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The linear Hall and quadratic magnetoresistance coe%cients of bismuth have been measured as functions
of temperature in the range 4—16'K. The sensitivity ( 10 "V) and accuracy (1 part in 104) necessary for
the experiment required the construction of an automatically balancing superconducting-chopper picovolt
potentiometer, together with a cryogenic system which was stable to 1 part in 10 at any value of tempera-
ture in the range 4-16 K.The zero-field resistivities P11 and p33, normal and parallel to the trigonal direction,
respectively, have been measured to 26'K. Both p»' and p»' are closely proportional to T' between 8 and
20'K. All eight magnetoresistance coeKcients have an approximate T ' dependence, while the large Hall
term p23, f decreases approximately 7% as the temperature increases from 6 to 16'K. A least-squares fit of
the data to a model based on the accepted band structure of bismuth was made at each temperature. From
these, experimental values for the carrier density and the components of the mobility tensors for electrons
and holes were obtained as a function of temperature. The carrier density, constant with temperature, is
2.7)&10' electrons per cm', and an equal hole density. All the mobility components varied as T in the
temperature range 8—16'K. At 4.2 the electron mobilities are (in 10' cm'/V sec) pq= 11, ps ——0.3, pq= 6.7,
p4= —0.71, v&=2.2, and v3=0.35. The mobility tilt angle is a constant, 8„=6.2, in the temperature range
4.2—16'K. The components of the conductivity relaxation-time tensor were calculated for the electrons and
holes at each temperature. At 4.2'K the maximum anisotropy of the electron relaxation-time tensor was
found to be 5:1,decreasing rapidly as the temperature increased, while the anisotropy of the hole tensor
was 2:1 over the entire temperature range. At 4.2'K the diagonal components of the electron and hole re-
laxation-time tensors are (in units of 10 "sec): v&, =4.4, ~2,=22, r3,=4.4, 7]/=8.5, and 731,——15. Because
the conductivity varies as T,we argue that the dominant scattering is not deformation-potential scattering,
but rather is between carriers in separate valleys. The carriers in different valleys interact via the Coulomb
interaction, each remaining in its respective valley, conserving energy and momentum in the center-of-mass
system, though not individually. For carriers of differing charge or of sufhcient anisotropy, this mechanism
contributes to the resistivity. In support of this mechanism, the electron and hole mobilities at 4.2 K were
estimated, from the known ionized-impurity scattering, to be p, =9X 10' cm'/V sec and pa= 0 6X 10' cm'/V
sec, in very good agreement with the measured mobilities.

I. INTRODUCTION

' NUMEROUS studies' have been made of the elec-
tronic properties of bismuth, a Group-V semi-

metal. It is known' that at low temperatures there are
2.9&&10' electrons/cm' distributed among geometri-
cally equivalent conduction-band minima located at
the L points' in the reduced Brillouin zone (Bz) (see
Fig. 1) and an equal number of holes (within&5%) ' at
the T points. The electron Fermi surface' is well

approximated by a set of three highly prolate ellipsoids,
centered at the L points, occupying 10 ' of the volume
of the reduced zone, so that a typical linear dimension
of the Fermi surface is 1% of the Bz dimension. One
axis of each ellipsoid is parallel to a crystal axis of two-
fold rotational symmetry (a binary axis), the other two

principal axes of each ellipsoid lie in mirror planes and
are tilted' from the axis of threefold rotational symmetry
(the trigonal axis) by +6'. The electron-energy

* Present address: Bell Telephone Laboratories, Murray Hill,
N. J.

'An extensive bibliography of the older references can be
found in A. I.. Jain and S. H. Koenig, Phys. Rev. 127, 442 (1962).
More recent references are in R. N. Bhargava, Phys. Rev. 156,
785 (1967).' R. N. Bhargava, Ref. 1.

3 S. H. Koenig, A. A. Lopez, D. B. Smith, and J. L. Yarnell,
Phys. Rev. Letters 20, 48 (1968),

R. D. Brown, III, R. L. Hartman, and S. H. Koenig, Phys.
g.ev. 172, 598 (1968).

dispersion relation is nonparabolic below the Fermi
energy of 25 meV. There is a direct energy gap
of 15 meV to a lower ulled band at the I. points. The
hole Fermi surface' is known to be an ellipsoid of revolu-
tion about the trigonal axis. The hole-energy dispersion
relation is parabolic below the Fermi energy of 11 meV.

Measurements of the electrical conductivity at low
temperatures by Friedman, ' which are in agreement
with a summary of da, ta compiled by Zitter' (and a.

conjecture by White and Woods') clearly show that at
low temperatures the bulk conductivity of the pure
material is closely proportional to T '. Since the typical.
wavelength of an electron or hole is comparable to or
larger than the lattice spacing, the main criteria for the
applicability of the deformation potential treatment of
electron-lattice scattering is satisfied. Such an analysis
has been used by Mase et al. to 6t extensive high-held
galvanomagnetic data at 20.4'K. At low temperatures
the deformation potential approach predicts a mobility
proportional to T ', similar to the prediction of the
Bloch-Gruneisen formula for simple metals, but con-
trary to the observed T ' behavior of the conductivity.
Since the bismuth Fermi surface is highly anisotropic,

~ A. N. I'riedman, Phys. Rev. 159, 553 (1967).
6 R. N. Zitter, Phys. Rev. 127, 1471 (1962).
7 G. K. White and S. B. Woods, Phil. Mag. 3, 341 (1958).
8 S. Mase, S. Van Molnar, and A. W. Lawson, Phys. Rev,

127, 1030 (1962).
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it is conceivable that the temperature dependence of the
various components of the mobility tensor are different.
The conductivity, which is a linear combination of the
components of the mobility tensor, might then have a
resultant T ' behavior.

Thus, a knowledge of the temperature dependence of
each of the components of the mobility tensors is neces-
sary to clarify the problem. Such information can be
obtained most directly by a complete set of galvano-
magnetic measurements in the low-temperature range.
A set of these measurements, from which the carrier
mobilities and information about the carrier concen-
trations can be directly calculated, was performed at
temperatures between 4.2 and 16'K. Zitter' has enu-
merated some of the experimental difhculties. BrieRy,
the low magnetic field condition (see Sec. II) which
restricts the applied magnetic fields and the sample
current (because of the self-magnetic field) limits the
magnitude of the available signals. The detection of
these small signals requires a voltmeter which is sensi-
tive to ~10 "V dc and accurate to 1 part in 104. An
automatic-balancing superconducting-chopper potenti-
ometer, which achieved this sensitivity and accuracy,
was designed and built, making it possible to determine
the temperature dependence of the mobilities and carrier
concentrations. Additional difIiculties were caused by
the large distance required between the chopper and
the sample (so that the superconducting elements would
not distort the field at the sample), and. by the large
thermoelectric power ( 10 ' V/'K) of bismuth which

required a temperature stability in the sample chamber
of 1 part in 10'. This stability was achieved with a
feedback temperature controller and a special isothermal
chamber.

Section III is a brief description of the experimental
apparatus. A more complete description has been
described elsewhere. ' The measurement procedures are
described in Sec. IV. The results of the measurements
(see Sec. V) are then used to calculate the mobilities
and to deduce the relaxation time tensor. Finally, con-
clusions are drawn (Sec. VI) about the dominant
scattering mechanism, which is peculiar to bismuth.

II. THEORY

The phenornenological theory of low-field galvano-
magnetic effects in bismuth has already been de-
scribed. ' " " It is summarized here (with the errors
in the literature corrected) in the notation used by
Brown et a/. 4 The theory assumes Ohm's law to hold
for the conductivity tensor e(B) or its reciprocal, the
resistivity tensor y(B), in the presence of a magnetic
induction field 8. In an anisotropic media these rela-

R. L. Hartman, IBM Research Report No. RW105
(unpublished), available from the author.

' J. Okada, J. Phys. Soc. Japan 12, 1327 (1967).
' B. Abeles and S. Meiboom, Phys. Rev. 101, 544 (1956)."J.Okada, Mem. I'ac. Sci., Kyushu Univ. Bl, 168 (1955).

tions can be written

J,=p 0,;(B)b;,

S,=g p, ;(B)J,,

where 8 is the electric field and J the current density.
e(B) and g(B) are then expanded in powers of B, assum-
ing the expansions will converge if B is small enough. The
tensors e(B) and y(B) must be invariant under the point
group symmetry operations of the crystal and must
satisfy the Onsager reciprocal relations. These two
conditions restrict the number of nonzero elements in
the tensor coeKcients of the expansions. The group-
theoretical analysis has been given by Juretschke" and
Okada. " For clarity, the nonzero elements of the
matrices are explicitly written out in Eqs. (A1) and (A2)
of Appendix A. Apart from sign, all our nonzero tensor
components are equal in magnitude to the subscripted
letters which are used as their counterparts in the papers
of Juretschke, Okada, or Zitter. '4 There are a total of
12 independent tensor components in Eqs. (A1) and
(A2).

