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The pseudopotential method is reformulated and directly generalized to transition metals. The Schrod-
inger equation, in the self-consistent field approximation, is transformed without approximation into a
transition-metal pseudopotential equation. The usual simple-metal pseudopotential appears in a modified
form, but is nevertheless weak. An additional term appears which plays a role akin to s-d hybridization.
Eigenstates and eigenvalues are then sought in a perturbation expansion in the pseudopotential and hy-
bridization terms. It is possible, as with simple-metal pseudopotentials, to sum over states to obtain both
the screening field and the total energy, though this summation is simple only when we neglect the partial
filling or partial emptying of & bands. This is appropriate for the noble metals, the alkaline earths, and
perhaps some transition metals between. For such cases there exists a pseudopotential form factor, just as
in the simple metals, and an energy—wave-number characteristic from which a two-body central-force
interaction may be derived. The form factor is evaluated for copper (using a semilocal approximation) ; it
yields a good estimate of the s-p gap at L and of the resistivity of liquid copper.

I. INTRODUCTION

HE essence of the pseudopotential method,! as
applied to simple metals, is the use of perturba-
tion theory in treating the effects of the periodic po-
tential. Rather than seeking the energy-band structure
per se, we may directly treat properties of the metal
such as electron scattering and may in fact sum the
energy of all states in the crystal to obtain the total
energy as a function of the configuration of the atoms.
In this application to the simple metals there are
three essential approximations. First, we make a self-
consistent field approximation, assuming the existence
of a one-electron Hamiltonian in terms of which the
eigenstates are calculable. Second, we divide the eigen-
states into core states and conduction-band states and
assume that the core eigenstates are the same in the
metal as in the free atom. This is equivalent to an as-
sumption of small cores and that approximation enters
at a number of points in the treatment. We then seek
the conduction-band states and make use of their
known orthogonality to the core states to transform
the Schrodinger equation to an exactly equivalent
pseudopotential equation. In this equation the true
wave function is replaced by a pseudo-wave-function
which must be orthogonalized to the core states in order
to obtain the true wave function. Finally, we assume
that the pseudo-wave-function is sufficiently smooth,
and correspondingly the pseudopotential is sufficiently
weak, that we may solve this equation in perturbation
theory going only to low orders.

Because of these assumptions the method is inappli-
cable to the transition metals, among which we include
the noble metals as the last members of the series. (For
similar reasons it may also be inaccurate for the neigh-
boring metals—for example, calcium below and zinc
above.) The failure, of course, arises from the d states.
They are not sufficiently tightly bound (nor sufficiently
localized) that we may validly treat them as the same

1W. A. Harrison, Pseudopotentials in the Theory of Metals
(W. A. Benjamin, Inc., New York, 1966).
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in the metal as in the free atom. At the same time they
retain enough of their atomic character that if they are
treated as conduction-band states, the pseudo-wave-
function is not smooth, the pseudopotential is very
large, and perturbation theory is inapplicable.

This has, of course, not prevented the calculation of
the energy bands themselves?? using methods which are
not based upon low-order perturbation theory. In ad-
dition, there have been approximate methods of treat-
ing the d-state resonance.* These have, however, been
directed at determining the energy spectrum itself and
have not allowed the direct calculation of properties
which the pseudopotential method has made possible
for the simple metals.

We seek here a more direct generalization of the
simple-metal pseudopotentials to the case of atomic d
states. This is achieved by reformulating the pseudo-
potential method as an expansion of the conduction-
band eigenstates in an overcomplete set made up of
plane waves and atomic core states; this is entirely equi-
valent to the more usual formulation. This form may be
directly generalized to the treatment of transition
metals by seeking an expansion of the conduction-band
states in an overcomplete set composed of plane waves,
atomic core states, and atomic d states. This point of
view is very close to that used by Deegan and Twose?
in extending the orthogonalized-plane-wave (OPW)
method to transition metals. In the use of the atomic
d-wave functions, however, we must note that they are
not eigenstates of the Hamiltonian of the metal. We
write the difference in potential in a free atom and the
potential in the neighborhood of an atom in the metal
(except for a constant term) as A, and this, as well as

2 Copper, for example, by B. Segall, Phys. Rev. 125, 109 (1962);
G. A. Burdick, 7bid. 129, 138 (1963).

3R. A. Deegan and W. D. Twose, Phys. Rev. 164, 993 (1967).

4 M. Saffren, The Fermi Surface, edited by W. A. Harrison
and M. B. Webb (Wiley-Interscience, Inc., New York, 1960);
L. Hodges and H. Ehrenreich, Phys. Letters 16, 203 (1965);
F. M. Mueller, Phys. Rev. 153, 659 (1967); V. Heine, zbid. 153
673 (1967); P. W. Anderson and W. McMillen, Estratto Rend.
Scuola Intern. Fis. (Enrico Fermi) 37, 50 (1967).
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the pseudopotential itself, becomes an expansion
parameter.

As in the pseudopotential method for simple metals,
we first derive a pseudopotential equation that is ex-
actly equivalent to the original Schrodinger equation.
We then seek the eigenstates and eigenvalues by per-
turbation theory. This enables us to sum the total
charge density and obtain a screening potential. It also
enables us to sum the total energy of the system, leading
to the structure-dependent energy in terms of an effec-
tive two-body central-force interaction.

Although the formulation itself is applicable to
metals with partially filled d bands, analysis is simple
only in cases in which the partial filling of any d bands
can be neglected. Thus, when we sum over states, we
will sum over entire d bands and partially filled s-p
bands. Our expressions will be directly applicable to
the noble metals and to the alkaline earths. (In the
latter, the d resonance is close to the Fermi energy but
above it.) It may also be applicable to some transition
metals in which the major portion of the Fermi surface
is free-electron-like with only small pockets of electrons
or holes in d bands.

The analysis itself is extremely intricate. We may see
the origin of this in terms of the transformations made
on the Hermitian Hamiltonian matrix which may be
constructed from the original Schrédinger equation.
In going to the simple-metal pseudopotential we change
from a basis set of plane waves by a nonunitary trans-
formation to the nonorthogonal set of orthogonalized
plane waves. The complexity of rigorous pseudopo-
tential theory, the non-Hermiticity of the pseudo-
Hamiltonian matrix, and the operator nature of the
pseudopotential all arise from this nonunitary transfor-
mation. However, the transformation may be thought
of as square, since there exists one orthogonalized plane
wave for each plane-wave basis state and one conduc-
tion-band eigenstate for each orthogonalized plane wave
In adding the atomic d states to the basis set, the trans-
formation is not even square, since we have increased
the number of basis states. This is the ultimate origin
of the complexity that will arise. We will find it neces-
sary to construct by perturbation theory states which in
zero order are linear combinations of atomic d states,
as well as states which in zero order are single ortho-
gonalized plane waves. It seems apparent now® that the
same essential results can be obtained more simply in
terms of a pseudo-Green’s function. That analysis is cur-
rently in progress. Nonetheless, it seems very desirable
to first carry through the direct perturbation-theoretic
approach which exposes in detail each step and each
approximation. Only then can we be certain of the
validity of the results. In particular, we can see the
precise nature of the treatment of A as a perturbation
parameter, and the nature of the divergence occurring
at resonance.

§ J. Moriarty (private communication).
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As in the pseudopotential method as applied to simple
metals, we can very simply state the only important
approximations at the beginning. We have made a self-
consistent field approximation and a small core approxi-
mation with respect to the core states. At some stages
we also treat the atomic d states as small; in particular,
we assume that the screening field does not vary greatly
over the diameter of an atomic d state. Finally, we
assume that the potential A defined above, as well as
the pseudopotential, is small enough to allow their treat-
ment in perturbation theory. In particular, we will see
that A% must be treated as of the same order as the
pseudopotential I¥. The rapid convergence of the OPW
method as used by Deegan and Twose? supports the
contention that this will be true.

Also, as in the case of the pseudopotential method
for simple metals, we will be able to define a pseudo-
potential form factor to be used directly in the calcula-
tion of electronic properties involving electrons at the
Fermi surface, and we will be able to define an energy—
wave-number characteristic in terms of which atomic
properties may be calculated. Thus, once these charac-
teristic curves are computed for a particular metal, we
may proceed with the treatment of properties in a very
simple and direct fashion equivalent to nearly-free-
electron theory.

In spite of the simple beginning and end points of the
formulation, the algebra itself is quite complicated. For
that reason, we will return in Sec. VIII to summarize
briefly the major steps and major results. We also give,
in Sec. VII, a cursory application of the method to
copper.

Aside from allowing the extension of the pseudo-
potential method to a wider range of metals, there may
be a second very useful feature. In transforming the
Schrodinger equation without approximation to the
transition-metal pseudopotential equation, we obtain a
form very close to a commonly used model for resonant
states. The pseudo-Hamiltonian contains a kinetic en-
ergy, a weak transition-metal pseudopotential, and a
term strongly reminiscent of a phenomenological hy-
bridization between free and localized states. In this
term, the operator A|d)(d| A plays the role of the square
of the hybridization parameter. However, because this
equation is obtained from the Schrédinger equation
without approximation, it provides a firmer foundation
for such theories and allows a first-principles calculation
of the parameters that enter the model.

Finally, the method that is used to treat the d states
appears to be directly generalizable (and becomes, in
fact, somewhat simpler) to filled bands in insulators,
semiconductors, and molecules. In essence, this ap-
proach begins with the method of linear combination
of atomic orbitals (LCAO) as a zero-order approxima-
tion and computes corrections by perturbation theory.
Hopefully, this will provide a reliable framework for
the discussion of bonding in these other systems. We
are currently exploring this possibility.



