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Screening in Dilute Alloys and Dilute Metals in the Light of Solutions
of the Nonlinear Thomas-Fermi Equation*
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A practical procedure has been developed for solving the nonlinear Thomas-Fermi equation by quadrature,
and has been applied to screening problems in dilute alloys and dilute metals. For the dilute-alloy problem,
results of calculations are presented in curves and equations for factors for the effective charge of impurity
ions which can be applied to any alloy system of interest. In the case of dilute metals, the eRect of the
gradual localization of charge as the atomic radius r0 per metal atom is increased was studied. The model
allows for the presence of a matrix of other atoms or molecules through a dielectric constant IC and effective
mass ratio 3f. Also, it is necessary to take into account the exclusion of the valence electrons from the ion
core region. This is done by means of an ion core radius r„within which the band electrons are excluded.
Calculations were made for two effective mass ratios p0 and pi, which measure the e8ect of charge localiza-
tion, respectively, in reducing the Fermi energy and in reducing the density of states at the Fermi energy.
In addition to the dependence on r0 and r„ the ratios p0 and pl depend on the "reduced" charge Zq, which
is the charge of the metal ion multiplied by (M/lf) . The implication of the results for these models is dis-
cussed for screening as it actually occurs in dilute alloys and in dilute metals.

I. INTRODUCTION

'HE Thomas-Fermi (TF) equation has been a use-
ful source of information about the distribution

of valence-electron charge in alloys. A detailed study of
its implications in dilute alloys has been made by
Friedel, ' largely in the context of the solution of the
linearized equation. The effect of an impurity with a
charge Z' (difference between the ionic charge of im-

purity and host atoms) is to cause an excess electron
density 5e(r) centered on the impurity ion and a shift
in the Fermi energy Zip from the value E&0 for the pure
solute. The latter is associated with a nonzero value of
bm at ro, the radius of the spherical volume per impurity
atom. Friedel showed that les(rs) rapidly approaches
zero when ro is large compared to the screening distance
X. Since 5tt(rp) is proportional to Z in the linearized
solution, this result is conveniently described in terms
of the effective charge of the impurity s=-', ~re'5tr(ro).
The ratio o.t=s/Z' is a simple function f(rs/X); f ap-
proaches unity for ra&a, and it approaches zero for
rp) X. (The subscript 1 on n denotes the value in the
linear approximation. )

i,inearization of the TF equation depends on the
assumption that the potential energy V(r) is small com-
pared to Ep. This is a poor approximation in most
metals, and it has been long recognized that the linear-
ized solution is inaccurate. Friedel' considered the
effect of next-order terms, which has an advantage
mainly in giving a qualitative understanding of the
effect of the nonlinearity: n is smaller than n& for Z') 0,
and larger for Z'&0. Accurate calculations for the
nonlinear effect were obtained by Alfred and March
for impurities in copper' and Fujiwara for impurities
in' silver. Using numerical methods, they obtained

* Work supported by the U. S. Atomic Energy Commission.' J. Friedel, Advan. Phys. 3, 446 (1954).
2 L. C. R. Alfred and N. H. March, Phil. Mag. 46, 759 (1955).
'H. Fujiwara, J. Phys. Soc. Japan 10, 339 (1955); 10, 727

(1955).

accurate solutions for Z'&0; these are conveniently
expressed in terms of a ratio n/o. t which we will refer
to as p. Alfred and March also obtained approximate
solutions for P for Ag and Cu for Z(0.'

The main difficulty in numerically integrating the
(second-order) nonlinear TF equation develops from
the fact that the known information for a given problem
provides input data for one boundary condition at each
end of the range of integration: dV/dr=0 at r=rs, and
dU/dr=+2Z/rs at r ~ 0. (We will use atomic units
throughout this paper. ) Alfred and March' and Fujiwara
met this difficulty by using a relaxation method, which
leads to the necessity of solving a matrix equation whose
order must be increased for increasing accuracy of solu-
tion. A much simpler numerical solution can be obtained
directly by the method of quadrature if one assumes
various values of Er and determines Z'(Es) which
arises from the calculated value of d U/dr at r= 0 Inver-.
sion of this function yields Ep at various values of Z .
This approach is well suited for the use of high-speed
computers.