Abeles and Meiboom" have calculated the 12 con-
ductivity tensor components for bismuth for an ellip-
soidal model of the Fermi surface which assumes that
intravalley processes dominate the scattering, that the
collision integrals can be approximated by a relaxation
time, " and that the tilt is zero. They obtained the
vector current density contribution of each constant
energy ellipsoid and then summed these vectors in the
frame of the crystal axes. Assuming an isotropic relax-
ation time r, they obtained

J=e [8+(nec) 'J&(B$ (1)

from the Boltzmann equation. Here n is the carrier
concentration per ellipsoid and the conductivity tensor
p'=nep=ne'70;, where p is the mobility tensor and n the
reciprocal-effective-mass tensor. This equation can be
solved for J:

J=ne[S+(p B)/cj 'p 8,—

where e=
~
e~, the upper sign is for electrons, and the

lower sign for holes. 6 is the unit tensor and 8 the skew-
symmetric matrix form of the vector B.In this form, the
equation shows that we can perform the required ex-
pansion of [SW(p B)/cj ' for the conductivity tensor
if the magnitude of each term of (1i B)/c(1. (This can
be proven by solving iteratively for each component of
the current using J [6%(p B)/c$=nep 8.) This is also

"H. J. Juretschke, Acta. Cryst. 8, 716 (1955).
'4 The nonzero tensor components agree in sign with Okada's

terms; the signs of Juretschke's A24 and A42 are opposite to our
corresponding terms A14 and A41,. Zitter appears to have changed
from Okada's sign for his formulas (12)—(17) to Juretschke's signs
in the theory, causing the error in the signs of his terms p11 Q3

and p~3, 11 listed in the Appendix to his paper.I' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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Fio. i. Reduced Brillouin zone
for bismuth.

the condition that eve(1, where ~ is the cyclotron
frequency. Zitter, using the results of Herring and
Vogt, '5 extended the analysis to a nonisotropic relaxa-
tion-time tensor ~(E) and allowed for a tilt of the ellip-
soidal Fermi energy surfaces.

For the model of bismuth presented in Sec. I, the
mobility tensor for each electron ellipsoid may be
written

P,1 0 0
p= 0 pQ jtl4

&0 P4 PB

(2)

and a mobility tensor for the hole ellipsoid

V1

v= 0
.0

0 0
v1 0
0 VB.

(3)

This representation of p and v uses as a basis a binary,
bisectrix, and trigonal triad as the x, y, and s directions,
respectively, centered at I. (Fig. 1) for each ellipsoid.
(The bisectrix is defined as the third direction neces-
sary to complete a right-handed triad. ) One major
axis of the ellipsoid associated with p is along the g
direction. The other two major axes are tilted (i.e.,
rotated about the x axis in the sense 2&&3) by an angle
O„given by"

tan2e„=2p4/(p2 —p2). (4)

axis of the hole mobility ellipsoid is coincident
with the trigonal direction, which is an axis of revolution
for this ellipsoid. All the mobility components are
intrinsically positive except p, 4', its sign depends upon
the sign of 29„and is obtained from the measurements of
A11 and A41. There are no u Priori reasons for the princi-
pal axes of ~ to be coincident with those of e, though
Herring and Vogt" assume this condition in theiI theory
of anisotropic scattering. As Zitter' has pointed out,
since the Herring and Vogt work only involves the
product c.n, their theory can be trivially extended to
the case where ~ and e have noncoincident principal
axes.

The total conductivity is obtained in the present
representation by adding the currents from: (1) the
hole ellipsoid, (2) one of the electron ellipsoids where

p is given by Eqs. (2), and (3) the other two electron
ellipsoids rotated into this frame by a &120' rotation

1' Cf. Ref. 4.

about the trigonal axis. The form of this last contribu-
tion becomes

neR (L5—p R-'8/c]-'p) R-' (5)

where R is the rotation matrix given by Abeles and
Meiboom" and e= )et. The results for the total con-
ductivity tensor are given in Appendix 3, in mks units.
They are the same as Zitter's' results except for the
changes required by notational differences. For the
model used here, the total electron density E should
equal the hole density I'. However, in Appendix 8 their
ratio c= P/E is not assumed equal to unity, a priori.

Experimentally, the current density is the inde-
pendent variable, since its direction is determined by
the geometry of the sample. It is more convenient,
therefore, to measure the resistivity tensor components,
and to have them expressed in terms of the mobility.
The appropriate equations are also in Appendix B.
They differ from Zitter's expressions (which we believe
contain algebraic errors), particularly with regard to
the signs of some of the terms.

There are eight independent variables in the model
(pi, p2, p2, p4, vi, v2, P, and E) and 12 nonzero tensor
components of either e or y to order 8'. Therefore,
there must be four identities among the tensor com-
ponents as discussed by Zitter, who pointed out that
two of these identities (equivalent in form to two used
by Epstein and Juretschke'2) are particularly simple and
can be useful for checking the internal consistency of
the experimental data. They are

S12+2S22——3S11—2544,

Sll+4I (~22, 1S12/&12,2)+(011S21/0'22 )$
=3S12—S4452+(8oii o.22 1/o-12 3o.22)$. (7)

Another test of the data' is the sign computed for 544
(cf. Appendix B), which for the model used must be
negative. However, in terms of measured quantities
(cf. Appendix C),

(1/pii'p22') &A44—(p12, 2p22, 1/2pii')&= S44&o, (8)

which imposes another consistency restriction on the
data.

To obtain the parameters of the model from the
measured resistivity tensor components is a difFicult
task, as noted by previous authors. '"Two procedures
may in principle be used: One could solve Eqs. (B2)
for the parameters of the model and then substitute
the measured quantities into the resulting complicated
algebraic expressions, or one could take various trial
values of the model parameters and using Eqs. (B2),
compute the expected values of the parameters that
were measured, and compare these with the measure-
ments. We have taken the latter approach and used a

'~ S. Epstein and H. J. Juretschke, Phys. Rev. 129, 1148 (1963).'s S. J. Freedman and H. J. Juretschke, Phys. Rev. 124, 1379
(I96T).
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generalized least-squares fit of the measurements to the
prediction of Eqs. (82). While the larger terms of the
measured y were the most precisely determined, their
magnitude would have masked the contribution of the
smaller terms if a simple minimization of the sum of the
squared residuals were used. To obviate this difhculty,
a program was written to minimize a weighted least-
squares percentage residual function using the variable
metric method by Davidon. "The function minimized
was

f(~') =2 E~~R~(1 C~/—R~)j',

i =1, ~, 8; R, is the measured value of the jth term,
co, the jth weight factor, C; the calculated value of the
jth term using Eqs. (82), and x,, i=1, , g, the eight
variables, i.e., parameters of the model. The weighting
factors for this function are related in a simple way to
the percentage uncertainties of the different measure-
ments. Using a base of 100 and an estimated percentage
error in the ith term, P;, &Q, = 100/P;.

Included in the program was the facility to constrain

any of the variables, a feature that was used in a way
which will be discussed later. The program was run on
IBM 7094 and 360-50 computers; a typical minimi-

zation required a few minutes of computation time.
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III. EXPERIMENTAL DETAILS

Figure 2 is a block diagram of the electronics. The
system can be regarded as a high-gain amplifier (open
loop gain A~10rs) stabilized by feeding back a sizable
fraction (1—p) of the output, where p=RIr/(R~+Rlr)
~10 '. Then the ratio of output to input voltage
eQ/e~(1 —1/Ap)p '. Input signals of the form e;= 4' 'Q

+e;r(148)+e;s(448)'+ ~, where l48(1, have to be
measured to 1% in the squared term, corresponding to
1 part in 10' in e,.~10 ' V dc. The over-all requirement
is that the apparatus sense 10 "V dc, and have a
closed-loop gain stable to at least 1 part in 104, i.e.,
AP& 104.

The input circuitry utilized a superconducting
chopper, a cryotron, " to detect the small galvano-
magnetic voltages generated across a bismuth sample.
This was an extension of earlier work of Templeton, "
later improved by Vroomen and van Baarle, "Zitter, '
and Kachinskii. "The cryotron has the advantage of a
low noise level I (10 "V/Hz'~s), and. the ability to
interrupt a dc signal in any circuit with internal im-

pedance much lower than the cryotron gate resistance
in its normal state ( 0.1 0). In our case, the resistance

"W. C. Davidon, Argonne National Laboratory Report No.
ANL-5990 Rev. Phys. and Math. TID-4500, 14th ed. , 1959
(unpublished).

"D.A. Buck, Proc. IRE 44, 482 (1956)."I.M. Templeton, J. Sci. Instr. 32, 314 (1955).
A. R. de Vroomen and C. van Baarle, Physica 23, 705 (1957).

4' V. N. Kachinskii, Prihory i Tekhn. Eksperim. 5, 207 (1963).

FIG. 2. Block diagram of the picovolt potentiometer. A is the
gate and 8 the control coils of the cryotron. R& is the calibrated
resistor in liquid helium and Rz the feedback or mode control
resistor. Ti, T2, and T3 are primary transformers. The dashed
lines are superconducting shields.

of the samples varied between 10 r and 10—4 Q. (The
device recently described" based on the Josephson
effect does not have the required voltage sensitivity at
these high impedance levels. ) The bucking resistor
R& 10—' 0 was calibrated in liquid helium with special
care taken to keep the calibrating current sufficiently
low to prevent heating of R~.