1038 WALTER A.

II. PSEUDOPOTENTIAL EQUATION

We begin by reformulating the pseudopotential of
simple metals in a form which is directly generalizable
to transition metals. In both cases we begin with a self-
consistent field approximation, assuming that there
exists a self-consistent potential ¥V (r) in terms of which
the eigenstates are obtainable;

(T+V)[¥)=E[Y). 1)

T is, of course, the kinetic-energy operator, and |[¢)
is the true electronic eigenstate (not the pseudo-wave-
function). In all metals there exist deep core eigenstates
|a) of Eq. (1) which are virtually unchanged when the
atoms are combined to form the metal. Each has an
eigenvalue £, which in the metal may be slightly
shifted from that in the atom, but the shift is rather
easily calculable. Our interest then is in computing the
valence states which are appreciably changed in the
formation of the metal. In doing this we take advantage
of the fact that valence-band states |¢) must be ortho-
gonal to the known core states. We make this ortho-
gonality explicit by writing the true wave function in
terms of a pseudo-wave-function |¢), that is,

[¥)=(1—2]e)al)¢).

Substituting this into Eq. (1), we obtain a differential
equation for |¢), which is called the pseudopotentia
equation, and which can be solved by perturbation
methods.

Up to the point at which perturbation theory is used,
there is no important approximation in the method.
Exact solution of the pseudopotential equation will give
exact eigenvalues of the initial problem. However, the
utility of the method derives from the fact that the
pseudopotential is weak and perturbation theory is
applicable. If we use this method for treating transition
metals, the utility is lost. The atomic d states of the
free atom are appreciably modified in going to the solid
and cannot, therefore, be regarded as core states but,
like the valence states in the simple metals, must be
computed from the pseudopotential equation. At the
same time, these d states retain much of their atomic
character and, in particular, are rather well localized.
Thus, an expansion of the d states in plane waves is very
slowly convergent and perturbation theory is quite
inadequate.

We will make an alternative formulation of the
pseudopotential method which is equivalent to that
given above for the simple metals, but which is directly
applicable to transition metals. We first restate the
pseudopotential method from a different point of view.
We again are seeking solutions of Eq. (1) and, in par-
ticular, a rapidly convergent expansion for the wave
function. An expansion of the wave function in terms
of plane waves alone is poorly convergent because of the
atomic like structure near the metallic cores. However,
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we may supplement our plane-wave expansion by in-
cluding also free-atom core states. We know, from the
rapid convergence of the OPW method, that such an
expansion can be rapidly converging. In the case of
transition metals we include also in our basis set the
atomic d functions. In contrast to the case of simple
metals, then, we are including in our basis set local func-
tions which are not eigenstates of the Hamiltonian. In
either case we are expanding in an overcomplete set
which need not entail any approxmation. We are now
writing the true wave function in the form

¢=§ ax| k)42 aala)+2 aald); @)
a d

the states |d) are, of course, atomic d states. Let us ex-

amine these states more carefully. They are eigenstates

of Eq. (1) with the true potential V in the metal re-

placed by the free-atom potential V<. Thus,

(T+Ve)|d)y=Es|d), 3)

where E;¢ is the atomic eigenvalue. We write the differ-
ence between the atomic potential and the true po-
tential in the neighborhood of the single ion as §V;
that is, in the neighborhood of one atom Veé=V+4-§V.
We see that operation upon a d state with the crystal
Hamiltonian yields

(T+V)|d)=Es|d)—sV|d). 4)

It will be more convenient to use as a parameter the
expectation value of the energy of an atomic d state
in the presence of the crystal Hamiltonian:

Eu={d|T+V|d)=E; —(d|sV|d). (5)
Equation (4) may be rewritten in the form
(T4V)|d)=Ea| d)—Al ), ©)
where A is given by
A|dy=38V|d)—(d|sV|ad)|d). 7

We note that the operation of the Hamiltonian on the
core states |a) could be formulated similarly, but in
assuming that the core states are unchanged in going
to the crystal, we explicitly take the corresponding A
equal to zero. This is entirely equivalent to the assump-
tion that 6V does not vary appreciably over the core
states |a).

We may now substitute our expansion [Eq. (2)]
into Eq. (1). Writing the result in terms of the pseudo-

wave-function,
lo)=2 ax|k),
k

and collecting all terms in the core and d states on the
left, we obtain

T o)+ V|e)+2 (Ea—E)aa|a)



181 TRANSITION-METAL
We may evaluate the a, immediately by operating on
the left side with a particular core state {a|, using the
Hermiticity of the Hamiltonian to write {a| T4V | o)
=E.{a| ¢). We further note that the atomic core states
are orthogonal to the atomic d states, and also that,
since 8V (and therefore A) does not vary appreciably
over the core state, (a|A|d)=0. We obtain immediately

)

Substituting this form in Eq. (8), the corresponding
terms become the usual repulsive term in the pseudo-
potential,

aa=—{(a| ¢).

§ (E—Ed)|a)al o).

We may similarly seek the coefficient a4 by multiplying
on the left side by a particular atomic d state (d|.
We note from Eq. (7) that (d|A|d)=0 and obtain

aa=—(d| o)+ (d|A| ¢)/ (Ea—E). (10)

We have obtained an additional term in the coefficient
arising from the fact that the state |d) is not an eigen-
state of the crystal Hamiltonian. Substituting Egs.
(9) and (10) back into Eq. (8), we obtain

T|o)+V | o)+ (E—Ed)|a)(a] ¢>+Xdl [(E—EJ)|a)
X{d| e)+|d)Xd| Al o)+A]d)d| ¢)]

Aldyd|ale)
d Ed—E

- Elg). (11)

We have of course noted that the atomic d states on
the same atom are orthogonal to each other and have
assumed, in addition, that atomic d states on neighbor-
ing atoms do not overlap each other appreciably.
This will ordinarily be true to a good approximation; if
it is not, we can of course modify 8§V in order to contract
the “atomic” d states so that they in fact do not overlap.
Deegan and Twose? explicitly truncated their d states.
That could be done here, but a small overlap is clearly
much less important in the perturbation calculation
that we perform than in a band calculation. There, be-
cause of the exact solution of the equations, small non-
orthogonalities can be greatly amplified in the results.
It is convenient then to define a transition-metal psendo-
potential by

Wle)=V]e)+>X(E—Ea)|a)al ¢>+§ [(E—EJ)|d)

X{d|e)t+|d)d|Al o)F+Ald)d] )] (12)
Then Eq. (11) becomes
Ald){d|A
T[¢)+W'|¢)—ZM=E[¢> , (13)
d Es—E

which is the new pseudopotential equation. The final
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terms on the left side are called the hybridizing terms
for reasons that will become clear shortly.

Just as in the case of simple metals, this pseudo-
potential equation has been derived without approxi-
mation. (With suitably constructed 8V, nonoverlapping
d states can be constructed.) Equation (13) will have
exactly the same eigenvalues (except for the deep core
states) as the initial Schrédinger equation.

It is interesting to note that we may multiply on the
left side by {¢| and write the result in the form

(Ec—E)(Ed—E)—§<¢[A|d>(dlAl¢>=0, (14)

where E,={o|T+W/|¢). E, will be free-electron-like
if W is small. Thus, if matrix elements of A are slowly
varying with ¢, we obtain the familiar hybridization
of a flat and a free-electron-like band as shown in Fig.
1. This is suggestive but very misleading. We may note
that the treatment is applicable to a single transition-
metal atom dissolved in a simple metal, in which case
it would be natural to introduce only d states on that
single atom. Nevertheless, an uncritical glance at Eq.
(14) would suggest that there are two solutions for each
wave number and the introduction of the single per-
turbing term has doubled the number of states. Clearly,
we must be very careful in using this exact equation
near resonance.

We should perhaps note in passing that pseudo-wave-
functions which satisfy Eq. (13) contained the same
arbitrariness that is present in the pseudopotential
equation for simple metals. We may, for example, add
any linear combination of core states and d states to a
pseudo-wave-function which satisfies Eq. (13). This will
modify the coefficients @, and a4 which enter Eq. (2)
but the corresponding pseudo-wave-function will re-
main a solution to Eq. (13). As in the pseudopotential
method for simple metals, this arbitrariness may be
eliminated either by modifying the form of the pseudo-
potential or simply by the use of perturbation theory

F1c. 1. Hybridization of a free electron and a
flat band suggested by Eq. (14).
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in the construction of the pseudo-wave-function. The
latter approach will be used here. It is interesting that
such an approach, used in simple metals, leads to a
pseudopotential that is equal, to lowest order, to the
optimized pseudopotential.

III. APPLICATION OF PERTURBATION
THEORY

There is no ambiguity in the use of the pseudopo-
tential equation (13) for states which are well removed
from the resonance. In these states the admixture of the
d state will be small; correspondingly, the third term
as well as the second in Eq. (13) will be small. Mathe-
matically, this follows from the large energy denomi-
nator Eq—E. To zero order in the pseudopotential and
hybridizing terms the solutions of Eq. (13) are plane
waves; to first order we obtain immediately a pseudo-
wave-function given by

[k+q)k+q|W[k) _  |k+q)
—Fra 3 Ex—Fipg
(k+q|Ald)d]Alk)
d Eqs—Ey ’

lo)=[k)+>

(15)

The Ey in the energy denominators could be taken
only to zero order; that is, %%k2/2m. However, it will be
convenient at later stages to include some first-order
terms with the zero-order energy, and write

Eyx=2k2/2m~+ (k| W | k). (16)
We will similarly use this first-order energy to define a
pseudopotential operator

W k) =V k)43 (Ex—E.) la><alk>+Zdj [(Ex—EJ)|d)

X @[k)+[d)d|Alk)+A[d)d[k)],

to be used in perturbation theory. This is the counter-
part of the optimized pseudopotential for simple metals.
Note that it is non-Hermitian in that the energy E is
based upon the right-hand plane wave in any matrix
element. We have exchanged the dependence upon the
energy of the state under study for a dependence upon
the right-hand state.