It is possible to lump together the various fixed con-
stants (Z', re,E~s) in such a way that p can be expressed
as a single function of the combined parameters for any
particular value of rs/X. (A different function is neces-
sary for positive and negative Z'. ) We find, as one might
expect, that these curves asymptotically approach a
single one for large rs/X. Since rs/X is large for even fairly
concentrated alloys, this limit is effectively a single
solution which is invariant with impurity concentration.
These results represent a considerable extension of the
results of Alfred and March, and Fujiwara, since they
are applicable to any dilute-alloy system, within the
limitations of the physical accuracy of the original non-
linear TF equation. For convenience in making use of

4 L. C. R. Alfred and N. H. March, Phys. Rev. 103, 877 (1956).
In a later paper LPhiL Mag. 2, 985 (1957)j a more accurate solu-
tion was obtained for Z'(0, but the result was not expressed in
terms of P.
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the calculated asymptotic curves, they have been put
in an analytic form by means of a least-squares fit to
an arbitrary function with an appropriate number of
adjustable constants.

Our original interest in solving the nonlinear TF equa-
tion stems from an interest in dilute metals rather than
dilute alloys. By dilute metals, we mean systems in
which there is an electronic conduction band which con-
tains a small density of electrons compared to metals,
but for which the corresponding positive charge is
localized, rather than diffuse as in typical semimetals
(e.g. , bismuth). Our own interest is in liquid semicon-
ductors, e-type thallium-tellurium' in particular, but
many other systems meet this definition; for instance,
concentrated solutions of alkali metals in liquid
ammonia, or tungsten bronzes. The nature of the
electronic structure and electronic transport in these
systems is not well understood and is a subject of con-
siderable research interest. '

It is evident that there will be a considerable localiza-
tion of electronic charge in the vicinity of the positive
ions in dilute metals. At low enough concentrations, it
is believed that an abrupt transition to an insulator
state where the electrons are fully localized —the Mott
transition —will occur. ~ But in the intermediate range
between the metallic and insulating states, the partial
localization should develop continuously in the sense
described so well by Friedel for alloys. ' This may be
profitably examined in terms of the solution of the TF
equation.

In doing this, one must recognize a number of differ-
ences from the dilute alloy problem: (1) Since the Fermi
energy is smaller and the screening distance larger
(though smaller compared to rp), the linear approxima-
tion is impossibly bad. (2) The considerations, by which
one is led to deal with its(r), and to let Z' equal the
difference in charge between impurity and solute ions,
do not apply in dilute metals. One must instead consider
the total density of valence electrons m(r) in the field of
a positive ion whose charge Z is the tota/ ionic charge.
rp becomes the radius of the spherical volume per ion.
(3) Dilute metals are usually stable only in the presence
of a matrix of other atoms which might be assumed to
act as a dielectric medium. An exception to this is pro-
vided by metallic vapors at high density, as occurs, for
instance, in recent studies of mercury. ' Therefore, one
should incorporate a dielectric constant E in the TF
equation. Also one should include an effective mass
factor M. These factors are justified rigorously only at
the extreme of low electron concentrations, and then
perhaps only in crystalline materials. The proper de-
scription of what goes on between these densities and
metallic densities is not clear. In the framework of the

' M. Cutler and M. B. Field, Phys. Rev. 169, 632 (1968).
A good review of the subject, with many references, is given

by X. F. Mott, Advan. Phys. 16, 49 (1967).
7 N. F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949); Can.

J. Phys. 34, 1356 (1956); Phil. Mag. 6, 287 (1961).

simple TF equations, E and M are arbitrary constants
which may vary with electron concentration. Some of
the implications of this point of view will be discussed
later.

The solutions for the dilute metal can be examined in
terms of the behavior of the Eg as a function of Z and ro.
It is observed, as expected, that the ratio of Ep to the
free-electron value Epo decreases rapidly as ro increases.
The Fermi-energy effective-mass ratio E&p/E&, which
we call po, is not as significant as another effective mass
associated with the density of states at the Fermi
energy, which we call p&. p& appears in most formulas
describing the electronic behavior of metallic or semi-
metallic systems. Both of these are calculated as a func-
tion of ro and Z.

For small ro, approaching metallic concentrations,
one would expect po and p~ to have values associated
with typical metals. Solutions of the nonlinear equation
along the lines described above do not give this result,
and the reason is soon evident. In real metals, the
valence-electron density drops to very low values
within the ion core region because the wave functions
must be orthogonal to those of the core electrons. As a
result of the nonlinear character of the solution a very
significant fraction of the electronic charge in the TF
solution is within the core region, notwithstanding the
relatively small volume. It has been established in other
studies that a fair representation of many aspects of the
behavior of metals can be deduced from models in
which the electron density is arbitrarily made equal
to zero within an arbitrary core radius r., which is
usually treated as an empirically determined param-
eter. We make this assumption in calculating solutions
for the dilute metals, and find that solutions for metallic
concentrations then become physically reasonable.