The major improvement in the present work was
achieved by modifying the cryotron so that the control
current flowed through two adjacent identical solenoids
wound in series opposition, and by using a carefully
sh.aped cryotron control current free of second harmonics
to 1 part in 10'.

The requirement that Ap&104 is equivalent, for a
simple feedback circuit, to setting the ratio of the first
two time-ordered time constants, rr/rs 104. The rr
and rs for the system (Fig. 2) are determined by the
integrator and narrow band amplifier, respectively,
provided the transformers T1, T2, and T3 are su%-
ciently wide band. The bandwidth of the transformer
network is limited by the leakage inductance of T1,
which was increased 300% through the use of a close-

44 J. Clark, Phil. Mag. 13, 115 (1960).
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Fio. 3. The trigonal crystal and its relation to
8 and the angles 0, n, and y.

6tting supt„'rconducting shield which forced the Aux lines
back into the core of T1.

The perturbation of the uniform magnetic field
applied to the sample (due to the Meissner effect of the
superconducting shields placed about the input cir-
cuitry) was kept below 0.1% by displacing the input
circuitry 30 cm from the sample. Superconducting
ribbon with 10 "H/cm inductance were used to con-
nect the sample to the input circuit.

There is an isothermal sample chamber, thermally
isolated from, but contained within, a low thermal con-

ductivity vacuum tight chamber in contact with the
helium bath. The isothermal chamber was designed to
minimize the eBects of the large thermoelectric power
of bismuth. Fluctuations of 1 part in 10' in any tempera-
ture gradients along the sample would be detectable as
electrical signals, and larger Quctuations would obscure
the desired signal. These Quctuations were minimized

by minimizing the thermal contact of the samplecham-
ber (e.g. , leads, supports) with its external environment
and by stabilizing the temperature of the chamber. The
temperature was controlled by a servo system using a
heater and a resistance thermometer. By careful at-
tention to the thermal time constants and appropriate
lead circuitry in the servo amplifier, it was possible to
achieve a temperature stability of 1 part in 10'. As a
result of these numerous precautions, the voltage
produced by the thermal gradient over the temperature
range 4.2—16'K varied from negligible to 8% of the
voltage generated by the sample in zero Geld.

The sensing resistor was calibrated against another
resistor" in turn calibrated in the range 4—20'K against
a constant-volume helium-gas thermometer; the result-
ant temperature uncertainty is +0.25%.

The condition pB/c& 1, discussed previously, limited
the magnetic 6eld strength to a maximum of 2 G. The
magnetic 6eld of the earth and other stray magnetic
fields had to be reduced to 1%% of the smallest fields
used. For this purpose, three mutually perpendicular
pairs of square coils, 2 ft on a side and 1 ft apart, were
constructed. The measured stray magnetic field was

0.4 6 and Quctuated 4 mG during the day and
somewhat less at night. The coils were set to buck out
the average 6eld with no attempt to eliminate these
fluctuations. A rotatable Helmholtz coil was used to
produce a known horizontal magnetic 6eld component
and an end compensated solenoid was used to generate
a vertical magnetic field component in this otherwise
field-free region. The rotation axis of the Helmholtz
coils was made to coincide with the axis of the solenoid
within ~0.1' and the longitudinal axis of the sample
within ~0.3'.

A power supply which could be swept at a preselected
constant rate was designed to provide the current for
the solenoid and the Helmholtz coils. The maximum
magnetic field sweep rate was limited by the time con-
stant of the signal averager (Fig. 2).

The self-magnetic field caused by the sample current
was never greater than 1% of the smallest applied
magnetic 6elds.

A crystal was grown from 10 kg of 99.9999%bismuth
(obtained from Cominco Products, Inc.) following the
modi6ed Bridgeman technique described by Brown. "
Nine meltings and recrystallizations produced a boule
which was composed almost entirely of one single
crystal.

A trigonal plane was obtained for mounting by cleav-
ing the crystal either under water or liquid nitrogen. A
slight acid etch of this plane revealed sets of line at 60'
to each other, corresponding to the binary directions. 4

Two cylindrical single-crystal samples approximately
7 cm long and 0.7 cm in dia, meter, one sample with the
axis of the cylinder along the binary direction, the other
along the trigonal direction, were spark-cut from the
crystal. A copper block spark-cut concentric with the
sample surface and colinear with the sample axis was
used as a support so that the problem of crystal mis-
alignment was minimized. The correct crystallographic
orientation of the samples were determined by both
I aue photographs and examination of the secondary
cleavage planes, in the manner described in detail by
Brown el, al.4

Each sample was placed in a jig designed to position
copper probe contacts on the sample in the usual four
probe galvanomagnetic configuration; two longitudinal

25This calibrated resistor was kindly supplied by Dr. A. A.
Lopez.

"R, D. Brown, III, IBM J. Res. Develop. 10, 462 (1966).
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contacts, separated by 2 cm, and two transverse con-
tacts centered on the sample.

The ratio of room-temperature resistance to liquid-
helium resistance was 8333(R4.2~460 for the trigonal
crystal, and ~360 for the binary. These fairly high
ratios, together with a measured ratio of 580 for a crystal
grown from the same 99.9999% initial material but
regrown 60 times, indicate that each regrowth yielded
purer samples in a manner similar to zone refining.

The mounting and cutting procedures outlined above
were designed to minimize any error in crystal align-
ment to the angular error between the cleaved trigonal
plane and the true plane. Previous experiments by the
author comparing a cleaved trigonal plane to the
trigonal plane determined by x rays showed that any
angular differences that occurred were less than 1'.

IV. MEASUREMENT PROCEDURES

Data were taken on two cylindrical crystals, one with
the current along the trigonal (3) axis (trigonal sample)
and one with current along the binary (1) axis (binary
sample). Cylindrical samples had the advantage that
the orientation of the bisectrix axis for each sample
could be accurately determined from the galvanomag-
netic data.

Equations (10)—(13) relate the galvanomagnetic
tensor components to the transverse voltage V~ and the
longitudinal voltage VI, . For the trigonal sample Lcf.
Eqs. (10) and (11) and Fig. 3j, 8 is the angle between a
binary axis and the component of the magnetic field
in the trigonal plane, o. is the angle between the line
connecting the transverse probes and this binary axis,
J is the current density, gL, and g& are geometric factors
which depend on the placement of the longitudinal
and transverse contacts, 8 and 83 are the magnitudes
of the magnetic induction fields perpendicular and
parallel to the current direction, and

V2, T„3——$ p23, 18 sin(8 n—)+2A4488—3 cos(8—n)
+A418' sin(28+n) jar, (10)

VI„T„3——(p33'+ A 318'+A „8,')JgI, .

For the binary sample, 8& is the magnitude of the
magnetic field component along the binary direction,
and 0 and n are measured from a bisectrix axis.

ANGULAR DATA
TRI GONAL SAMPLE

O

a

C9-
(h

I

90'
7

I

180'

PIG. 4. Typical angular data for the transverse voltage. The
solid smooth lines are the data as taken, the points (on a scale
ten times larger) are the averages of the four curves, which are
displaced for clarity.

O

O

field of fixed magnitude in a plane perpendicular to the
long axis of the sample and recording the signal versus
angular position of the magnetic field. In both cases,
the zero field contribution to Vl, and Vz was bucked
out, usually by an added highly stable voltage (derived
from mercury cells) inserted in the feedback loop of the
measuring apparatus. All measurements were made for
both directions of J, and the data averaged.

We note for the trigonal sample, from Eq. (10), that
if 83=0, the dependence of V~,T„„on 0 has two terms,
one linear in 8 with a period of 2~, the other quadratic
in 8 with a period of x. These two terms can readily be
separated from analysis of the angular dependence of
V~ for fixed B. Once this is done, two directions of 8
(i.e., two values of 7, cf. Fig. 3) can be found, one such
that sin(8 —n)=0, the other such that sin(28+n)=0.

VI,Binary= {P11+A1181 +8 L2(A12 A13)cos28

+ (A12+A]3)+A 14 sin28j) Jgr, , (12)

VT,B' y ( p12,38 cosn s1118+p23,18 sinn cos8

+881[(2A13 COSn+2A44 Sinn) Sin8

+ ()A11—A12$ cosn+ 2A41 sinn)cos8]) Jgr. (13)

Measurements were made either by varying the mag-
netic field strength with the magnetic field direction held
fixed, and recording the output voltage versus field
strength on an x-y recorder, or by rotating a magnetic

43
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CL
CL

O
C
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M

I

0 4,8 1,2 1.6 1.8
Q2 in G2

FIG. 5. Typical reduced magnetoresistance data for 341 with
the four curves (not shown) of & current and ~ magnetic field
already averaged.
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TABLE E. The measured tensor components' and the components predicted by a two-carrier model
with parameters obtained from a least-squares 6t to the data.