As for the pseudopotential in simple metals, the first-
order pseudo-wave-function states of different energy
are not orthogonal to each other. Mathematically, this
arises here from the non-Hermiticity of the pseudo-
potential. [With a different definition than Eq. (17)
it would arise from the energy dependence.] For any
state the energy entering the pseudopotential in the
first-order term depends upon the state in question,
and (k-+q|W|k)s (k| W|k+q)* when they enter first-
order states of different energy. However, the corre-
sponding true wave functions are orthogonal to first

amn
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order in W. In confirming this orthogonality we must,
as in the simple-metal pseudopotential, regard {d| ¢) as
of the same order as (¢|A| ¢), and as of half the order
of W. The true wave function may be obtained by com-
bining Egs. (2), (9), and (10). To first order in the
pseudopotential, and second order in A, the wave
function may be written

[k+aq)k+q| 7 [k)

Y= l)+3
q Ek—Ek+q
k+q)(k+q|A|d){d|Alk
_y Jrofctalalh@ay o
q.d (Ek_Ek+q>(Ed_Ek) “
dyd|alk
—%}]d)(dlkH—%L)i:I—ll- (18)

This is the form to be used in the screening calculation.
The orthogonality to first order of states of different
wave number may be verified using such expressions
and the form of W given in Eq. (17).

We also obtain the energy to second order in A:

(k[A]d){d]Alk)

E=Fy—
d Ed-‘-‘E
5 [ (k+q|[W =34 Ald){d|A/(Ea—Ex)]|k)|?
7 Ex—FEiiq '

(19)

Note that the energy entering W is Ex in all matrix
elements.

These expressions have been derived explicitly for
states which differ in energy significantly from the re-
sonant energy Eq. However, both in the calculation of
screening and in the evaluation of the total energy we
must sum all states and our expressions must be con-
tinued through the resonance. We will see that the
vanishing energy denominators do not cause a problem
but a direct summation over zero-order wave numbers
may be seen to be incomplete.

We consider the simple problem of a single scattering
resonance, which may also be solved exactly using
phase-shift techniques. To be specific, we consider a
spherically symmetric system with an /=2 resonance
and consider only states of a single component of angular
momentum #. Thus, only a single resonant level need
be considered. In this framework we may understand
the meaning of our results by noting that the true
wave function contains a term a4|d) as well as the free-
electron-like tail ¢ (and a linear combination of core
states). We then note, from Eq. (10), that as we follow
states, changing the energy through resonance, ag
changes sign. Alternatively, if we maintain the form
of the state at the resonant center by retaining the same
sign of the |d) term through resonance, we see that the
free-electron-like tail ¢ changes sign. In terms of phase



181 TRANSITION-METAL
shifts this corresponds of course to a = phase shift or
the introduction of an additional state. It is now very
clear what the perturbation theory has done. If we
imagine slowly turning on the perturbation, then at
energies below resonance the shift in each level is very
small and is properly computed by our perturbation
expansion. Above resonance each state is shifted in
energy very nearly to the unperturbed position of the
next lowest-lying unperturbed state. Our perturbation
expression gives correctly the very small difference in
energy between each perturbed level and the next
lowest unperturbed level. A single perturbed state in the
neighborhood of resonance has been left out if we simply
sum over unperturbed states. This is illustrated in Fig.
2. This fact is indicated also by the first-order finding
in Eq. (19) that states below resonance are lowered
while states above appear to be raised. Clearly an attrac-
tive center, which can give rise to resonance, will lower
the energy of each state.

Thus, in this problem, with the single scattering
resonance, if we sum the energies of the states over
unperturbed wave numbers, we may expect to include
correctly the energies of all states but one. We might
at first think that in a large system of N electrons the
omission of a single state would not be important.
However, this is not the case. The shift in each level
calculated by perturbation theory is of order A?/NEp
for a total change of order A?2/Ep. The introduction of
an additional state at the energy Eq empties a state
near the Fermi energy and therefore makes a contribu-
tion of the order of E4— Er and is not of higher order in
1/N. It is, in fact, of zero order and the corresponding
energy must be computed carefully. If we introduce
many resonant centers, we will introduce an equal num-
ber of additional states at resonance. In a pure transi-
tion metal, these will give rise to the d bands themselves.
Thus Eq. (19), even if extended through resonance, is
incomplete and we must seek the additional solutions.

It is appropriate to obtain these additional states by
returning to the exact equations, taking a term aq|d)
as of zero order and the coefficients ax of the admixed
plane waves as of first order in A. We may then show
that the resulting state is orthogonal to the conduction-
band states given in Eq. (18) (we will call these %
states to distinguish them) to first order in W (or second
order in A), demonstrating that it is, in fact, an addi-
tional state and not simply a recalculation of states
already included in the calculation.

We may readily see that if there exists more than one
transition-metal atom in the system, we must take as
our zero-order state an appropriate linear combination
of d states on each of the atoms. Thus, until otherwise
specified, the states |d) now refer to appropriate
normalized orthogonal linear combinations of atomic
d states on all of the atoms. Of course, for a perfect
crystal these linear combinations would be Bloch sums.
In a material with partially filled d bands we would find
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Eg

Eq— = < OMITTED STATE

UNPERTURBED PERTURBED

F16. 2. Schematic diagram of the unperturbed and perturbed
levels computed in perturbation theory when a resonance is
introduced. The quantization of unperturbed levels arises from
the crystal boundaries.

that some d-state energies would lie above resonance
and some would lie below, and in the calculation of
screening, for example, only those states occupied
should be included. However, in cases in which the
individual d bands are totally occupied or totally un-
occupied we will eventually sum over states and the
results may be written in terms of sums over single
atomic d states.

We return to Eq. (8), taking a single coefficient equal
to unity, and insert Eq. (9), which remains appropriate,
for aq:

T|o)+V| o)+ (E—E.)|a)a| ¢)

F(BamE—8)|d)=E| ). (20)
We immediately obtain an expression for the energy
by multiplying on the left side by (Z|. It may be written
E=E;—(d|Al o)+ (Ea—E)(d] o). (21)
Since the admixed plane waves represented by | ) are
of first order in A, we see that the second term on the
right side of Eq. (21) is of second order in A and the
third is of fourth order. It will be useful in the perturba-
tion calculation to note from this that E—E; is of
second order in A. We may also note that to obtain the
energy to fourth order in A we must obtain | ¢) to third
order in A.
We make explicit the expansion of | ¢) in plane waves
in Eq. (20) to obtain

h?k’?

> akf<
k! 2m

—E>[k’)+% eV |K)+Y aw(E—E)|a)

X{a|K)+(Ea—E—4)|d)=0. (22)

We mutliply on the left side by a particular plane wave
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(k| and obtain
he?
(E———)ak= —k|A|d)+2 ax
2m K’
X[V [K)+2(E—Ea){k|a){a|k)+(Es—E){k[d)].
(23)

All but the first term on the right side are of third
order in A, since ay- is of order A. Furthermore, E— %2k%/
2m can be replaced by Eq— Ex to lowest order to obtain

ax=— (k| A|d)/(Ea— Ex)+0(A%). (24)
Thus, to second order in A the eigenstate becomes

) (k| AId>>

Ed'— k

¢d=Ad<ld)—Zk (25)

where A4 is a normalization constant. This is the form
which will be used in the screening calculation.

We may immediately obtain the normalization con-
stant, and we will investigate the orthogonality of the
¥q at the same time. Using Eq. (25), we obtain im-
mediately

(@ |k)k|A|d)

Eqs—Ey
@[Alk)k|d) ~(@'|Alk)(k|Ald) )] (26)
Eo—E.  (Ba—E)(Ea—E)/ 1

Wa Ya)=Aa*A d[ad,d_;-z <_
k

We have used here the orthonormality of the |d). For
- the case d’=d we obtain the normalization constant

k k k k
Aa*Ad=<1—z< |ala)dlk) _ (k|d)d|A[k)
k Ed—Ek k Ed"'Ek
(k| Ald)d|A] KN
gy ) @

For the orthogonality of the ¥4 we require

5 ( @[kyk|ald) (@'[Alk)k|d)

k Ed—Ek Edr —Ek
(@]AlkE]Alg) )
(Ba—B)(Fa—Iy)

=0 (28)

for ds#d’. The linear combinations |d) which satisfy
this condition must be selected. This condition is satis-
fied by Bloch sums in a perfect crystal; then, for ex-
ample, the (k|d) are only nonzero for k having a reduced
vector equal to that of |d), and all terms vanish if |d)
and |d’) have different wave numbers. The orthogon-
ality of states based upon different angular momentum
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quantum numbers will guarantee the vanishing of all
terms when the wave numbers of |d) and |d’) are the
same. On the other hand, Eq. (28) would not be satis-
fied if we took the |d) to be single atomic d states. We
proceed assuming that appropriate linear combina-
tions have been taken. We will not need to know them
in the end, but we will need to make use of the con-
dition (28) in the evaluation of the energy.