II. DILUTE ALLOYS

The basic equations for dilute alloys are (in a. u.)

V'V(r) = —8~&N(r),

Prt, (r) =L{Ps—U'(r) )sip —Es p@ j/3s s.

The boundary conditions are

U=dV/dr=0, at r=rp

(1a)

(1b)

(2a)

8 J. C. Raich and R. H. Good, Jr., J. Phys. Chem. Solids 26,
1061 (1965); M. Cutler, J. Chem. Phys. 46, 2044 (1967); N. W.
Asheroft and D. C. Langreth, Phys. Rev. 155, 682 (1967).

dV/dr= 2Z'/rs at r ~ 0 (2b)

where —,'pro' is equal to the volume per impurity atom.
The variable V(r) is normalized to e(r) = V (r)/Epp,

and the corresponding normalized Fermi energy is
e=Es/Er p. For convenience in carrying out integra-
tions, we use the variable m=expo. This leads to the
equation

d'w/dx'= —(-'pp'x)L(e —w/happ)'" —1j, (3a)
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FIG. 1. The computed dependence of p =n/n1 Lsee Eqs. (5) and
(6)j on rrp for positive and negative Z' at several values of prr.

where pp
——rp/X, and X is the screening distance, equal to

(4rt)'I'Er p '".The boundary conditions are now
.8—

I

I

t, (a.u.)

dttr/Cx=w=0, at x=1
w=trp= —2Z/XEIrp, at x=0. (3b)
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For various values of po, integrations were carried
out for a sequence of choices of e, and the value of ~0

was determined in each case. The integrations were
carried out by the Runge-Kutta formula' on a grid with
Ax=0.01. For each choice of e and po, a value was de-
termined for n(= s/Z'), where

s=-4vrrp'br'(rp) = (-,'rrro') (E o'"/3 ')( P~' —1). (4)

On combining this with Eq. (3b) for trp, one gets

(2&p'—/» p) ("" 1)—
Thus, the set of integrations for a given po allows one

to calculate a as a function of vo. vo depends on Z' and

E&0, and is therefore determined by the nature of the
solvent metal and the charge of the impurity ions. It is
convenient to present the results in terms of p=n/ort
because it turns out to be independent of po, where o.1,
derived by Friedel, ' is

rst= spp /(pp coshpp —slnhpp) . (6)

In Fig. 1, we show P plotted against —trp for several
values of po for the case where Z'&0. One sees that the
curves approach an asymptotic limit which is repre-

~6-

2

4

FIG. 3. P versus r, for various values of Z'.

sented very well by the curve for po
——10. In metals,

~& 1 A, and the atomic radius is typically 3—5 A. There-
fore, po

——10 represents a quite concentrated alloy, and
the asymptotic curve is adequate for dilute alloys.

For Z'&0, one must start the integration with &&1.
tr(r) will be positive, and increasing with decreasing r.
At some value of r(=r1), fits will become equal to the
negative ef the original charge density, and further
integration is inappropriate (as well as mathematically
impossible). Therefore, the value of x at which this
occurred in the course of the integration was noted and
8e was set equal to its constant limit for smaller values of
x. This yielded curves for P versus trp plotted in Fig. 1

for several values of po. Again, the asymptotic limit is

reached fairly well at po ——10. We also plot in Fig. 2 the
values of rt/X as a function of trp.

For convenience in reference, we show in Fig. 3 curves
calculated for p as a function of the spherical radius per
electron r„ in the pure solute, for various values of Z'.
Also, the curves for pp

——10 (Fig. 1) have been fitted

by a least-squares procedure to an arbitrary function of
the form

I'I/X 2- lnp = p c„(ln f
trp

] )" '.
n=1

(7)
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The constants c„are listed in Table I for the two cases
of positive and negative Z'.

TAaLE I. Values of coefficients c in Eq. 7.

FxG. 2. The normalized distance at which the electron density is
zero for negative ions as a function of vo, for several values of po.

9 M. Abramowitz and I. A. Stegun, Handbook of 3Iathematical
Fgrscfsorss (Dover Publications, Inc. , New York, 1965), Sec.
25.5.22.