Temperature
('I)
pll

Measured
Calculated

P33
Measured
Calculated

P23, 1

Measured
Calculated

P12, 3
Measured
Calculated

A 11
Measured
Calculated

A 12
Measured
Calculated

A13
Measured
Calculated

A 31
Measured
Calculated

A 33
Measured
Calculated

A14
Measured
Calculated

A 41

Measured
Calculated—A 44

Measured
Calculated

2.91
2.92

3.36 4.44
3.36 4.44

5.79 8.07 10.3
5.84 8.25 10.4

13.0
13.1

15.9
15.9

19.1
19.1

22.5 26.2 30.0 34.0
22.7 26.0 30.4 34.4

3.21 3.86 4.83
3.26 3.89 4.87

6.27 8.45 10.7
6.30 8.39 10.7

13.4
13.7

16.5 20.4
16.9 20.5

24.2 28.5
24.4 28.2

32.9 37.5
33.2 37.7

1.54
1.53

1.56 1.58
1.55 1.62

1.59 1.57
1.62 1.56

1.57 1.5S
1.57 1.55

1.54
1.52

1.53
1.53

1.52
1.53

1.50 1.47
1.51 1.50

1.44
1 49

—0.07—0.06
—0.06 —0.05 —0.05 —0.05—0.03 —0.02 —0.02 —0.12

—0.04—0.12
—0.03 —0.02 —0.01 —0.01 +0.00 +0.00 +0.01—0.13 —0.14 —0.15 —0.15 —0.15 —0.16 —0.16

35
37

32
32

43
39

27
28

33
34

21
22

25
25

16
16

18
19

13
13

9.6
9.6

12

7.5
7.6

9.0
9.1

6.2
6.4

74
7.7

5.1
5.4

6.1
6,5

4.6

5.1
5.5

3.7
3.8

4.6

3.1
3.3

3.8
4.0

12
11

9.6
94

7.3
7.2

5.0
5.0

3.1
2.8

2.4
2.1

1.8
1.7

1.4
1.3

0.97 0.82
0,87 0.73

0.72 0.61
0.63 0.54

38
37

32
30

26
24

19
17

15
14

12
11

9.7
8.7

8.0
7.0

6.8
6.0

5.9
5.0

5.0
4.3

4.3
3.7

3.8
3.3

3,3
2.6

2.5
2.2

2.0
1.8

1.6
1.3

1.2
1.0

1.0 0.73
0.80 0.62

0.56 0.48
0.51 0.42

041 0.34 0.30 0.26
0.36 0.30 0.26 0.23

9,3
7.8

6.2
6.7

4.0
5.8

2.6
44

1.8
34

1.5
2.6

1.2
2.0

1.0
1.6

0.8
1.3

0.7
1.1

0.57
0.95

0,47 0.40
0.79 0.70

4.5
5.3

3.8
44

3.6
3.8

2.6
2.9

2.1
2.3

1.5
1.8

1.2 0.95 0.80
1.1 0.90

0.67 0.57
0.76 0,65

0.49 0.43
0.54 0.48

5.8
6.4

4.6
5.1

3.3
3.8

2.3
2.7

1.7
2.2

1.3
1.7

0.9
1' 1

0.75
0.97

0.63 0.54 0.49 0.44
0.79 0.68 0.60 0.53

4.23 4.94 5.88 6.82 7.78 8.74 9.72 10.7 11.7 12.7 13.7 14.7 15.7

& The zero-field units are 10 ' 0 cm; the linear terms are in units of 10 ' 0 cm/G; and the quadratic terms are in units of 10 9 0 cm/G2.

From these values for 0 and n, the orientation in the
laboratory frame of the binary direction and the line
connecting the transverse contacts is obtained. Figure 4
is an example of the angular data from which this
information was extracted. By orienting 8 such that
0—n =0, still maintaining 83——0, A 4~ is obtained
directly from Vz,»;g (Fig. 5). Then 8 may be oriented
such that 0—n= —,'~. The linear contribution to Vz, ~„.,
then gives p», &, the large Hall term, directly. Now with

8 again set so that 8—n =0, the variation of Vp, ~„,
with 83, in principle, gives A 44 directly. In practice,
since A 44 is a small term, measurements were also made
with 8 reversed in sign so as to eliminate the (large)
quadratic contribution. This procedure also corrects
for the eGect of any longitudinal onset of the transverse
contacts )Eq. (11)j, which is entirely quadratic in
magnetic field.

p vs

ptvs T

E
EJ

I
O

0
e

~ e

~e
~e

~lit
I I I I

l00 200
I I I I I

300 400
I I

500 600

E
CP

Cg
lO
s

O

IO
elO

g
~
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FIG. 6. Zero-6eld resistivity p»' versus T'. I'zG. 7. zero-6eld resistivity p33 versus T2.
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FrG. 8. Large Hall voltage p23, ~ versus the temperature.

From measurements of V&,»;s LEq. (11)$ one
obtains A», A», and p»0 in an obvious way. For the
binary sample, the measurement of 0. is difficult, but
fortunately is unnecessary. It is only necessary to And
the direction of the bisectrix axis, which corresponds to
0=0 in the binary crystal. This is obtained by a pro-
cedure'~ that allowed the direction of the bisectrix
axis to be located within 0.2'. It is clear from Eq. (12)
that once the orientation of the bisectrix direction is
established, the coeS.cient p~~', A~~, Aj.2, A~3, and A~4

can be straightforwardly obtained. The remaining
coefficient p», s can be obtained from Vz,z;„,» tEq.
(13)). If n for this crystal were known (and it can in
principle be obtained from V&,&; „~ by setting 8&——0,

Fzo. 10. Measured magnetoresistance (Au ' and Aqs '). The
inverse magnetoresistances are plotted against the temperature
squared in order to exhibit the T ' dependence.

using the value of p23, ] obtained from the trigonal
crystal), then A~4, A44, Art, Ars, and A4t can be obtained
redundantly.

V. RESULTS

A. Experimental Galvanomagnetic CoefBcients

The values of the tensor coeKcients from 4 to 16'K
are shown in Table I and Figs. 6—13. To obtain these
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~ L
I l I l I I l I I l l

4 6 8 I 0 l 2 l4 16
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FIG. 11. The measured magnetoresistance (A&2 ' and A&4 ').
The inverse magnetoresistances are plotted against the tempera-
ture squared in order to exhibit the T ' dependence.

Pro. 9. Small Hall voltage p12, 3 versus the temperature.

'7There is an empirically observed sharp minimum in the
transverse magnetoresistance when 8 is near the bisectrix axis.
For 8=105 G, it is 1.8 from the bisectrix direction toward the
trigonal LR. D. Brown (private communication)g.

GALVANOMAGNETIC COEFFICIENTS OF Bi
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values, the da.ta for Vr and Vl. LEqs. (10)—(13)$ for
both samples, already in graphic form from the plotter,
were transferred by a semiautomatic device to punched
cards. An average of 40 points were taken per curve for
approximately 1000 curves. All the algebraic operations
necessary to extract the terms in VL, and V& linear and
quadratic in magnetic 6eld were programmed for and
performed on IBM 1620 and 7094 computers. These
results were plotted versus either the magnetic field or
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FIG. 13. Measured magnetoresistance (A 41 ' and A 44 ') . The
inverse magnetoresistances are plotted against the temperature
squared in order to exhibit the T ' dependence.
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FIG. 12. The measured magnetoresistance (A31 ' and A33 ').
The inverse magnetoresistances are plotted against f.he tempera-
ture squared in order to exhibit the T ' dependence.
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l&IG. 14. Comparison of A. N. I"riedman's curve for the zero-held
resistance with our measured p11 and p83'.

the magnetic field squared using an IBM 1627 graph
plotter. The slope of the straight-line portion of one of
these plots determined the value of a particular gal-
vanomagnetic coeKcient, and the region of linearity
indicated the range of magnetic field over which the
low-field condition was valid. The zero-field and quad-
ratic magnetoresistance coefficients are plotted so as
to show that the various components of mobility
Lcf. Eq. (B2)J vary as T ' above 8'K.

The numerical value of the ratio of the 4.2'K resis-
tance relative to the room-temperature resistance was
different for the trigonal and binary samples. This
difference, ideally, should be an indication of the vari-
ation of p&io/p&3O with temperature, but may well be
due to differences in either impurity concentration or
strain of the two samples. To settle this point, a separate
experiment was performed using an "L"-shaped sample
cut from the original crystal. p&I and p&3 were both
measured at 300'K, and then at 4.2'K. The ratio of the
resistivity ratios (Expo/R4. g) for the trigonal arm of the
L to that for the binary arm was 1.20:1 compared to
the ratio 1.27:1 for the trigonal and binary samples,
indicating a small di6erence between the samples at
the lowest temperatures.

The zero-field resistivity (Figs. 6 and 7) for which
data were taken as high as 27'K agrees with the results
of Friedman' (Fig. 14). The anisotropy in pii' and p»'
is also indicated in Fig. 14. It should be noted that the
relative values of either p~~' or p33' are accurate to
better than 1%, though there are larger errors ( &3'%%uo)

in their absolute values introduced by geometric factors.
From 8—18'K, both p» and p» vary closely as T'.
Above 18'K the variation is somewhat less rapid.
Below 8'K, pii', and p33' (and the inverse magneto-
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TABLE II. Measured zero-field resistivities and the magneto-
resistivities fitted by least squares with p=mT'+b (from 4.23 to
15.7'K) and A =mT '+b (from 7.78 to 15.7'K), respectively.