It may also be readily verified that the state given
in Eq. (25) is orthogonal to the conduction-band states
Yx of Eq. (18) to order A2,

We return to Eq. (23) and seek an evaluation of ax to
order A3. To obtain a form which will be useful we must
make transformations such that the factor multiplying
ax becomes E4— Ey and such that the transition-metal
pseudopotential appears on the right side. We note first
from Eq. (21) that to second order in A

Ba—E2(d|Al¢) =% ax(d|AlK).  (29)

This equation is multiplied by ax, using Eq. (24) for
the ax on the right side and added to Eq. (23). Equation
(28) is also used to rewrite the final term in Eq. (23).
We obtain

h%k?
<Ed—-—>ak = —(k I A I d>+z [15°
2m k!

(@ IO+ E= B aali)
LT

d— Lk

+(k|d)d|AlK’)

The term in @ may be rewritten by replacing E by
Eg, valid to the order to which we calculate. Finally,
Ezmay be replaced by Ey/, since the difference is identi-
cally zero when ayx is taken to lowest order; that dif-
ference may be written

% aw (B —Eg)(k|a){a| k')
5 (K'|A|d)(Exw —Ea)(k|a)(a| k)
k’ Eq—Ey |

The energy differences may be cancelled, and since the
plane waves |k’) are a complete set, the two matrix
elements in k’ may be combined to give {(a|A|d), which
is equal to zero. By an almost identical argument we
may show that

Z’; aw (Ew —Eq) (k| d){d|K')

is equal to zero and may be added to the right-hand side
of Eq. (30). Finally, we must add and subtract a term

2l (k|Ald)(d]K)
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to the right side to complete in essence the matrix ele-
ment of W. However, the terms in |d){d| are not sum-
med over d. We write the unsummed form W(d). It is
is important to notice that in this matrix element
(k|W(d)|k’) the energy entering the pseudopotential is
Ey; the pseudopotential is non-Hermitian and selects
energies from the state appearing to the right side
[see Eq. (17)]. We obtain

(Ed—h;z:;—z>ak=—(k[A]d)

<k|Ald>(dlAlk’>>
Ei—Ey

—-:; aw(k|Ald)d|K). (31)

+§@<&nwwwv

=L Byt okl A1) |10/ = BT ~lal0y+E an (1110 -

For a third-order result the A? term in the energy de-
nominator may be dropped in the final terms but not
in the term (k|A|d). We may now evaluate Eq. (21)
for the energy to fourth order in A. The final term in
Eq. (21) may be written in a convenient form,

(Ea—E)d| o) =2 (@A )| K Yax
_5 @lalkyk|A|d)(@[K o
Es—Ey )

(34)

Kk’
The second term in Eq. (21),
—(@|A] ¢)=§—(dlAlk>ak,

can also be evaluated using Eq. (33). We see immedi-
ately that the contribution of the final sum in Eq. (33)
will give a contribution just cancelled by that in Eq.
(34).
We must also evaluate the term

@AIRCM)  _ (K|aldNa|alk)

k Ed'—Ek k. k’ Ed_Ek
Ey—Eqg k|d)d' |AlK
X@( - ’(k[d’)(d’]k')—}—(I ><_I ,l )
(k[A]d) @' |K) <klAld’><d’lAlk’)>- 35)
N Ed -—Ek' (Ed' "-“Ek) (Ed “‘Ek')

We may neglect the difference between Eq and Eg; in
most applications they will be taken equal, but differ
only in first order in any case. Then, the first term is
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We may now add and subtract the necessary sumover
d’#d so that W(d) is replaced by W and the hybridiza-
tion term is summed over d. The correction term to be
added and subtracted is

®aldy, oo
?E(““A'W )
O AT (B — Ea) (k| ) [
k /7 ) 7
K| Ald)d 1A|k>)’ o
Eqy—Ey

Cak)=— %

@' #d k!

where we have substituted for aw from Eq. (24).

It is now appropriate to take the diagonal terms,
k’=k in the first sum in Eq. (31), to the left-hand side;
they may be combined with 7#2k2/2m to obtain Ex.. We
solve for ay:

(k|ald"Xd'| Al k'))
a’ Ey—Ex

—{; aw(k ] A ] d)xd ] k') ——Cd(k)J . (33)

seen to vanish just as did the corresponding term in
Eq. (30). The contribution of the second and fourth
terms may be combined as

(K'[a]d)a’|Alk)
&=k Ey—Ey
k|d"{d|Alk k|Ald')d|A|k
><Z<<| Hd|Alk)  (k[A]d)d] I))
k E;—Ey (Ea—Ex)(Ea — Ex)
(k|a]d}d’ | Ak )K |A]d)d] k)

_ . (36)
@ #d; kK (Eq—Eyw)(Ey —Ey)

where in the last step we have used the orthogonality
relation (28). This term, with primed and unprimed
indices interchanged (and the difference between Eq4
and E# neglected), is equal and opposite to the remain-
ing term in Eq. (35). Since we will eventually sum over
d, this interchange will be allowed and we drop the
contribution of Eq. (35) at this point. The remaining
terms give the energy of the resonant state to fourth
order in A:

(klald)d|Alk)
E=Es+Y
k Eg—Ext2a(k|AldNd | A[K)(Ee — Ex) ™
(K'|A]d){@|Alk)
ki’ (Eq—Ey)(Eq—Ex)
(k[A[d’><d'|A|k’>) 37

d’ _Ek

x(<k|W1k’>—§
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We finally see that when this energy is summed over
d states, the result is unchanged by replacing the linear
combinations |d) by single atomic d states. The use of
proper linear combinations, and the orthogonality re-
lation (28), was necessary to obtain this form, which
depends upon the configuration of the atoms.

It may be apparent that when we sum over d states
and over conduction-band states, there will be a con-
siderable degree of cancellation. This will require some
rewriting of the expressions, and we will return to that
when we calculate the total energy.

IV. CALCULATION OF SCREENING

Up to this point we have taken the potential in the
crystal as known. One contribution to that potential is,
of course, the potentials due to the nuclei and the core
electrons which can be superimposed directly. In addi-
tion, we require the potential due to the valence band
and d states. In particular, we will need the oscillatory
part of that potential, the screening potential. We have
already found the corresponding wave functions to the
appropriate order; we now need to obtain the corre-
sponding electron density from which the potential is
directly calculable. Although the result will be moder-
ately simple, the algebra itself is quite complicated.

(k+QIWlk>_ (k+q|Ald)d|A|k)
Ex—Extq  (Ex—Eiyq)(Ea—Ex)

1q(K) =z<

+§<k1a><a1k><ale—iq-r1a>+%‘<d!e—f«-r|d>(<k|d><dlk>

— 2 (k+qla)a] k) =2 {k-+qld)d] )+
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We begin with the conduction-band state given in
Eq. (18) and evaluate

nq(k) = / O

to second order in A. The state has not been normalized,
but it may readily be seen that the normalization factor
is of second order in A and does not enter the first-order
screening distribution. We make a small-core approxi-
mation in assuming that (d|eit'*|a) is equal to zero.
This becomes true in the limit as q goes to zero by the
orthogonality of the d and core states. This will always
be a legitimate approximation for the wave numbers of
interest. On the other hand, we retain terms of the form
(d|e~ar|d) which approach 1 as g approaches zero and
are, in fact, just equal to the Fourier transform of the
charge density associated with the d state in question.
Finally, we note that there are terms of the form
(k—q|W|k)*/(Ex— Ex—y). In computing charge den-
sities we will add a contribution for a state —k for
every state k. Thus, we will obtain the correct density
by replacing such contributions by the corresponding
expression with k replaced by —k, in which case the
expression becomes (k+q|W|k)/(Ex— Fixiy). We ob-
tain

(k+qld){@]A] k))

E;—Ey
(k[Ald)d|k) (k|d)d|Alk) (kIAldXdlA]k))
a—Ey E;—Ey (Eq—Ex)? .(38)

Four of these terms together form exactly what is called the “orthogonalization hole,” based on the d states as

well as the core states:

1o () = —~2( - e )+ E ol ] )] 1)+ Tl e el oo+ Kotk d)(a | K e )

= —2o(k+qla)a|k) - ak+q|d)dlk). (39)

This is just the difference in charge density between that associated with plane waves orthogonalized to the core
and d states and the distribution from the plane waves themselves. The corresponding charge density is well
localized at the cores and will have a magnitude of the order of ¥ of the valence charge at each ion. The approxi-
mate form given in Eq. (39) is valid when q times the d-states radius is small. It is called the “small-core approxi-
mation” and will be sufficient for most purposes. We may always use the exact form of the orthogonalization
hole if we so choose.

We next turn to the charge density due to the d states as given in Eq. (25). Each state is multiplied by a normali-
zation factor which, as in the case of conduction-band states, is of the order A%, However, in this case we cannot
ignore that factor, since the zero-order density, the density arising from atomic d states, is not uniform. The cor-
rection factor need be used only on the zero-order distribution, since the change in the first-order distribution is of
second order. To second order in A the renormalized zero-order distribution becomes

(k| Ald){d|k)+(k[2){d| Al k) <kIAId><dlAlk>>]
Es—Ey (Ea—Ex)? ’

nqo<d>=<d;e—m,d>[1+§ ( (40)

terms in Eq. (38). However, in computing the d-state
charge density we sum over all k, whereas in Eq. (38)

It is interesting that the final three terms are of exactly
the same form but of opposite sign to the final three
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we sum only up to the Fermi energy. Thus, these terms
are cancelled by the corresponding terms in Eq. (38)
only for % less than the Fermi wave number. We will
find a similar cancellation in the other terms. The zero-
order term in Eq. (40), (d|eia'r|d), is just the charge
density due to an occupied atomic d state. We next find
the remaining first-order terms in the integral

/ Yate v Yad

from Eq. (25), taking 4,=1
k
iy JHAIDIAI
k Ed—Ek
(k-+q|Ald)(d]Alk)
K (Bs—B)(Ea—Eiso)

(41)

We have again made a change of the dummy variable
k to —k in order to combine two terms. In order to
clarify the cancellation with corresponding terms in the
conduction-electron density we must manipulate the
final summation in Eq. (41). .