Positive Z'

—0.097974—0.072060—0.035452—0.002570

Negative Z'

0.13260
0.16879
0.023361
0.022830
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III. DILUTE METALS

As noted earlier, no background charge is assumed in
this case, and we allow for a dielectric constant and
effective mass. The basic equations are

V'V (r)= —8m e (r)/K,

e(r) = (MP~P/37r')t Ep —V(r))Pt'y (8b)

where E is the dielectric constant and M is the effective-
mass ratio. The boundary conditions are

U dV/d=r=0, at r= rp (9a)

d V/dr = 2Z/Kr' at r = r, (9b)

where r, is the core radius, Z is the total ionic charge of
the dilute metal, and —,'pro' is the volume per metal atom.

It is now convenient to normalize V by n= V/EI, and
to let x= r/rp Introducing . w= px, we have

d'w/dx' = —Cx(1—w/x) P" (10)
where

C= (8/37r) (MP "/K)Ep"rp'.

The boundary conditions are

w=dw/dx=0, at x=1

(10')

The results for copper )calculated by Alfred and
March') and those for silver )by Fujiwara'g agree well
with ours for Z'&0. Their calculations were for the
limit po —+~. On the other hand, the calculation by
Alfred and March4 for Z'&0, which was based on an
arbitrary mathematical approximation, is not accurate.
Their calculation made use of a determination of the
radial distance r», at which the electron density becomes
zero. They got 1.66, 2.38, and 2.90 a. u. , for Z'= —1,—2, and —3, respectively, which agrees well with our
values 1.68, 2.40, and 2.92. However, their correspond-
ing values of P were 1.49, 2.04, and 2.65, as compared to
our values 1.66, 2.32, and 3.02.

number of values of C from x= 1 to x=x„ to determine
the corresponding values of vo. A single integration pro-
cedure was sufhcient to determine ~0 for a number of
values of x, (corresponding to the chosen values of r,)
for a given ro and C. Then, for each pair of values ro and
r„a curve was calculated for po versus the "reduced
charge" Z», where

Zg ——(M'/K') Z = —9m C'pp/128rp'.

In order to handle the information in a practical way,
empirical analytic expressions were computed for po
versus Z» by a least-squares method, and the resulting
equations were used to calculate po as a function of ro
for various values of r, and of Z». The curves drawn in
Fig. 4 are representative of the results obtained. "As ex-
pected, po increases rapidly with increasing values of ro,
and this effect is greater for larger values of Z. The size
of the core has an appreciable effect even at large ro
because most of the screening charge is in ihe vicinity
of the ion. When the dielectric constant is greater than
unity, or the effective mass less than unity, the reduced
charge Z» is smaller than Z, but the nonlinear effect is
important at large ro even at rather small values of Z».
We discuss later the limiting solution for very small Z».

The large values of po reflect the reduced Fermi energy
and smaller density of charge at ro in dilute metals. The
charge distribution is quite different from the uniform
one described by the free-electron model, which pro-
vides many of the relations commonly used in an ap-
proximate way for metals. A quantity which appears in
a fundamental way in many properties of metals is the
density of states at the Fermi energy g (E~). This can be
related to the free-electron value by an effective-mass
ratio

»=I,"(L'~)/g p(E~)

where the free-electron density of states is given by

gp(Er) =M@'EFp"'/2n'= (97rZ/4)'~'M/27r'r p. (17)
and

where

and

xdw/dx w= —pp, at. x= x~—

xc tc ~p

5p= 2Z/EFKrp.

In terms of the TF model, we obtain e(E~) by inte-
grating over the volume the value of g(E) at a given r.
From Eq. (8),

r(E; r) ~~= L«(r)/dE7~~-
= (M"/27r') LEp V(r)J" (18)—

From Eqs. (10') and (11'),

pp/C=3Z/EpPt rpPM@'. —

But the free-electron value of the Fermi energy is

(12)

so that the volume integral is

~3/2 r0

g (E~) = HEI V(r) )'~' X47rr'dr. (19)—
2~'

Epp
——(97rZ/4)'t'/Mr pP . (13) From Eqs. (14), (17), and (18), one gets an equation in

terms of the normalized variables
Therefore, the "kinetic-energy —effective-mass" po is
given by

pp=Epp/Ep= ( 3pp/C) ~ (14)
(1—w/x) "'x'dx. (20)

The computations were carried out in a similar
manner to those described in Sec. II. For a given set of
values of ro and r„ integrations were carried out for a

'0 Because of their lack of physical content, it does not seem
worthwhile to reproduce here the large number of constants for
these curves. If the reader is interested in having access to these
data, they may be obtained by correspondt:p&& wptQ &Qp a&thor.
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FIG. 4. Dependence of pp on rp for various values of ZI ~

The solid curves are for r, =1.5 a. u. and the dashed curves for
Fg=2.1R. u.

