alence of Eq. (A1) and Eq. (4) of the text.

In the spherical tensor representation, the
equation for the decay of p (x) is given byq

. (x) (x) (x)

q j q

Carrying out the transformation given in Eq. (9),
and making use of the orthogonality property of
the 3-j symbol, we obtain

2.0

I.5

I.O

0.5—

I I I I I I I I I I I I I

3/2 2 5/2 3 7/2 4 9/2 5 I I/2 6 - l3/2 7 I5/2 8

(2*+ 1)( ~ *,) ( . ) . (~~)

Since the excitation transfer and the reorientation
of the angular momentum of the atom contribute
independently to the relaxation of the multipole
moment, we separate out from Eq. (A3) the part
which describes only the reorientation process,
and obtain

pIG. 3. Plots of fy & (t)j and Oj /&j as functions
of j. The integer and half-integer cases are indicated

by double and single circles, respectively. The curves
drawn through the calculated points are simply to in-
dicate trends, and have no particular physical signifi-
cance. The upper bvo curves are for Qj, the middle two(2)

for (Ibj ', and the lower two for oj '/aj

relaxation. The higher multipole moments con-
tribute only through the nonlinear response of the
medium, but it may be possible to measure such
quantities by studying the saturation effect of a
Hanle-effect experiment by a high-power laser.
Photon-echo experiments may also provide mea™
surements of the higher- moment relaxation rates
although it might be difficult to separate the vari-
ous quantities.

with n oy and pW5, (A4)

(2 +1)( ' ", ')( ' ", ') . (~~)

The quantity oj(n, y) has the properties

tr. (n, y) = tr.(- n, —y) = (r (r, n). . (A8)

where the subscript RE indicates reorientation.
It is useful to define a quantity, a&(n, y), called

the population transfer cross section, as

RE z
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APPENDIX I

Relation Between the Multipole Moment

Relaxation Rate Constant y and the(x}
Collision Matrix I'(j I;y5}

As mentioned in the text, the equation express-
ing the decay of the density matrix for a state of
a given j in the "lm" representation is given by

The population transfer cross section oj(n, y)
describes collisions which transfer atoms from
one orientation to another. For a j = 1 state, one
always has & "& =&3A&'&; it is then simple to show
by Eq. (A&) that

o, (1,—1)/~, (1, O) = 2. (A

By setting y = —n in Eq. (A5) we obtain the
cross section for transfers from the state I jn)
to the state 1j n) as

2
& (n, —n) = —Z (-1) A. (2x+1)
2

' x j n —a 0
(A8)
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or by using Eq. (12)

g.(a, —a) L=q-a(z)( ~

$q( 0). (A)))

For half-integer j values we can sum over a in
Eq. (A8) to obtain the simple result

o (n, —. n) = —Z (-1) A. (j=-,'-integer).
(A10)

It has recently been shown that for weak collisions
the oj(n, —o.) are all zero for half-integer j val-

ues"~ '~; thus for such collisions Eq. (A10) be-
comes simply

Q (- 1) A. =0 (j = —,
' -integer).

x (x)
x (All)

The numerical results given in Table I all satisfy
Eq. (All) (for half-integer j values). It is clear
that for the interaction potential we have used,
the v (j, —j) must be zero since such a transition
requires an electron spin flip but the potential
does not involve the spin coordinate. It is less
clear why. the other oj(n, —n) are also zero.
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