We note that

L(Ea— Ex)(Ea— Exy ) J'=[(Ea—E) ' — (Ea—Eisg) 1]
X(Ex—Exiq)™. (42)

nqscr=2 Z W
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This is substituted into the final sum in Eq. (41), and
in the second term k is changedfto —k—gq. Thus,

(k+q|A[d){d|Alk)
k (Eg—Ex)(Ea—Extq)

k
g Seralaldalal

. (43)
k (Eg—Ex)(Ex—FExtq)

We have noted in obtaining this result that E_y= Ex
and, for example, (—k|A|d)=(d|A|k).

This completes the determination of the various terms
in the charge density. We now sum Eq. (38) over all k
less than the Fermi wave number %27 and sum 7,°(d)
+n4(d) over all d states. The resulting density con-
tains four distinguishable contributions. First is the
electron density #¢ of occupied atomic d states. Second
is the total orthogonalization hole #°™" which is of just
the same form as in simple metal theory but with the
d states counted as core states. Third is the usual screen-
ing contribution based upon the transition-metal
pseudopotential W. The remaining terms all contain an
explicit dependence upon A. They all cancel identically
for k<kp. We have, then, the total Fourier transform
of the electron density due to conduction and d electrons

nqznqd+nqort11+nqscr , (44_.)

with

+ 2 = [ wlewaf

k<kr Ey—Exyq k>kr d

At this stage we see, as we saw for the total energy, that
the results are unchanged by replacing the linear com-
binations |d) by single atomic states.

The calculation is reduced to one equivalent to that
in simple metals. The orthogonalization charge and A-
dependent terms may be evaluated directly and the
screening potential computed self-consistently.

We may note also that if we had used this method
to describe the effects of a resonance which lies above
the Fermi energy, the orthogonalization hole would
remain the same, the screening would remain of the
same form, the atomic d-state charge density would
not be added, and all of the remaining terms, explicitly
dependent on A, would be changed in sign and summed
over k<kp rather than k>Fkp. Also note that in the
approximation that the d state is the same in the crystal
as in the free atom, A goes to zero and the simple-metal
pseudopotential result is obtained.

If we are willing to make a small-core approximation,
as we suggested in the case of the orthogonalization

(l*ilAldXdlk)J <k|d><dlAlk>_<k|Ald>(dlAlk>>
Fa—Fx

Fi—E, (Ba—E)
! 2(k+q|Ald){d|Alk) 2(k+¢I|d>(dlA|k>] (45)
" (Ba—E) (Bx—FEra) EaBE J

hole, we neglect the difference between, for example,
(k+q|d) and (k|d), and take {(d|e¢~*¢'7|d) equal to
unity, to obtain

(k+q| 7 k)

nqscr: 2
k<kp Ek —Ek+q

<2<k+qlAld><dlAlk> <k|Ald><dlAlk>>

(Ea—Ex)(Ex—Ex1q) (Ea—Ex)?
(46)

Note that we cannot eliminate the final two terms using
Eq. (43), since the derivation of that result required a
sum over all k. We will see, in the application to copper,
that the screening field from the sum over 2>kr will
just cancel the hybridization term in the limit as ¢ — 0.
These terms are in essence the screening field for the
hybridization term in the Hamiltonian.
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We note that both Egs. (45) and (46) conspire to
avoid summations over the singular energy denomi-
nators Eq— Ey. If the d state lies below the Fermi energy
we sum only over states above the Fermi energy. If the
d states lie above, we sum only below.

We may take the Fourier transform of the ng%r to
obtain the screening density around a single center as a
function of . Clearly, the asymptotic form will show
the familiar Friedel oscillations of the form (cos2kgr)/
(krr)®, but with (k+q|W|k)—(k+q|A|d)d]|A|k)/
(Eq—Ex) replacing the wusual matrix element
(k+q|W|k). (Note that the change in sign in the
second term came from the sum over 2>k rather than
k<kp.)

V. TOTAL ENERGY

The calculation of the total energy is quite intricate,
although the results are moderately simple. We have
obtained the energies of individual states which must be
modified, much as in the screening calculation, to ob-
tain a convenient form.

We begin with the conduction-band energy given in
Eq. (19). In that equation, the energy E appears in one
energy denominator and must be inserted to order A?
(to obtain the energy to order A%); that is, we use the
first two terms in Eq. (19) for E in that denominator.
Equation (19) becomes

, Sklala)alalkpk|wik) &|Ald)ia|A k& WK+ A2 Ak |7 ]k)
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(Kl Ald)a|Alk)
E=F-Y
7 Ba=Fut Eak| A | AR/ (B —Ex)
k -4 ! —E)7k) |2
e S L
q Ek_"Ek+q

(47)

We must also rewrite the d-state energy using essenti-
ally the same transformation as in Eq. (43). We rewrite
the final term in Eq. (37) for the energy of a d state,
using Eq. (42) and dropping the difference between E,
and Eq4:

< W [Aald)d]alk)k|Ald)d | AK)

(Ea—Ew)(Ea— Ex)(Ea—Ex)

: k' |Ald)d|A|k)(k|A]dWd'|A|K

=—Z'Z< [Ald){d]Alk)k|Ald"){d'|AlK)
(Ex—Exw)(Eq—Ex)

kk’ d
1 1
x( - ) (48)
Ei—Ex Es—FEy

But the term in 1/(Eq— Eyx/) vanishes because of can-
cellation of terms with k and k' interchanged. (The sum-
mand is odd under this interchange.)

The other term summed over k and k’ in Eq. (37)
is similarly transformed, and k and k' interchanged in
the second term:

k.k' d

k., k’

(49)
(Ea—Ew)(Eq—Ex) kK’ (Ea—Ex)(Ex— Ex)
The first sum on the right side of Eq. (49) may be rewritten, noting that [see Eq. (17)]
kW K) =& | W [ky*+ (B — i) (Calk| )| k) +2Zalk | d)(d k') . (30)

We obtain for the energy, from Eq. (37),
(k|A[d)d|Alk)

1

’

E=Eqs+3 F2

k Ed—Ek+Zdl<k[Ald’><dllA|k>(Edl—Ek)“1 kx Ey—Ey

('[a]d)d|Alk)

X[(k’!AldXdlAlk)(k’lW|k>*+(k'| W k) (k| A fd>(d!Alk>>*
E;—E;

Ey—Fy \

— 2 k] e K)+2 (k)@ [K)

(k|afa)d’|Al k/>]
Eq4—Ex
(k'|ald)(d]Alk)

E;—Ey a’

(51)

d— Lok

The final sum may be contracted using the completeness of the |k’):

2 W) =2 (1 [k)k]).

(52)

Only the term |k)(k| in Eq. (52) contributes, since {a|A|d)=(d|A|d)=0. Thus, the final contribution in Eq.

(51) may be written

22k !a><alk>+§(kld’>(d’ k)

|
@Walalsm) )

d— Lk
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It seems likely that this term arises from a nonorthogonality of ¥« and ¥4 of third order in A and might be removed
in a different formulation. Equation (53) is of fourth order in A and will be independent of the configuration of ions.
It will be of little interest here; however, if it is correct, it should be included when the various electrostatic and
electronic terms are collected to obtain the total cohesive energy. Because the term is suspect and has a negligible
effect on our results, we drop it here.

We may now sum the remaining terms in Eq. (51) over all d states and sum the energy of the conduction-band
states given in Eq. (47) over all 2<kr. We see immediately that all first- and second-order terms in the sum over
Eq. (47), except the terms in W2, are cancelled by corresponding terms in the sum over Eq. (51). This is reminiscent
of the cancellation in the screening density. We divide the sum of eigenvalues in the usual way into a contribution
to the free-electron energy

(k|ald)d|Alk)
=2 EctXEst X . (54
k<kFr d E>kF Ed—Ek+Zdl<k l A l d/><d/ l A I k>/(Ed/ —-Ek) —1
To be consistent with the dropping of Eq. (53) we might drop the sum over d’ in the denominator to obtain this
structure-independent term valid to second order in A. We also obtain the contributions to the band-structure

Ebszzl

(k+q|A|d)(@|Alk)(k+q| W [k)*

energy
| k+q| W |k)|[?
[2 =2y (z
| k<kr k>kr \ @

Ex—Ex4q

Just as in the simple metals, all matrix elements may
be separated into a structure factor and a form factor,
and an energy—wave-number characteristic may be de-
fined. In these expressions, the states |d) may be taken
to be single atomic d states.

Asin the case of the screening calculation, it has been
possible to eliminate divergent summations across the
resonant energy. Again, the result becomes identical
to that in the simple metals if A is taken equal to zero.
Also, as in the treatment of screening, we may treat
the case of an unoccupied d band by eliminating the sum
over E4 changing the sign of the summations with
k>Fkp, and letting those sums run over k<kp.

This does not complete the calculation of the total
energy. We must subtract an energy equal to the elec-
tron-electron interaction, which has been counted twice
in this treatment, and we must add the Coulomb inter-
action between ions. This is a very intricate calculation,
just as it was in the case of simple metals. However, the
use of Egs. (54) and (55), rather than their simple-
metal counterparts, does not introduce any fundamen-
tal complication. I't seems clear that it will be convenient
(though not necessary) to again define an electrostatic
energy based upon an effective valence. This will not
include the nuclear charge corresponding to the atomic
d states, since these are compensated by occupied d
orbitals. Thus, it will be based upon a valence Z equal
to the number of conduction-band electrons per atom
but multiplied by a quantity like

1= 2 (k| e)(al k) — 2 (k|d)d[k).