Calculations for p, ~ were made at the same time as pp,
the integral in Eq. (20) being evaluated by means of
the Euler-Maclaurin formula. The same procedure was
used for p& as for pp in deriving its behavior as a function
of r, and Z&. Some typical results are shown in Fig. 5.'

We see that p& decreases below unity as rp and pp
increase. This is opposite to what one might conclude in
terms of free-electron formulas. But it makes sense in
terms of what is going on physically in a dilute metal.
Since the localized screening charge near the ions grossly
reduces the charge density in the large fraction of the
volume between the ions, the density of states tends to
correspond to a lower electron density in the free-elec-
tron model. If one considers the electron density at rp,
which is smaller than the free-electron value by a factor
pp "', a free-electron conversion to the density of states
g Ln(ro)g"' predicts that pi po"'. In fact, pi is
appreciably larger than that because of the contribution
of the higher charge density near the ions.

If the constant Cin Eq. (8) is small enough, w/x will

be always small compared to unity, and one can lin-
earize the equation to obtain a simple solution:

'p

V(r) X4~r'dr/34m(ro' r,')—
3E

1—g,'
vx'dx. (25)

The condition for the linear solution to be valid is that
(~3C)'~'«1, which corresponds toro((X.

The results in Eq. (24) are oflittlepracticalinterest,
because they express merely the small differences of pp
and p, & from unity in this limit. An interesting aspect of
the result is the insight that it provides about the rela-
tive roles played by the core volume and the ion poten-
tial in pp and p~. The effect of the core exclusion is to
decrease both effective masses in proportion to the
allowed volume. This agrees with the basic physical idea
in the TF approach, which treats the electrons as though
their de Broglie wavelength were small compared to r, .
On the other hand, the effect of the potential is to
increase pp but not p, ~, to first order in C. The interesting
cases where these two convicting influences appear
strongly are at small rp, i.e., in the range for normal
metals not considered in this paper, and occurs, of
course, at large C where the nonlinear solution must be
used.

The calculation of Eg, and the corresponding pp, is in
reference to the potential at r=rp, which is set arbi-
trarily equal to zero. Only the differences in energies are
of significance. The usual way of thinking of the Fermi
energy, however, is in reference to the bottom of the
valence band. In the present frame of reference, this is
best represented by the space-average potential, denoted
Vb, so that the Fermi energy with respect to the bottom
of the valence band E~b would be equal to Ep—Vb. The
effective mass p& corresponding to Ep&, equal to Ego/
E», would be smaller than pp, since Vb is always
negative.

Since a core model is used to reQect the exclusion of
the valence-electron wave function from the core re-

gion, the space average should also reflect the core ex-
clusion. In other words, we represent the potential of
the bottom of the band by the potential energy of a unit
charge which is spatially uniform in the region r,&r&rp.
This leads to

and

where

po
—@'=1—x,'+(3/20)C f„

pipo"'=1 x,'+Cf,/20,— (22)

f.=(1—x,)'(1+3x.+x2). (23)

Calculations were made of Vb and pb over the same
range of variables as p~ and pp. It was found that pb
tended to be equal to the reciprocal of p, ~,

.
p, grab differed

from unityusuallybyless than 10%.Thisresultcanbe
readily understood if one writes pp, p&, and pb in terms
of the general function

Since the second and third terms are small compared
to unity in Eqs. (21) and (22), we get finally ((1—v)")=3 (1—n)"x'dx. (26)

po ——1——,'x,'+Cf,/10,

p,i=1—-', x,'+O(C').
» Reference 9, Sec. 25.4,7.

(24a)
'Then one 6nds that

((1—)"')"'((1-)"')
jlgkg=(1 —x~)

((1—'))
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Examination of the ratio containing the bracketted
quantities suggests that it should not deviate strongly
from unity; and, of course, 1—x,' 1.

Thus, we see from the behavior of III'( IIII, ') and
pp in Fig. 5, that the Fermi energy measured from the
band edge still is appreciably smaller than the free-
electron value at large Z~, but the deviation is expressed
by a much smaller factor than the value of Ep mea-
sured from the potential at rp.