P 11

P33

A ll

A13
A31
A33
A14
A 41

A 44

(10 ' 0 cm/'K')
0.139
0.153

(10 ' 4I cm'K'/6')
10.2
11.6
2.05
9.3
0.8
1.2
1.3—1.0

(10 'Qcm)—0.1—0.5
(10-' 11 cm/G')—0.01—0.01—0.003

+0—0.0007—0—0.001
+0

33 A. N. Friedman and S. H. Koenig, IBM J. Res. Develop. 4,
158 (1960).

resistivities) do not decrease as rapidly as T', but in
this region, it is known' that the resistivity is sample-
dependent, varying with impurity concentration and
strain.

Table II gives the results of a least-squares fit to the
data for the two zero-field and eight magnetoresistivity
coefficients to the functions mT3+b and mT '+b,
respectively. The first two coefficients of the resistivity
tensor are inversely proportional to mobility, and the
last eight coefficients are directly proportional to mo-
bility. The root-mean-squared error indicated a good
fit because it was smaller than either the constant or
the temperature-dependent contributions (in the tem-
perature range 4—16'K). The temperature-dependent
contribution was dominant in this temperature range.
Since our model has, at most, eight variables, it is
completely determined by any eight measured tensor
coefficients. Therefore, the results in Table II already
show that the larger mobilities vary as T ' over the
temperature range 7.78—15.7'K.

The experimental uncertainty of the relative values
of p33, r is &1%, and &5% for the absolute values,
similar to the uncertainty of the field-independent
terms. The variation of p23 ~ with T is slight, though
there is a definite maximum near 8'K, in agreement with
the observation of Friedman. ' lt should be noted that

~ pr3, 3 (Fig. 9) iS abaut tWO OrderS Of magnitude leSS

than p33, 3~, due to the almost complete cancellation of
the Hall current contributions of the electrons and holes
to p~~, 3. The measured value for p~2, 3 is then very
sensitive to effects which may inhuence the electron
and hole scattering differently. In the present case, the
crystal was inadvertently strained before the p», 3

data were taken, so that the numerical values of these
data are not necessarily relevant to the unstrained crys-
tal. There is no question, however, that

) pr3, 3~((~ p», i)
The estimated uncertainties in A~~, A~2, A~3, and A3$,

the larger quadratic magnetoresistance coefficients, are
less than 10%at the lower temperatures, and somewhat
larger at the higher temperatures since the signals were

TABLE III. Comparison of the measured values of the resistivity
tensor coefficients with those of Zitter at 4.2'K.

Zitter's
values
scaled~Zitter

7.4 &5% 2.91+5%%
8.0 3.21~5'Po

3~5Fo
0.25~8'Po —0.0
1.5 +10% 3.5 +8%
2.0 4.8 &5%
0.45 1.2 +10Fo
19 3.8 &8%
0.16 3.3 &10/
0 29~15Fo 0 93~20'Fo
0 2 0.45~15 jo—0.33&20% —0.58&15%

See text.

smaller. To obtain larger signals the magnetic field
strength was increased at the higher temperatures,
maintaining pB, (&1. The sample current was also
increased, while maintaining the condition that the
self-magnetic field be 1% of the smallest applied
magnetic field. The accuracy did decrease nonetheless
due to problems associated with temperature Ructua-
tions and gradients. The uncertainty of the term A»
increased slightly more than the others as the tempera-
ture increa, sed, since A is is obtained from the difference
of two measured quantities.

The estimated error in the smaller magnetoresistance
coe%cients A33 Ai4 A4i and A44 was 15%, except
for 3~4. Ay4 was also obtained from the difference of
two nearly equal quantities; the uncertainty ranged
from &20% at 4.2'K to +100% at 16'K. None of the
values for the various coefficients was obtained redun-
dantly. The only other values for these coefficients in
this temperature range are Zitter's measurements at
4.2'K, obtained from samples of lower purity. Table III
shows a comparison of his results with the present data.
In the last column his values are shown scaled to the
present results, using a factor of 2.4 obtained from the
relative residual resistivities of his sample and ours,
applied to Eq. (B2). The results, within the combined
experimental uncertainties, are in good agreement.

Present work

3.08
3.33
1.53—0.25'
3.6
4.8
1.1
4.5
3.8
0.7
0.48—0.79

P 11

P33
P23, 1

P12, 3

A 11
A 12

A 13
A31
A 33

A14
A41
A 44

B. Determination of Model Parameters

Table IV lists the parameters of the two-carrier model
(i.e., three tilted electron ellipsoids and one hole ellip-
soid of revolution) obtained for each temperature by
computing the galvanomagnetic coefficients from the
model and comparing them to the experimental values,
using a least-squares criteria for judging the best fit.
The predictions of the model using these parameters
are compared with the data in Table I.

The model has eight parameters which must be
varied to fit Eq. (B2) to the da, ta. However, the value
of c=P/N has been measured as 1.0&5% by Brown" on

"R.D. Brown, III (private communication).
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TA&LE IV. The parameters of the two-carrier model, obtained
by a least-squares 6t to the galvanomagnetic data, versus tempera-
ture. Below are Zitter's published values at 4.2'K. All tabulated
values are in units of 10' cm'/V sec. X=2.7X10" cm '+8%;
C=P/E= 1.0&5%.

Temperature
('K) IJ2 P& P4 Vl VO

22 35
18 3.4
13 2.8
9.9 1.7
8.1 1.4
6.4 1.1
5.2 0.91
4.2 0.74
3.6 0.63
3.0 0.53
2.6 0.47
2.3 0.4
2.0 0.35

40%

70 1—5.8
47—37—2.9
23—1.8—1.4—1.16—0.98—0.84—0.71—0.63

100T

4.23
4.94
5.88
6.82
7.78
8.74
9.72

1.0.7
11.7
12.7
13.7
]47
15.7

Estimated
error

Zitter's value 43
at 4.2'K

110 3
98 2.7
78 2
58 14
40 0.61
32 0.45
25 034
21 0.24
17 0.20
14.6 0.16
12.6 0.13
10.7 0.11
9.4 0.09

8'Po 20/0

67
56
46
35
27
21
16
13
11
9.1
7.8
6.6
5.8

5%

1.00.6 30 +3.4 12

ts Zitter's estimated errors are +10% except for the error in gs, which is
+20%, and va, which is 100'P0.

samples cut from the crystal used in the present experi-
ment, an accuracy equal to or greater than the results
of the present work. Therefore, in fitting the data, c
was constrained to equal 1.0.

It was convenient to have a set of approximate
expressions relating the coefficients of the resistivity
tensor and the mobilities. These relations, first derived
by Zitter, are given in Appendix D in our notation and
are far simpler than the exact equations. They are useful
in indicating how the components of the resistivity
tensor vary as the dominating mobility components
change. A first fit was attempted in which all terms were
weighted according to their estimated experimental
random uncertainties, but not allowing for systematic
errors.

The fit, though informative, gave physically unreason-
able values for the smaller model parameters (e.g. ,
negative values for an intrinsically positive mobility
term). The major problem appeared to be associated

TA&LE VI. A least-squares 6t of the mobilities to mT +b

over the temperature range 7.78-15.7'K.

jlly

fthm

QI
p4
VJ,

V3

(10' cm"K'/V sec)

+25.0
+0.41

+16.9—1.83
49
0.84

b
(10' cm'/V sec)

—0.009—0.0009—0.01
+0.001—0.0001
+0.0001

rms error

0.002
0.0001
0.002
0.0002
0.0003
5X10-'

with prs, s. Though the data (Fig. 9), appear to have
little random scattering, there may vrell be a large
systematic error in the results due to the fact, mentioned
earlier, that the results were obtained after the sample
had become strained. To obtain a realistic fit, p~2, 3 was
effectively excluded from the fitting procedure by using
a weight factor of 10 ' compared to weight factors on
the order of 10 for most of the other terms. It is un-
fortunate that the data for p~2, 3 cannot be used here,
since as Table V shows, p», 3 is very sensitive to changes
in p, ~, p, ~, and v~. The agreement of the values predicted
by the set of model parameters with the experimental
values (Table I) for ptr, pss', pss, t, Art, and Ate is
excellent; of the order of a few percent for most
temperatures. The differences between the predicted
and measured values of A~3, A33 and A4~ are vrithin
experimental error over the entire temperature range.
The agreement of the predictions with the experimental
results are poorest for A» and A44, both relatively
difEcult to measure. The disagreement, however, is not
so severe as to suggest any inadequacy of the model.