E;—Fy

2\ 1 3
/Ek—Ek+q]' (59)

Cc.C.—

d Ed -—Ek

Tt will also be possible to construct an effective inter-
action between ions which will have an asymptotic form
containing Friedel oscillations just as in the simple
metals. In fact, it seems clear from Eq. (50) that the
only modification in the form of the tail will be the re-
replacement of the simple-metal matrix element

(k-+q|W|k) by
k>,

(el

the same replacement which arose in the screening
calculation. Again, all of these results reduce to those
for simple-metal pseudopotentials if A is taken equal
to zero.

A{d)(d]A
Eq—E,

VI. EVALUATION OF THE HYBRIDIZATION TERM

The difference in crystal and atomic potential 8V
enters the analysis in two distinct ways. First, it enters
the determination of E,; as (d|8V|d). Second, it enters
the hybridizing potential A. For determining Es we
may well wish to include the anisotropy of 8V which
gives crystal-field splitting, particularly in the treat-
ment of the perfect crystal. In the determination of A
we will ordinarily be content with a spherical average;
this will give results applicable to arbitrary arrange-
ments of atoms.

Tt is possible to obtain §V systematically in the frame-
work of the perturbation expansion, and that will be
done here. However, in future applications it may well
be desirable to obtain 8V to higher order, since the
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parameter E; and (k|A|d) are so important and may
be somewhat sensitive to the details of the potential.
A similar refinement was found desirable in obtaining
the shift in core energies in the simple metals due to the
orthogonalization hole.® Therefore, before obtaining
forms on the basis of perturbation expansion, we out-
line a more accurate approach.

We may write the electron density in the crystal as a
superposition of single pseudoatom densities pa(r—1;).
It may even be sufficient to take these as free-atom
densities. In that case, the change in potential comes
only from the neighboring atoms and probably nearest
neighbors are enough. We may then directly compute
the shifts in E; from the free-atom wave functions and
obtain, for cubic crystals, a splitting into twofold- and
threefold-degenerate states. In determining A, we may
wish to take a spherical average p(r) of the correspond-
ing density. If each atom has N, neighbors a distance
7o away, this density becomes

o(r) =%Nn/d0 sinf pa((#2+ro2—2rrq cosf)1/2). (56)

We may instead proceed more systematically, though
possibly less accurately, in terms of our expansion. For
this purpose it is convenient to begin with the free-ion
d state (e.g., Cut) and free-ion energy in place of the
free-atom state and energy Eq% Then the change in
potential in going to the metal is simply the potential
due to the other ions, to the conduction-electron density,
and to the change in d-electron density. However, A is
required only to lowest order (screening and ortho-
gonalization terms are of order W or A?). Thus, we need
the potential due to the other ions and due to zero-order
conduction electrons. If we seek a spherical average,
the ion charge density becomes a set of concentric
charged spheres giving a uniform, and therefore non-
contributing, potential. The potential due to the zero-
order electron density satisfies Poisson’s equation for
an electron density of Z/Qy, with Z the valence and Qo
the atomic volume:

— V25V (v)=4nZe*/Qo, (57
which may be immediately integrated for spherical
symmetry to obtain

sV (r)=aot+Zexr?2/2r3. (58)
Here 7, is the Wigner-Seitz cell radius, Qo=%m7.% and
for copper we take Z=1. Using this form, A may be
readily evaluated.

We note further that this form would have been ob-
tained had we simply made a Taylor expansion of
8V (r), kept terms to order 72, and required that 8V /dr

6 Reference 1, p. 275.
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=0 at the cell radius [note that in thisregion V= —Ze?/
738V (r)], also a plausible approach.

VII. APPLICATION TO COPPER

Wehere seek a determination only of the form factors;
we have not attempted a calculation of the energy-—
wave-number characteristic. In doing this, we will make
a number of approximations (in particular, a semilocal
approximation) which are, of course, not necessary, but
which considerably reduce the computations required.

All terms in the transition-metal psuedopotential and
in the hybridization terms may be written explicitly
as a sum over identical contributions from each of the
copper atoms present. This is, of course, always true
for the pseudopotential, and we note that the hybridi-
zation terms contain a sum over d which can be sepa-
rated into a sum over individual atoms and a sum over
d states on a particular atom. Thus each matrix element
may be factored into a structure factor,

Slg) =N~ L e
i

and a form factor evaluated for a single atom. In that
form factor the normalization volume entering the
normalized plane waves becomes the atomic volume Qo
rather than the crystal volume @=NQ,.

A is taken to be spherically symmetric about each
atom, and hybridization matrix elements, for example,
may be written in terms of the radial ¢ function in the
usual way7: ’

4
Zd (k+qlAld)(d[A[k)=55P2(C050)

x([ar m‘z<|k+q1r>APsd<r>)( [arrinar).

(59)

The factor 5 is 2/+1. The Py(cosb) is the /=2 Legendre
polynomial, and 6 is the angle between k and k-+q. The
72 are spherical Bessel functions. Here we evaluate
matrix elements for both initial and final states on the
Fermi surface, so both |k-+q| and & will be taken to be
the Fermi wave number k7. A is a spherically symmetric
potential which here will be determined by Eq. (58).
The P34 is the radial wave function for principal quan-
tum number 3 and angular momentum quantum num-
ber 2. Other matrix elements with one or both A’s
omitted may be obtained directly by making the ap-
propriate omissions in Eq. (59). Using Piper’s® atomic
d functions for Cu*, using Eq. (58), and taking kg

7 Reference 1, p. 276ff.
8 W. W. Piper, Phys. Rev. 123, 1281 (1961).
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=0.7198 a.u., we find

(@|6V|dye= / P32(r)8Vdr=0.0645 Ry,

477. 1/2
(E|6V|d)e= (§> / dr 7ja(kpr)8V Psa(r) =0.0640 Ry,

0

4\ 112
(k[d>35<3> /di’ 7ja(kFr)Psa(r) =0.1117. (60)

0.

These were obtained by hand computation and are of
limited accuracy. In addition, the use of Eq. (58) for
8V (r) could well lead to appreciable errors in the first
two values. The subscript s signifies that angular factors
are not included in these matrix elements but are cor-
rectly included through Eq. (59).

We first seek the matrix-element form factors for the
transition-metal pseudopotential of Eq. (17). A semi-
local approximation described in detail earlier? is to be
made. In essence, this neglects % dependence of the
pseudopotential by evaluating unscreened form factors
for initial and final states lying on the Fermi surface,
and then evaluating the screening as if these form fac-
tors applied to all electrons present; in doing this, we
use the second-order correction’® leading to proper be-
havior at long wavelengths. This calculation for copper
is, in fact, almost identical to that performed earlier,'
except for the addition of the two terms linear in A.
In addition, we have taken a value of Ex— E4 of 0.2 Ry,
a value estimated from energy-band -calculations,?
rather than a value estimated from the term values
which was appropriate when we treated the d states as
core states.!’ In a more complete analysis we could
estimate E; within the framework of our theory as we
have indicated earlier. Finally, we have used Kohn-
Sham exchange for the interaction between conduction
and core (including d) electrons rather than the Slater
exchange used earlier. This would certainly seem ap-
propriate, since we are specifically interested in the be-
havior of electrons at the Fermi energy and not elec-
trons deep within the Fermi sea. It makes a sizeable
difference, since the exchange potential with the d states
is quite large. The contribution (unscreened) to the back-
scattering form factor is about —0.2 for Kohn-Sham
exchange and —0.3 for Slater exchange. When impor-
tant results are this sensitive to the particular treat-
ment of exchange, the result from either method is
suspect. Because of this uncertainty and because of the
approximate treatment of A, the form factor that we
compute must be viewed with some reservation.

The resulting pseudopotential form factor is similar
to that obtained earlier and is shown in Fig. 3. Included
in ‘the potential is the electrostatic potential due to

? Reference 1, p. 282ff.
10 Reference 1, p. 286.
1W. A. Harrison, Phys. Rev. 131, 2433 (1963).
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F16. 3. Computed pseudopotential form factor for copper,
screened hybridization form factor for copper, and the sum of the
two. The total form factor enters the calculation of electronic
properties in the same way as does the simple-metal form factors.

occupied d states, the orthogonalization hole including
that due to orthogonalization to the d states, and the
ordinary screening field which arises from the first sum-
mation in Eq. (46). It does not include the screening
potential arising from the final terms in Eq. (46) since,
as we indicated there, these represent screening of the
hybridization term. Furthermore, it does not include
an additional screening potential which will be discussed
presently. Thus, the screening entering this pseudo-
potential, because of the semilocal approximation, con-
situtes a simple division of the unscreened form factor
by the Hartree dielectric function for a free-electron gas
with Fermi wave number equal to that of copper (ex-
cept, again, for the above-mentioned second-order cor-
rection which leads to appropriate behavior at ¢ — 0).