IV. DISCUSSION

JJi .6

I
I

I I I I
)

I I I I

The results in Sec. II provide in a useable form the
correct screening factor for dilute alloys in the TF model
which has been used frequently for dilute alloys. How-
ever, the exclusion of the valence-electron charge from
the core region of the ion, noted in connection with the
dilute-metal problem, has signiicance also for dilute
alloys. Omission of this factor causes an overestimate
of the screening effect. This overestimate is worse in the
nonlinear solution than in the linearized one, because
the nonlinear difference occurs mostly at small r. The
linear approximation to the mathematical solution also
causes an underestimate of the screening, which tends
to cancel the opposite error caused by omitting the core
region. Therefore, the linear solution may lead to a
better result for screening than the nonlinear solution,
particularly for positive impurities with a large core
radius. It should be noted, on the other hand, that the
core error should not be important for Z'(0, since n (r)
automatically approaches zero at small r in this case.
Therefore, we expect the nonlinear solution to represent
screening better for negatively charged impurities, and
for impurities with small core size.

It would be desirable to incorporate the core exclusion
effect into the dilute alloy solution, not only in the
interest of greater accuracy, but also as a mechanism
for introducing differences which are known to exist
between impurities of the same valence. However, it
does not seem possible to do this in a reasonable way in
the context of a model where the solute ions are replaced
by a uniform positive charge.

The TF results for the dilute metal discussed in Sec.
III provide some insight about dilute-metal systems,
and some clues about the way in which the concepts
based on the free-electron model must be modified. In
particular, the gradual development of charge localiza-
tion and the resulting effect on the Fermi energy and
Fermi density of states is elucidated.

It is well known that the usual TF theory does not
predict the occurrence of localized states. These will

undoubtedly appear at a large enough value of rp,

probably well within the range of the calculations repre-
sented in Figs. 4 and 5. As long as an appreciable frac-
tion of the charge is nonlocalized, however, one may
expect that the results of the TF calculation will have
some validity.

I t I I I I t I I I I'6 IO 20
t'o (O.u,)

FIG. 5. Dependence of p1 on r0 for various values of Z1.
The solid curves are for r, = j..5 a. u. and the dashed curves for
re=2. 1 a. u.

A low-density electron gas would not be stable at
ordinary pressures in the absence of a matrix of other
atoms. We have allowed for this matrix in a heuristic
fashion by means of the dielectric constant E and effec-
tive-mass ratio 3f, whose values might be expected to
vary also with rp. The reduced charge Z~ is proportional
to (M/E)3, and a decrease in Z~ causes a decrease in the
screening. On the other hand, a decrease in the screening
causes the matrix to become more "visible" to the elec-
trons. That is, a larger fraction of the charge will be in
the vicinity of the matrix atoms. Therefore, one might
look for a rather abrupt change in character of the sys-
tem, when rp is increased beyond the metallic range, and
one might expect (M/E)' to decrease rapidly over a
relatively small range of rp.

It seems worthwhile to discuss this point in some more
detail in spite of the inevitable crudeness in the de-
scription. We show in Fig. 6 curves for n(r) for a repre-
sentative metal with Z=1, 3f=1, K=1, at several
values of rp. As expected from the general nature of
screening, e(r) falls rapidly with increasing r for large
rp, and tends asymptotically to the same values for
small r. It should be noted that e&102P cm ' at r&11
a. u. , or 5.6 A, which is about twice the distance be-
tween atoms in a typical condensed phase of moderately
heavy elements. The electron charge at r)5 a. u. will
overlap the matrix atoms, so that one would expect the
charge distribution in such regions to be governed by a
dielectric constant greater than unity. We show on the
same graph curves for e(r) for the case in which K has a
value of 4.62. These curves are higher than for E=1
at r ~5 a. u. , and lower at smaller r. This is just about
the crossover region to neighboring atoms. One would
expect the true charge distribution to be represented
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FIG. 6. e versus r for several values of r0 (in a. u,). These curves were calculated for r, =1.5 a. u. and 3I=1,
2=1.The solid curves are for E=1, and the dashed curves for X=4.64.

approximately by a hybrid (renormalized, of course) of
the two kinds of curves, rejecting K=1 for r &5 a. u. ,
and E& 1 for r )5 a. u. In Fig. 7, the situation is brought
out more dramatically by plotting X(r)= 4srr'tt(r). The
area under the curve out to a given r Lallowing for the
log scale for 1V(r)j is the total number of electrons within
that distance. One sees that a substantial fraction of
the electron charge could be in the matrix region (at
r )5) under the influence of a large dielectric constant,
while the rest would be closely tied to the atom at
r&5 with a distribution like the K=1 curves. If one
wished to pursue this idea further, it might be worth-
while to find solutions of the TF equation subject to the
assumption that E changes from unity to a larger value
at some radius at which the electrons overlap matrix
atonls.