The differences between the measured and predicted
values for A~4 vras within the estimated experimental
uncertainty of 20% at 4.2'K, increasing to 100% at
15.7'K. Since the error was so large this term did not
significantly effect the final values of the model parame-
ters. Hovrever, the measured and predicted values of A y4

agreed in sign with A4& thereby fixing the sign p4, the
oR-diagonal electron mobihty, as negative. Figures
15—18 show that all the calculated mobilities vary

TABLE V. Percentage variation in the absolute value of the tensor coeilicients as the mobilities and P/E are
increased and decreased 10% about the values that produced a best Gt at 4.2'K.'

px P2
+10% —10% +&0% 10%

P3
+10% —10%

Jg4

+~0%
V3

+to% —&0% +~0% —lo%
C= P/E

+~0%

pll
P33
P23, X

P12, 3

Ayg
Ag.
Ag3
A3f
A33
Al4
A4g
A 44

—6.5
0

+2.8—31.4
+5.9
+5.0—07
+2.7

+10
+5.9
+3.0—4.1

+7.5
0
302

+40.4—6.5—5.5
+1.0—3.1—10—6.6—3.4
+43

—0.19
0—0.08

+21 7—0.9—0.77
+6.6
+0.08

0—0.66—0.47
+1.96

+0.19
0—0.08

+21.9
+0.93
+0.77—6.7—0.08

0
+0.66
+0.47—1.97

0—8.7
+0.7

0—9.7
+8.2

0-0.02—16.6
0

+0.4
+0.01

0
+10.5—0.9

0—9.7—8.2
0

+0.02
+22 1

0—0.5—0.02

0
0—0.14
0

+0.73
+0.33

0
+0.06

+21
+10
+10.2—0.03

0
0

+0.13
0—0.66—0.3
0—0.05—19—10—10.1

+0.03

2.7
0—2.9

+57.1—5.4—45
+4.5
+6.9

0—5.4
2.7

+12 2

+2.9
0

+3.1—57.4
+5.8
+48—3.8—7.2

0
+5,8
+2.9—12.2

0—0.5—0.7
0
0

+1.6
0—0.01—0.99
0—0.5
0

0
+0.5
+0.71

0
0—1.6
0

+0.01
+1.0

0
+0.5

0

—27—0.5
34

+24.4
54—3.8—2.6

+5.8—0.99—5.4
302

+3.5

+2.9
+0.5
+3.6—27.4
+5.8
+4.1
+2.5—63
+1.0
+5,8
+34—4.2

All numbers in the table are precent. The + sign indicates an increase in absolute value, the —sign a decrease,
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Fro. 15. Calculated electron mobilities (pr r and ps '). The
inverse mobilities are plotted against the temperature squared
in order to exhibit the T ' dependence.

closely as T ' between 8 and 16'K. Table VI is a least-
squares fit of the mobilities to mT '+b, .where b may
be thought of as mainly due to residual resistance. For
T~10'K, it is clear from this table that the residual
resistance contribution is unimportant.

The estimated uncertainties for the various model
parameters are given at the bottom of Table V. These
values are really judgments, obtained by computing the
predicted values of the galvanomagnetic coeS.cients as
the model parameters were varied about their least-
squares values. These results were then compared with

the experimental results and associated experimental
uncertainty. Kith the exception of p, ~ and v3, which are
very low rnobilities, the parameters of the model are
known within 10%. The larger errors associated with
ps and vs (coming mainly from the uncertainty in A»
for ps, and Ats and Ass for vs) do not appear as scatter
in Figs. 15 and 18, for reasons which are not entirely
clear. The presumption is, however, that though the
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Fro. 17. Calculated hole mobility (~r ). The inverse mobilities
are plotted against the temperature squared in order to exhibit
the T ' dependence.
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FIG. 16. Calculated electron mobilities (pa ' and p4 '). The
inverse mobilities are plotted against the temperature squared
in order to exhibit the T ' dependence.
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FIG. 18. Calculated hole mobility (ve ). The inverse mobilities
are plotted against the temperature squared in order to exhibit
the T ' dependence.
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variation of both p~ and v3 with T is smooth, there are
systematic errors in the absolute magnitude of the
curves.

As pointed out in Sec. II, there are identities that
the measured coefficients of the resistivity tensor must
satisfy because the model used for the Fermi surface
has fewer parameters than the number of measureable
coeKcients. Equations (6) and (7) are two of these,
expressed in terms of coefficients of the conductivity
tensor (Appendix C). In a,ddition, the inequa, lity in
Eq. (8) must be satisfied by the data. To use the identity
tests t cf. Eqs. (6) a,nd (7)5, the dependence of the
identities on p~2, 3 must be examined since p~2, 3 is not
accurately known. In Eq. (6), p», 3 enters only as part
of S44, a very small term compared to 5». Two sides of
Eq. (6) were compared at each temperature using both
the measured and predicted values of p~2, 3 listed in
Table I. For all the values of p~2, 3 used, the first identity
was well satisfied; i.e., with the exception of three
values of p» 3 used, both sides of Eq. (6) were equal
within &3%, an amount far smaller than expected
considering the estimated experimental uncertainties in
the measured quantities.

The other identity tEq. (7)5 is more complicated.
p~~, 3 enters both sides in the form of a ratio and a sum.
Since it contributes approximately the same amount to
both sides, the identity may be satisfied even though the
values of p~2, 3 are in error. This was found to be the
case; the two sides of Eq. (7) were equal within the
estimated experimental uncertainties.

The model predicts that the conductivity component
S44 will be negative. S44 was calculated from the meas-
ured coefficients of the resistivity tensor (cf. Appendix
C) and was negative, using either the predicted or
measured values of p~~, 3. The magnitude of S44 was at
least six times the uncertainty.

The values of the model parameters can be compared
to the results of Zitter' and Friedman. ' Friedman was
able to estimate the values of pi and vi (cf. Table IV)
from measurements of the zero-field resistances and the
Hall term p23, i, using the approximate equations (see
Appendix D). The agreement between Friedman's and
our p, ~ and vq is excellent. Furthermore, Friedman's
curves for p& and v& have the same T ' dependency
observed here. Zitter's values for the model parameters
were obtained from data taken on samples at a tempera-
ture (4.2'K) at which impurity scattering was dominant.
All his mobilities are in good agreement with ours using
the same scale factor of 2.4 that was applied to his
resistivities, except p~ and v~.

VI. DISCUSSION OF RESULTS

Two fundamentally different sets of information
about bismuth are provided by the results. The values
of the model parameters at any one temperature provide
information about the band structure of bismuth, while
their temperature variation gives information about

the scattering mechanisms that determine electrica, l

transport. Our results concerning the band structure are
mainly corroborative. On the other hand, the major
transport result, i.e., that the components of the
mobility tensors vary as T ', indicates that the domi-
nant sca.ttering mechanism in bismuth is diRerent from
the T ' dependence that one anticipates for deformation
potential scattering. ' We will discuss these points
separately.

p23, i t'Ne(1+2cvi/pi+c'po/pi)5 ', (14)

where c' and po are parameters, analogous to c and v~,

that would describe these carriers. If these carriers
were electrons, the net results would be to decrease the
predicted value for E, reducing the agreement with the
de Haas —van Alphen and Alfven-wave results. If they
were holes, the new term would be included in the term
2cvi/pi, since the data reduction procedure set c=1.
This would not aRect X, but would alter the value
v~, an eRect which would not be recognized, since v~ is
not known o priori.

The electron mobility tensor for each temperature
was dia, gonalized (cf. Table VII) yielding components
(labeled pi*, p2*, ps*). The electron mobility anisotropy
ratios 1:p2*/p, i*.ps*/p, i* and the mobility tilt angle 0„
tcalculated from Eq. (4)5 for each temperature are
also tabulated in Table VII. The hole mobilities are
also in Table VII.

Within the spirit of the relaxation-time approxima-
tion, the relative values of the components of the carrier

mobility tensors can be related to the components of the
relevant mass tensors. Equation (1), on which the

3 G. A. %illiams, Phys. Rev. 139, A77I {1965).
31 R. D. Brown, III, Bull. Am. Phys. Soc. 13, 44 (1957)."A. A. Lopez, Phys. Rev. 1?5, 823 {1968).

A. Band Structure with the Relaxation Approximation

As has been seen, the transport data at any tempera-
ture is consistent with the generally accepted band
model for bismuth. The total electron carrier density
determined in this experiment is E=2.7+0.2&10"
cm '. Bhargava' has reported the values n= 0.96&0.05
&&10' cm ' for the carrier density per electron ellipsoid
and p=3.0+0.1&&10"cm ' for the hole ellipsoid, both
obtained from de Haas —van Alphen data. Williams"
has reported 3n=p, or N=I' 3 1+0 1.cm—'., from
Alfven-wave propagation. The experimental uncer-
tainty in our value of E is that associated with fitting
the data to the (generally accepted) two-band model.
The agreement of this S with the de Haas-van Alphen
value is good. The question may be asked, however, in
what way a more complex model might alter E. The
possibility of a third band near the Fermi surface ha, s
been discussed. ""If such a band were present and con-
tributed carriers in the temperature range of our meas-
urements, the equation for p23, ~, Appendix D, would
become
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TABLE VII. Electron mobilities in the principal-axis system
of the electron ellipsoid in units of 10' crn'/V sec, together with
the ratio of the mobilities, the mobility, the tilt angle, and the
values of v1/I'p1.