We next evaluate the hybridization matrix element
directly from Egs. (59) and (60), using again Ex—Eq
=0.2 Ry. Finally, we seek to evaluate the potential
arising from the final terms in Eq. (46). The evaluation
of these terms is somewhat complicated, but is simpli-
fied considerably by the use again of semilocal approxi-
mation; that is, we take (k-+q|A|d)(d| A| k) as depend-
ing only on ¢ and write for the next-to-last term in
Eq. (46)

2k+q|Ald)d|A[k) 42

¥Er (Ea—Ei) (Ex—Bupd) (2
*®  dk2mk? ™ d0 sinf

Xﬁ, kp2—0.2—/e2/; —q?—2kq cosf

Here we have taken Ex to be the free-electron value,
which is £% in rydbergs if the wave number is given in
atomic units. The corresponding approximation is made
for the final term in Eq. (46) and the resulting integrals

(k+ala|d)d|a]k)

(61)
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may be performed analytically. Angular integration in
Eq. (61) may also be performed analytically, but we
have not found an analytic form for the resulting
integration over k. That integral was performed nu-
merically for the values of ¢ (0, 0.5k, kF, 1.5k#, and
2kr) for which the form factors had been computed.
We obtain for the summation in Eq. (61) the result

2k-+q[A[d){d|Alk)
k>kr (Eq— Ey) (Ex— Eyyq)

Qp
= ekl (@3], ©2)

where the coefficients « is given by 2.69¢/% 5, 1.35, 2.78,
4.42, and 7.91 for the five values of ¢ given above. To
this we add the contribution of the final term in Eq.
(46).

From this charge density we obtain a potential by
directly using Poisson’s equations. This potential enters
as another contribution to the atomic potential and
must be included in the self-consistent calculation of
screening which enters the first term of Eq. (46). The
net result is to divide this contribution by the Hartree
dielectric function. This (contribution is in fact to be
divided by the Hartree dielectric function even if it is
computed accurately rather than in the semilocal ap-
proximation.) These terms, appropriately divided by
the dielectric function are added to the matrix elements
of the hybridization term to give the screened hybridiza-
tion form factors shown in Fig. 3. We note that the effect
of screening has been to cancel the hybridization term
at long wavelengths.

If we now seek to treat electronic properties associ-
ated with the electrons at the Fermi surface, we begin
with the pseudopotential equation (13). In zero order
the pseudo-wave-functions are plane waves, and the
transition-metal pseudopotential and hybridizing terms
enter directly as the perturbation. Thus, properties are
calculated exactly as in simple metals but with the
pseudopotential matrix elements replaced by the sum
of the transition-metal pseudopotential form factor and
the form factor for the screened hybridization term.
Thus, for the calculation of properties we use the total
form factor shown in Fig. 3. That form factor, for ex-
ample, gives directly the electron-phonon interaction in
copper; the matrix element for normal scattering by a
longitudinal phonon is simply the product of that form
factor and the amplitude of the local dilatation. Such
form factors enter directly the wide range of scattering
problems which have been calculated in simple metals
and determine the distortion of the Fermi surface.

The total form factor shown in Fig. 3 is quite reason-
able. It approaches —2Ey as q — 0. This is minus the
reciprocal of the density of states at the Fermi energy
(in the semilocal approximation) and is expected on
very general grounds. The result at large ¢ is also plaus-
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ible. We note that the band gap at L (the center of the
nearest zone face) obtained by Segall? is 0.4 Ry, cor-
responding to a form factor of 0.2 Ry. This is com-
parable to the back-scattering form factor of Fig. 3,
which is 0.17 Ry; the signs are also positive in both
cases. The two numbers are not quite measures of the
same physical quantity, since the wave number differe-
ence between two opposite faces is 109, larger than
2kr. However, in the alkali metals the back-scattering
form factors have generally agreed roughly with band
gaps at the nearest zone face.

We have also estimated the resistivity of liquid cop-
per using the form factors of Fig. 3 and the structure-
factor data of Wagner, Ochen, and Joshi'?; the calcula-
tion is quite simple.’® We have ignored the difference
in atomic volume of the liquid and the solid by using
our form factors for solid densities with the structure
factor at liquid densities. We obtain a value of 25 uf
cm, to be compared with the observed 21 uQ cm. The
exact extent of this agreement is not significant both
because of the failure to calculate form factors at the
liquid densities and because of the well-known sensi-
tivity of the calculation of liquid resistivities. However,
the comparison does lend support to the methods pro-
posed and to the form factors.

VIII. SUMMARY

Although the analysis has been rather complicated,
the general drift of the argument and the principal
results are rather clear. It may therefore be helpful to
outline the argument made in the preceding pages.

We began with a self-consistent field approximation,
assuming that there exists a potential V(r) in terms of
which the eigenstates are obtainable from the Schrod-
inger equation (1). The eigenstates of this equation in-
clude deep-lying core levels |a), which are essentially
the same as those of the free atom though the corre-
sponding eigenvalues are shifted. We are not specifi-
cially interested in these states but in the higher-lying
levels corresponding to conduction-band and d states.
We seek a solution for these states by expanding the
state [¢) in an overcomplete set including atomic core
states and atomic d states in addition to plane waves.
We substitute such an expansion in Eq. (1); we elimi-
nate the coefficients in the core states and d states and
obtain an equation for the remaining plane-wave terms.
These plane-wave terms are written collectively as the
pseudo-wave-function |¢), and the equation which
they satisfy is called the transition-metal pseudopo-
tential equation (13). In this equation W is the tran-
sition-metal pseudopotential given in Eq. (17). The term
quadratic in A is called the hybridizing term because of
its close formal similarity to hybridization terms fre-

12C. N. J. Wagner, H. Ochen, and M. L. Joshi, Z. Naturforsch.
204, 325 (1965).

13 Reference 1, pp. 134 (note that C in pQ cm/Ry? at.9, must be
multiplied by 100 to give a value in uQ cm/Ry?) and p. 153f.
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quently introduced phenomenologically. This term can,
of course, also be thought of in terms of a scattering
resonance with width A at the energy Eq, and this termi-
nology is convenient for describing it. A is defined in the
neighborhood of any atom as the potential in the free
atom minus the potential in the crystal (minus the
expectation value of that difference taken with respect
to the atomic d states). This potential enters because
the atomic d states, in contrast to the core states, are
not eigenstates of the crystal potential. The atomic d
states are, however, assumed to be nonoverlapping. If
this were not a good approximation, appropriately modi-
fied d states could be used. Eq is the expectation value of
the Hamiltonian in the crystal taken with respect to
atomic d states. E, is, of course, the expectation value
of the Hamiltonian in the crystal with respect to the
core states |a), and FEy is defined by Ei=#%k%/2m
+ (k| W k).

Equation (13) is exact except for the approximation
of nonoverlapping atomic d states; if it is solved exactly,
the eigenvalues obtained are equal to those of the
Schrédinger equation (1). [Strictly speaking, the Ey
must be replaced by E in the third term in Eq. (17)
for the pseudopotential to be exact.] The exact wave
function is obtainable directly from the corresponding
pseudo-wave-function. In that sense, Eq. (13), plays
precisely the role of the pseudopotential equation in
simple metals. In fact, if the parameter A is set equal to
zero, implying that the atomic d states are solutions of
the crystal Hamiltonian, then Eq. (13) becomes pre-
cisely the ordinary pseudopotential equation, and the
pseudopotential given in Eq. (17) becomes the optimi-
zed pseudopotential for simple metals with core d states.

Of course, the main point of developing a pseudo-
potential equation is to allow the use of perturbation
theory. Just as in the simple metals, it is appropriate
to regard W as a perturbation and, for states well re-
moved from resonance, the hybridizing term will also
be small.

In zero-order solutions of Eq. (13) are plane waves,
and perturbation theory proceeds in the usual pattern.
W is regarded as a first-order quantity, as is A%2. We can
see from Eq. (17) that we must then also regard quanti-
ties such as (d| k) as of the same order as A. We obtain
the pseudo-wave-function and then the true wave func-
tion to first order in W [Eq. (18)] and the energy to
second order [Eq. (19)].

In order to compute the screening potential, or the
total energy, we must sum over all occupied states, and
this requires the continuation of the results of perturba-
tion theory through resonance. In this continuation,
care must be taken because of the divergence of the
hybridizing term. Examination shows that in summing
over unperturbed states through this region, we omit
a single true eigenstate for every d resonance which
has been introduced. This is apparent both from the
form of the first-order wave function and from the form
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of the second-order energies. Thus, to complete a sum
over states, we must evaluate these omitted wave func-
tions and energies, again by perturbation theory.

To do this, we return to the Schrédinger equation
(1), with ¢ expanded in the same over-complete set,
and again eliminate the coefficients of the core wave
functions. We then, however, take as the unperturbed
state the appropriate linear combinations of atomic d
states and compute the admixture of plane waves by
perturbation theory. This calculation is considerably
more difficult than the calculation of states which in
zero order are plane waves. In that case, perturbing
terms were of order W or A? and ordinary second-order
perturbation theory sufficed. In the calculation of d-
like states, there are perturbing terms of order A, and
to obtain an energy to second order in W, we must
compute the wave function to third order in A. How-
ever, the analysis can be carried through and the re-
sulting states [Eq. (25)] and energy [Eq. (37)] written
in terms of matrix elements of A and of W. It is then
verified that all of these states, the plane-wave-like
states (which we call k states) and the d-like states, are
orthogonal to each other to first order in W, confirming
the assertion that these d-like states were omitted in
the first summation through resonance and that the
computed d-like states are not simply linear combina-
tions of states already considered.