This iehomogeeeols dielectric effect seems likely to
occur in dilute metal systems of the type mentioned in
the Introduction. This complexity is in addition to the
modification of dielectric screening which occurs when a
homogeneous electron gas is diluted. The description of
the latter situation is in itself a complicated problem.
and the theory is not very clear at present. Theoretical
studies suggest, however, that between the extremes of
a concentrated homogeneous gas, with ro&6, and a
dilute one, the dielectric constant changes from unity
to a constant final value, and the final situation would
be describable by an effective mass reQecting the density

of states at the bottom of the valence band. "The results
in this paper seem consistent with this with the follow-
ing modification: When the positive charge is discrete
as it is in a real system, instead of diffuse as in the
homogeneous electron gas, a large fraction charge asso-
ciated with each metal atom remains in the immediate
vicinity of the atom, and the density of the electron
charge in most of the volume is correspondingly reduced.

As explained above, one would expect a rather abrupt
change in screening character as ro is increased. This
would probably occur in the range where the metal
atoms have densities of 10—

50%%uo of the normal metallic
density. This change is akin to a phase transition, and
indeed, the energetics of the system may well lead to a
separation into two phases, one metallic (re(6) and the
other semimetallic (ro))6). Such phase instabilities have
been observed in a number of dilute-metal systems, and
have been discussed in connection with the Mott transi-
tion. "The present discussion indicates that the second
(nonmetal) phase need not be an insulator. Indeed, the
general implication of the TF treatment is that partial
localization of electron charge occurs when metal atoms

"D. Pines, Elementary Excitatiortsist Solids (W. A. Benjamin,
Inc. , New York, 1963), Chap. 3."D. E. Bowen, J. C. Thompson, and W. E. Millett, Phys. Rev.
168, 114 (1968). See also papers and discussions presented at the
International Conference on the Metal-Nonmetal Transition
LRev. Mod. Phys. 40, 673 (1968)j and particularly those papers
by N. F. Mott (p. 677), J. C. Thompson (p. 704), and M. H.
Cohen (p. 839), and the comment by M. Cutler at the end of
Thompson's paper (p. 709).
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are diluted, so that the dilute metal, particularly one
with a dielectric matrix, may not diBer greatly in energy
from an insulator.

Finally, some remarks should be made with regard
to a discussion of screening which was presented in
Ref. 5. In that work, a comparison of experimental
results with conventional theory for the behavior of the
thermoelectric transport parameters of e-type thallium-
tellurium liquid alloys showed very good agreement
except for the fact that the deduced value of the
de Broglie wavelength P~ of the electrons was too small
in comparison with the scattering distance X,. This is
inconsistent with the original assumptions of the theory.
It was observed that if a nearly constant fraction a,
of the electrons is assumed not to participate in the
transport, this would increase the ratio of A, to Xg, and
the discrepancy would be removed. A study of nonlinear
TF screening, which constituted an early phase of the
present work, seemed to support this idea. That con-
clusion was based on the assumption that the effective
electron density was represented by e(ro), and that the
electrons otherwise had properties given by free-electron
theory. In these terms, one has a free-electron band with
a fraction n, of the total valence-electron density, where
e,=po ~ . Considerations presented in this paper sug-
gest that such a point of view is too crude. For instance,
the density-of-states effective mass p& is appreciably
larger than po ''.

However, the results in this paper do seem to provide
some support for an effective charge model. The intui-

tive basis for this model lies in the fact that a fraction
of the valence-electron charge is closely tied to the ions,
while the remainder (in the dielectric matrix) is rela-

tively di6use and more nearly uniform in density. It
seems reasonable to expect that an applied electric
field or other force would cause a large flux in the diffuse
charge as compared to that in the closely bound charge.
Of course, this idea ascribes different dynamic proper-
ties to two parts of the charge distribution, a point of
view which does not seem to receive support from exist-
ing theoretical treatments of transport. In essence, we
are suggesting that some of the localized charge can act
like it is fully bound without necessarily being in dis-
crete energy levels.