4.23
4 94
5.88
6.82
7.78
8.74
9.72

10.7
11.7
12.7
13.7
14.7
15.7

110 2.2 67.8
98 2.1 56.1
77.8 1.5 46.2
58.3 1.0 35.5
40.4 0.3 27.1
32.2 0.2 21.2
25.4 0.1 16.5
20.6 0.08 13.2
17.3 0.07 11
14.6 0.05 9.2
12.6 0.04 7.9
10.7 0.03 6.7
9.4 0.02 5.9

Q ~ Q ~

1:0.020:0.62
1:0.021:0.57
1:0.020:0.59
1:0.017:0.61
1:0.007:0.67
1:0.006:0.66
1:0.006:0.65
1:0.004:0.64
1:0.004:0.63
1:0.004:0.63
1:0.003:0.63
1:0.003:0.62
1:0.003:0.62

8 N v], //41

6.3 0.200
6.2 0.183
6.1 0.171
6.1 0.170
6.3 0.201
6.2 0.198
6.2 0.204
6.3 0.205
6.1 0.208
6.1 0.206
6.1 0.206
6.1 0.212
6.3 0.212

"P.J. Price, IBM J. Res. Develop. 1, 239 (1957).
34 Y. H. Kao, Phys. Rev. 129, 1122 (1963).

I

entire analysis of the data is based, assumes that a
relaxation tensor can be. defined from which the zero-
field conductivity, the linear Hall effect, and the
quadratic magnetoresistance can be computed in a
consistent manner. Basic to this is the assumption that
the presence of the magnetic field does not effect the
term in the expansion of the momentum distribution
function linear in the applied electric field. The range of
validity of the relaxation-time approximation for
anisotropic bands has been discussed by Herring and
Vogt"; Price" has extended these considerations to
include the effect of the presence of a magnetic 6eld.

The fact that the tilt angle 0„ for the mobility tensor
(Table VII) agrees very well with the tilt angle of 6.4'
for the surfaces of constant electron energy' 4 shows that
if a relaxation-time tensor ~ is defined, such that
@=en ~, both ~ and e would have the same principal
axis. For this case the components of e can be easily
obtained from the cyclotron masses; the result
is 1:o.s*/nt*. nP/nt* ——1.0:0.004: 0.62, using Kao's"
cyclotron masses. The values for the tensor components
of ~ are tabulated in Table VIII. The anisotropy of ~, is
seen to vary from 5:1 at 4.2'K to roughly isotropic
at 16'K; the anisotropy of 7& is 2:1 over the entire
range of temperature. Herring and Vogt" argue (cf.
their Table IX) that for a scattering anisotropy in two
orthogonal directions 5:1 or less, the collision integral
can be well approximated by a tensor relaxation time.
This point, plus the fact that a single ~ allows one to
6t all the data using a simple band-structure model and
the formulas LEqs. (6)—(8) and Appendix Bj derived
using Eq. (1), give a self-consistent argument for the
reasonableness of working within the relaxation-time
approximation.

In total, we 6nd nothing inconsistent with assuming
the two-band model for bismuth and a tensor relaxation
time for each type of carrier that is an order of magni-
tude less anisotropic than the associated mass tensor
and that has the same principal axes as the mass tensor.

TAmE VIII. Relaxation time for the electrons (in the principal
axis of the electron ellipsoid) and the holes as a function of
temperature in units of 10 ' sec.

Electrons
+28 Vae

Holes
&IL &3k

4.23
4.94
5.88
6.82
7.78
8.74
9.72

10.7
11.7
12.7
13.7
14.7
15.7

3.9
3.1
2.3
1.6
1.3
1.0
0.83
0.70
0.59
0.51
0.43
0.38

21.6 4.4
20.3 3.7
14.7 3.0
9.9 2.3
2.8 1.8
2.0 1.4
1.4 1.1
0.82 0.86
0.72 0.72
0.52 0.60
0.38 0.52
0.32 0.44
0.24 0.38

8.5
6.9
5.1
3.8
3.1
2.5
2.0
1.6
1.4
1.2
1.0
0.87
0.77

15
15
12
74
6.0
4.8
3.9
3.2
2.7
2.3
2.0
1.7
1.5

These decrease quadratically as the temperature in-
creases. The largest mean-free-path component is 5'P~

of the sample diameter, and then only at the lowest
temperature. The size effect correction to the conduc-
tivity using either the experimental results t Friedman
and Koenig, "Figs. 2(a) and 2(b)j or the theoretical
results t Price, "Eq. (22)$ for the influence of sample
size on conductivity, is negligible.

B. Carrier Scattering Mechanism

The de Broglie wavelength of the carriers in bismuth,
both for electrons and holes, is very long: hundreds of
times the lattice parameter. Thus, the carriers see the
lattice as a continuum, and their interaction with
phonons, expressible by a deformation potential, ' is
via the long-wavelength strain in the lattice that the
phonons produce. Mase et a/. have computed the de-
formation-potential tensor components necessary to
describe their galvanomagnetic data at 20.4 K. The
results (1) are somewhat larger than that expected from
strain measurements and (2) do not consider any
screening of the deformation potential interaction by
the carriers, which would require that the actual

"P. J. Price, IBM J. Res. Develop. 4, 152 (1960).

In relation to the above, there are two fine points to
be mentioned. First, Table VII lists the magnitude of
the tilt angle. The question of the sign is more subtle.
This has been discussed in detail in a recent publication, '
in which it is shown that the signs of e„and 0 are the
same (and positive).

The second point involves possible corrections to the
data because of boundary scattering (size effects).
From the values for ~, the band parameters, and the
I ermi energy, one can obtain values for the carrier
mean free path in different principal directions. At
4.2'K, they are

~le ~ ~2e y ~3e y ~tk r ~3@

0.39mm 0.12 mm 0.30 mm 0.23 mm 0.11mm.
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deformation-potential tensor components be much
larger than the values they derived. Considering these
two points, and the fact that the deformation potential
enters quadratically into the scattering, we feel that
this model is inadequate to explain the conductivity
in bismuth. More significantly, the temperature de-
pendence of the conductivity predicted by the deform-
ation-potential model disagrees with our observations.

We propose that the predominant carrier scattering
mechanism in bismuth, when the mobility varies as T ',
is a particular type of carrier-carrier interaction in
which two carriers in separate valleys scatter, but
remain in their respective valleys conserving energy and
momentum in their c.m. system. Baber" discussed
scattering of this sort between electrons and holes in
different bands, and pointed out that for this case,
conservation of momentum is not equivalent to con-
servation of current, and that therefore this type of
scattering contributes to the resistivity. There is no
contribution to the resistivity, however, if the two
carriers are of the same sign and have isotropic masses.
For carriers with an anisotropic mass, collisions which
conserve the momentum of the distribution may not
conserve the total current. This situation has been pre-
viously discussed with regard to the temperature-
dependent part of the residual resistance of degenera, te
n-type germanium. "In either the electron-hole or the
anisotropic-carrier case, the temperature dependence
is as T '. For bismuth, we believe that essentially all
the scattering is this type of carrier-carrier scattering.

One may readily estimate the magnitude of the scat-
tering from the known scattering of carriers by ionized
impurities, since a similar screened Coulomb potential
is involved. From the considerations of Katz et al. ,

'7

one expects the mobility to be given by

p = IJ„(n,/n) (To/T)', (16)

where p, is the mobility for bismuth with n, singly
ionized impurities, and n=3)&10' cm '. Substituting
Bhargava's' values of p; for electrons and holes for his
alloy No. 5, with n;=10' cm 3 and TD 130 Ky we
obtain p, =9)&10' cm'/V sec, p1,

——6&&10' cm'/V sec, in
good agreement with our results (cf. Table IV).

C. T Dependence of y&3, i

From Fig. 10, one sees that to first order p23 ~, which
essentially measures X, is independent of temperature.
However, there is a small but measureable variation of

p», & with temperature that has also been reported by
Friedman. This temperature variation, with a maxi-
mum at 7'K, has two causes. From the expression
for p23 ~, Appendix D, it is seen that a temperature
dependence of both E and the ratio vr/pr can contribute.
Below 10'K, the variation of S as computed from the
Fermi function is negligible and the variation of p23, ~

36 W. G. Baber, Proc. Roy. Soc. (London) A158, 383 (1937).
37 M. Katz, S. H. Koenig, and A. A. Lopez, Phys. Rev. Letters

15, 828 (1965).

follows from the variation of vr/pr listed in Table VII.
Above 10'K the temperature variation of E is the
predominant factor, both as seen from Table VII and
as expected from the fact that all mobilities are varying
as T ' and, therefore, the ratio v&/ir& does not vary. On

the other hand, below 8'K, the T ' law breaks down

first for pr and then for vr (cf. Figs. 15 and 17), which

explains empirically the maximum in p» &. The deviation
from the T ' law is due to scattering by residual im-

purities, as is clear u Priori from the results of Friedman, '
though it is not clear why the effect should necessarily
be greater for electrons than holes.