We then proceed with the screening calculation, com-
puting the charge density in terms of the true wave
functions obtainable from the first-order pseudo-wave-
functions. Specifically, we compute the Fourier com-
ponents 7, of the electron density. At this point the
summation is only easily performed in the d-like states
which have been constructed lie entirely above or en-
tirely below the Fermi energy. This is the case, of course,
in the noble metal, where they lie entirely below, and the
alkaline earths, where they lie entirely above. In the
latter case, even though the d-like states are unoccupied,
we may expect significant improvement in the pseudo-
potential calculations by including atomic d states in
the expansion and thereby making appropriate modifi-
cations of the pseudopotential. This may also be appli-
cable in some transition metals where we may regard
the d bands as sufficiently well separated that some may
be said to be completely occupied and others completely
empty. With this summation over all d states, the re-
sults are unchanged by replacing the appropriate linear
combinations of atomic d states (for example, Bloch
sums for perfect crystals) by sums over individual
atomic d states. Then the sums over d state and % states
[Egs. (38)-(41)] both contain sums over wave vector
k as well as over atomic d states. They are slightly
different in form, however, and must be transformed
before they can be conveniently combined. In addition,
in the charge density due to k states the sums are of
course restricted to k<kp, while in the d states the
sums are over all wave numbers.
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When the proper combination has been made, the
charge density may be divided into three distinct terms
[Eq. (44)]. First is the charge density which would be
calculated from occupied atomic d states. Second is
exactly the orthogonalization hole which is computed
in simple-metal theory but here including orthogonali-
zation to d states as well as to core states. Third is a
term which we call the screening term [Eq. (45)7], which
takes a more perspicuous form when written in a small-
core approximation [Eq. (46)]. The leading term is
linear in W and is of precisely the form obtained in
simple-metal theory, though W is, of course, the tran-
sition-metal pseudopotential. There are two additional
terms proportional to A? which we think of as the screen-
ing of the hybridization terms.

In obtaining the screening density self-consistently
from Eq. (46), we note that the final terms lead to a
charge density which enters IW. However, they lead to
a simple local potential; including them in W in this
self-consistent calculation simply screens them with
the Hartree dielectric function. It is convenient con-
ceptually and mathematically to compute the screening
of W as if there were no screening of the hybridization
term and to define the screening of the hybridization
terms as the final terms in Eq. (46) divided by the
Hartree dielectric function. In the subsequent applica-
tion to copper, we see that these terms just cancel the
hybridization term at long wavelengths. This result,
however, seems to depend on the semilocal approxima-
tion used there. (We may also note that the density of
states, which is directly related to the ¢=0 form factor,
is $E only in the semilocal approximation.)

We note that the final summations determining the
screening field avoid the divergence at resonance; the
sum over the hybridizing terms is for 2> %p. In treating
a case in which the d states lie above the Fermi energy,
and are therefore unoccupied, the sign of this screening
term is changed, and it is summed over £ <kp.

It is clear from Eq. (46) that the screening density
will show the familiar Friedel oscillations in real space
as it does in the simple metals, but with the matrix
element (k+q|W|k) which enters the simple metals
replaced by  (k+q|W|k)—(k+q|A[d)d[A]k)/
(Ea— Ex).

We finally proceed to the calculation of the total
energy. This calculation is formally quite similar to
the calculation of the screening field. Transformations
required to obtain a reasonably simple form are some-
what more complicated. We obtain, finally, a total
energy which is immediately divided into three con-
tributions. First is a contribution to the free-electron
energy which is independent of the configuration of the
atoms, and is given in Eq. (54). The result is quite
plausible; it contains a sum of Eyx and E; over occupied
states and a contribution from the hybridizing term.
These contributions to the d states and the % states
cancel for 2<%kp, and therefore only appear for 2> k.
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We then obtain contributions to the band-structure
energy, given in Eq. (55). We obtain a term in W2 which
is of the same form as in the simple metals plus addi-
tional terms in A. Altogether, this is just what would be
obtained from the formula for simple metals by replac-
ing (k+q|W|k) in the first term by (k+q|W|k)
—(k+q|A|d){d|A|k)/(Es— Ex), but with all contribu-
tions from the hybridizing term being summed only
over k>kp.

Again by setting A=0, the results reduce to those for
simple metals. Again, if we treat a case in which the d
states are unoccupied, the sign of the hybridization
terms is changed and the sum is made over k<kp.
As in the case of screening, the regions of summation
conspire to avoid the resonant energies.

It is clear from the form of the contribution of the
band-structure energy that Friedel oscillations in the
effective interaction between ions will arise and will
differ from those in the simple metals by the same in-
clusion of hybridization terms with the pseudopotential
which occurred in the screening calculation.

We then discuss the calculation of the hybridizing
potential A. In perfect crystals, we may wish to use an
anisotropic form to provide crystal-field splitting of the
atomic d states and then to treat the different ¢ bands
separately. For more general applications to deformed
or disordered structures it will be more appropriate to
take a spherical average of A. We take the latter ap-
proach in the treatment of copper and propose a simple
approximate form which is used in that analysis.

The treatment of copper itself is somewhat approxi-
mate; a semilocal approximation is made both for the
treatment of the pseudopotential and for the treatment
of the hybridization terms, and form factors are com-
puted only for coupling between two states lying on the
Fermi sphere.

The calculation follows closely an earlier attempt!!
to treat copper as a simple metal and the d states as
core states. In fact, it was possible to use many of the
parameters evaluated then. However, we replaced the
Slater free-electron exchange by Kohn-Sham exchange,
which now seems clearly preferable when we wish to
focus our attention specifically on electrons at the Fermi
surface. This made a sizeable shift in the form factors
and for that reason casts some doubt on the values ob-
tained. We also chose a value of 0.2 Ry for the energy
Ex— Eg4, which was estimated from energy-band calcu-
lations. Otherwise, all numbers were calculated en-
tirely from the equations derived here.

The resulting pseudopotential form factor, screened
hybridization terms, and total form factor are shown
in Fig. 3.

The total form factor is to be used directly in the
calculation of electronic properties in exactly the same
fashion that the pseudopotential form factor is in simple
metals. It gives directly, for example, the electron-
phonon interaction for normal scattering of longitudinal
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phonons. We note further that the back-scattering form
factor does not appear inconsistent with the large band
gap at L found in energy-band calculations for copper.
Finally, it is noted that its use in a calculation of the
resistivity of liquid copper gives a reasonable result. It
is recognized, however, that this calculation of form
factors was rather crude.

A reformulation of this method in terms of a pseudo-
Green’s function is in progress and appears to allow
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for rather simpler derivations. In addition, more careful
estimates of the pseudopotential form factor and
hybridization term are in progress and will be extended
to include the total energy.
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The reflection of electromagnetic waves impinging normally on the rough surface of a simple metal is
theoretically investigated for frequencies small enough so that band effects are minimal. This is done by
first examining the effects of the metallic surfaces on the single-particle states. The “effective roughness”
for the single-particle states depends on their frequency, wave vector, and mean free path. It is found that
the derivation of the reflectivity from the specular limit depends on an rms surface roughness depth when
the characteristic roughness wavelength is smaller than the electron mean free path. If the surface is suffi-
ciently rough on a longer-wavelength scale, it is found that the reflectivity can be smaller than that pre-
dicted by assuming that all electrons are diffusely reflected at the surface.

I. INTRODUCTION

N discussing the electrical-transport properties of
metals, the surface is usually described by a model
in which it is assumed that a fraction p of the electrons
are specularly reflected. The remaining fraction 1—p
are diffusely scattered at the surface.'® The quantity p
is usually treated as an adjustable parameter, but
theories for it do exist.* Experiments show that p is
nearly zero under most circumstances but that it can
be nearly 1 under favorable conditions.®
Although the above model appears to describe most
reflectivity measurements adequately, we wish to
describe the effects of the surface on the single-particle
Green’s function for a simple metal in terms of rough-
ness parameters obtained from a microscopic theory.
This Green’s function is then used to calculate the
normal incidence reflectivity of the metal at frequencies
below which band effects are important. Besides being
a more fundamental description, these parameters can
also be used to calculate other effects such as the
coupling of photons to the surface plasmon.®

1G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
ELomion) A195, 336 (1948); E. H. Sondheimer, ibid. A224, 260
1954).
( ;SR) B. Dingle, Physica 19, 311 (1953); Appl. Sci. Res. B3, 69
1953).

3 A. B. Pippard, Proc. Roy. Soc. (London) A191, 370 (1947);
A191, 385 (1947); A224, 273 (1954).

4 R. F. Greene, Phys. Rev. 141, 687 (1966).

8 H. E. Bennett, J. M. Bennett, E. J. Ashley, and R. J. Motyka,
Phys. Rev. 165, 755 (1968), and references therein.

8 P. A. Fedders, Phys. Rev. 165, 580 (1968).

The rest of this section will be devoted to an explana-
tion of the method used. An equation for the single-
particle Green’s function will be obtained and solved in
Sec. IT. In Sec. ITI the normal incidence reflectivity of a
simple metal will be calculated and discussed in the
Drude limit. The Appendix contains some of the cal-
culational details. The reader who is not acquainted
with the Green’s-function techniques should be able to
partially follow the paper by thinking of G as a quantity
that describes the propagation of electrons in the metal.

Consider a free Fermi gas confined to the slab
0<2<d by infinitely high potential barriers and with
periodic boundary conditions on a square of side L in
the x-y plane.” This system, with perfectly reflecting
surfaces, has single-particle wave functions and energies
(as measured from the Fermi surface) given by

o(r)=(2/Q)12¢ir» sinks,

1

@)= @/2m)—u= @+E—g)2m,
where u is the chemical potential or Fermi energy and gy
is the Fermi momentum. Cylindrical coordinates
r={(p,2) and units where #=1 are used throughout the
paper. Wave numbers in the x-y plane, whose compon-
ents take on integral multiples of 27/L, are denoted by
p, while those in the z direction are denoted by &, where
k is restricted to integral multiples of w/d. Throughout
the paper, q will denote the pair (p,k).

7P. A. Fedders, Phys. Rev. 153, 438 (1967),