It is interesting to make comparison with the partial-
wave scattering theory in dilute alloys. The partially
localized charge in that case is identified with the phase
shifts of the outgoing waves through the Friedel sum
rule. ' However, the contribution of the impurity atom
to the resistivity is arrived at from the phase shifts
through a consideration of interference between ingoing
and outgoing waves, which leads to a reduction of the
mobility. This kind of theory does not yet seem to have
been extended successfully to concentrated alloys or
dilute metals. But it seems possible that when the scat-
tering rate is large enough compared to the bandwidth
(in appropriate units), the result may be one better
described in terms of complete immobilization of part of
the localized charge.

The relationship of the various effective masses, de-

duced in this paper from the TF model, to the corre-

sponding parameters used in transport theory is not
clear. But they do suggest a picture of a band containing

a fraction e, of the valence electrons which has roughly
the relationships of a free-electron band. The free-elec-

tron relationships would suggest that o,,would be related
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to the density-of-states effective mass by p&
——n, 'I' and

to the bandwidth effective mass by p&
——n. '~'. Thus,

one would expect p1'pg —1. Instead, we observe that
pleb=&, or pI'pg=pI. In Ref. 5, it was found that ot,
in Tl-Te might be as large as 0.5. This leads to p1—0.8,
which is not too far from unity. In this range then
(n, &0.5), the TF model yields parameters roughly

consistent with a free-electron band with a reduced elec-

tron density.
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The scattering of phonons by point defects in high concentrations and by electrons has been studied in
the cubic transition metal carbides. The specimens were single crystals containing up to 24% carbon-atom
vacancies: TiC, ZrC, and NbC„with 0.76&x&0.96. Although the lattice thermal conductivity E& is
indeed low in these materials at low temperatures, the data and a Callaway analysis show that the observed
suppression of E& cannot be explained solely by Rayleigh scattering from point defects. Furthermore, the
dependence of E& on vacancy concentration is weak and of the wrong sense. A good fit to the data is obtained
by introducing an additional term in the inverse relaxation time proportional to co'. Pippard has shown that
such a term represents phonon scattering by conduction electrons if the concentration of conduction elec-
trons n is su%ciently high, and the electron mean free path X, is less than the dominant phonon wavelength.
For the carbides, these conditions are met: n 10"/cm', and X. is only a few lattice constants even at low
temperatures, because of the scattering of electrons by lattice vacancies. We conclude that at low tempera-
tures E J for the carbides is dominated by the scattering of phonons by conduction electrons. However, point
defects infiuence the thermal conductivity of these solids both directly by scattering phonons and electrons
and indirectly by altering the phonon-electron interaction.

I. INTRODUCTION

HE measurement and analysis of thermal con-
ductivity E has proved to be a powerful tech-

inque for studying defects in crystalline solids. ' The
technique is particularly effective at low temperatures.
In this temperature region, the lattice thermal con-
ductivity is primarily controlled by crystal defects,
boundary scattering, and umklapp scattering. Since
these various types of processes inhuence the tempera-
ture dependence of E in different ways, the technique
permits the identifIcation of the defect present in a
given specimen and a determination of its concentration.

Analysis of a complex system containing several
varieties of defects —dislocations, stacking faults, grain
boundaries, point defects, conduction electrons, etc.—
was made feasible by the advent of the Callaway
formalism. In this analysis, the individual inverse

relaxation times for the various phonon scattering pro-
cesses are summed to give a net inverse relaxation time
which is frequency-dependent. This quantity is then
substituted into a Debye-like integral which is evaluated
numerically to give the total thermal conductivity.

A challenge to the adequacy of the above technique
is provided by the transition-metal carbides, an in-
teresting class of hard, semimetallic, high-melting tem-
perature compounds. ' These materials contain high con-
centrations of point defects (carbon-atom vacancies)
and conduction electrons, plus some grown-in disloca-
tions and sub-boundaries. Carbon-atom vacancies have
been found to be strong electron-scattering centers for
electrical conduction in TiC, and previous high-tem-
perature measurements' ' have shown some unexpected
behavior of the lattice conductivity. We here test the
suggestion' that the thermal conduction behavior is also
defect controlled.

*Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. AT (11-1)-1198.' For a review of the subject, see P. G. Klemens, Solid State
Phys. 7, 1 (1958).' J. Callaway, Phys. Rev. 113, 1046 (1959).

' See, for example, W. S. Williams, Science 152, 34 (1966).
4 W. S. Williams, Phys. Rev. 135, A505 (1964).
5 R. E. Taylor, J. Am. Ceram. Soc. 44, 525 (1961).' R. E. Taylor, J. Am. Ceram. Soc. 45, 353 (1962).' W. S. Williams, J. Am. Ceram. Soc. 49, 156 (1966).