VII. CONCLUSIONS

Within the framework of the accepted band structure
of bismuth, the electron and hole mobilities and the
carrier concentration have been obtained by a least-
squares fit to the galvanomagnetic coefficients, measured
to order H', in the temperature range 4—16'K. The
carrier concentration E and the mobility tilt angle are
constant over the entire temperature range, with
X=2.7)&10" cm '+8% and 0„=6.2', respectively
The agreement between the mobility tilt angle and the
effective-mass tilt angle demonstrates that the principal
axes of the two tensors are coincident within the ex-

perimental uncertainty. We find that the accepted
band structure is fully consistent with all our results.

One of the most significant results of this experiment
is that all the components of the mobility tensors for
both the electrons and holes vary as T—' in the range
8—16'K. We argue that the scattering is between carriers
in different valleys. The magnitude of this scattering
was estimated from Bhargava's data for ionized im-

purity scattering in bismuth. The mobilities calculated
from these cross sections were in agreement with the
measured mobilities. Bismuth is unique in that the main
carrier scattering mechanism is unlike that which
dominates the scattering in any other material.
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APPENDIX A: EXPANSIONS FOR THE CONDUCTIVITY TENSOR o(B) AND

RESISTIVITY TENSOR f3(B)

0-11' 0
43(B) 0 o „o

. 0 0

0 0
——~12,888

0 38 ~ 0 23,1820

0 12,888 0 28,182
0 028 181

—028,181 0

S11 S12
S12 S11
S81 S81
S41 —S41
0 0
0 0

S18 S14
S18 —S14
S88 0
0 S44
0 0
0 0

0 0 822

0 0 882
(A 1)

S44 S41 28881
S14 -', (S11, S12) 2B1B2

p11 o o o pl2 888
y(B) = 0 p11' 0 + —p„,

p88 ~ ~ p23, 182 p28, 181

—p28, 182
p28, 181

0

A 12

A81

A41
0
0

A 11

A81
—A 41

0
0

A18 A14
A 18 —A 14

A38 0
0 A44

0 0
0 0

0 0 81'
0 0 822

0 0 882

0 0 2BB
A 44 A 41 28381
A 14 2 (A 11 A12) 2B1B2

APPENDIX B: TENSOR COMPONENTS

1. Conductivity Tensor Components as Functions of the Mobilities N and P

(N=3n, where n is the number of electrons per ellipsoid, P is the total number of holes in the hole ellipsoid,
and e=

~

e).)

+11 (2Ne)(p1+p2)+Pev1 o83 Nep3+Pev3,

0'12 8 N plp2 Pevl o23 1 (2N )P(pl+p2)p8 p4 ) Pevlv3

$11—(8Ne) [(p1—po)'p3+ (5p1—p2) p4'], S12——(8Ne) $(3p1'+3p2'+2p1p2) p3 (p1+3p2) p4']—+Pev1 V3,
(H1)

S»= (2Ne)[p1 2(p1+p2))+Pe»', S»= (2Ne)L(p1+ p2) p3' —pop")+Pe»»',

S88——Nep1p4', S14—— ( Ne) p4p1(—p, 1
—p2), —

S41 (4Ne)p4[p8(pl p2)+p4 ) S44— $(4Ne)plp2p3+(2Pe)vl P8) ~

2. Resistivity Tensor Components as Functions of the Nobilities N and P

)Here c=P/1V should not be confused with c used for the speed of light in, e.g. , Eq. (4).)
p11 ——(2/Ne)(p1+p2+2cv1) ', p33'= (1/Ne)(po+cv3)

p» 3
——(4/1Ve) (p1p2 —cv1') (p1+p2+ 2cv1)

—', p» 1
——(1/Ne) Lpo(p1+ p2) 2cv1 p8 p4 )(p1+p3+ 2cv1) (p8+ cp3)

A 11
——(1/21Ve) /p8(p1 —p2)'+ p4'(5p1 —p3))(p1+p2+ 2cv1) ',

A 12 = (1/2Ne) {p1(3p1p3+ p4')+ (2p1+ 3p2) (p2p3 —p 4')+ SCV1 V3

—2L(p1+ p2) p8 —2cv1v8 —p4')'(p3+cv3) '}(p1+p2+2cv1) ',
(B2)

A»= (2/Ne) fp1p2(p1+ p2)+2cv1' 4(p1p2 cv1')'(p1+ p—2+2cv1)—'](p1+p2+2cv1) ',
A31——(1/2Ne){2cv1(p1+p2)(p3+v3)'+ 4'p[p ( 8+p1p2) p4' 2cv1(—p3+—2v3))}(p1+p2+2cv1) '(p3+cv3) ',
A33= (1/Ne)(p1p4')(p3+c») ' A14= —(1/Ne)p4Lp1(p1 —p2))(p1+p2+2c») '

A41———(1/2Ne)p4+8(p1 —p2)+p4')(p1+p2+2cv1) '(p3+cv3) ',
A 44 (1/Ne) {plp2(p4 +2cp1(p8+ v8)]+CV1 $(p1+p2) (p8+ v8) p4 )}(p1+p2+ 2cp1) (p8+ cp8)
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APPENDIX C: RELATIONS BETWEEN e COMPONENTS AND y

181

The following relations between the 0- components and the p are obtained by solving tT;;p, z
——5;& up to terms in 8'.

The relations are given here for completeness; aside from notational changes, they are the same as those given by
juretschke.

&11 (Pll ) y &88 (P33 ) | &23,1 P28, 1(P11 Pss ) 1 0'12, 3 —P12,3(P11 ) 1 Sll= All(pit )
&12= (Pll') '[A 12+ (P28, 1'/Pss )]1 sls= (Pll ) '[A 18+ (P128'/Pll')]1 &81= (Pss ) '[Asl+ (P281'/Pll')]1

&33= Ass(pss')
—') &14=A 14(Pll ) y S41 A41(Pll P38 ) ) S44 (Pll Pss ) [A44 (P12,8P23, 1/2P11 )].

APPENDIX D: APPROXIMATE RELATIONS

pll' 2/1t ep (11+2c v/lp ),1pss' 1/1Veps, pss 1 1/Xe(1+2cvl/pl), pls, s 4[ps/pl (cv /1—p)l']/Ne(1+2 cv/lp)l',

All ps/211Te(1+ 2cvl/pl), A 12 All+ small terms (ps+ 2psps/pl+Scvl'vs/pl')/2'(1+ 2cv1/pl),

A 13 2p2[(1+2cvl/pl)+ 2c(4+vl/p 2) (vl/pl)']/131'e(1+ 2cvl/p 1)', Asl cv /1Xe(1+ 2cvl/pl), Ass (pl/Ee) (p4/ps) ',
A 14

—p4/Xe(1+ 2cvl/pl), A 41 —p4/2Xe(1+ 2cvl/pl), A 44
—(2cvl/pl) (1+vs/ps) (ps+ vl/2)/Xe(1+ 2cvl/pl)'.
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Pressure and Vacancy-Flow Effects on the Kirkendall Shift in Silver-Gold Alloys~

R. O. MEYERt

Unsoerssfy o1' Arssona, Tucson, Arssona S57Z1

(Received 23 January 1969)

A series of eight Kirkendall runs plus several supporting measurements were made in silver-gold alloys
over the hydrostatic pressure range of 0—8 kbar. Reduction in the size of the Kirkendall shift was found to
be due mostly to the effect of pressure on self-diffusion rates, with only about gg~ of the reduction being due
to changes in the activity-coeKcient gradient. Agreement between the magnitude of the measured shift and
the predicted value was better than 2%, providing substantial evidence for the validity of the vacancy-Row
term in Manning s equation, which constitutes 28 j& of the total shift. Diffusion porosity was eliminated by
the application of pressure for all pressures 10 bar and greater. Evidence was found which indicates that the
activation volumes for silver and gold self-diffusion are equal within experimental error.

I. INTRODUCTION

~ XPERIMENTS on the effect of pressure on dif-
& fusion in solids usually measure a change in the

diffusion rate as pressure is increased. From such a
change in the self-diffusion coefficient, an activation
volume is calculated which is interpreted in terms of
relaxation of the crystal lattice under applied pressure.

For an alloy with a concentration gradient, the situa-
tion is more complicated than in a homogeneous ma-
terial. The activation volume alone is not adequate to
describe the effect of pressure because diffusion in the
presence of a concentration gradient depends on more
parameters than those of self-diffusion. In particular,
diffusion depends on the chemical activity of the solid
solution. Therefore, if the activation volume for self-
diffusion is known, a pressure experiment in a concen-
tration gradient will yield information regarding the
effect of pressure on the chemical activity of the alloy.

* Supported in part by the U. S. Atomic Energy Commission,
Report No. COO-1041-012, through Contract AT(11-1}-1041.

t Present Address: Argonne National Laboratory, Argonne,
I11. 60439.

An experiment was designed to measure the Kirken-
dall shift as a function of pressure at some convenient
fixed temperature. Such an experiment would allow us
to test Manning's vacancy-flow effect' and also measure
the effect of porosity on diffusion rates.

Manning considers the eGects of various diffusion-
driving forces, and for diffusion in a chemical concentra-
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