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Two series of self-consistent energy-band calculations in lithium by the augmented-plane-wave (APW)
method are reported. The first used the exchange approximation proposed by Slater; the second used
two-thirds of this quantity, as proposed by Gaspar, Kohn, and Sham. In each series, the lattice constant
was varied, and the total energy was found as a function of this parameter. From this, the equilibrium
lattice constant, the cohesive energy, and the compressibility were found. These quantities differ markedly
for the two exchange approximations used, and roughly bracket the experimental values. A virial theorem
is derived which is valid for Hartree-Fock-Slater calculations in solids, and it is shown that the numerical

results in fact satisfy the virial expression.

I. ENERGY-BAND CALCULATION

HE augmented plane wave (APW) method! has

been used for self-consistent energy-band calcu-
lations in body-centered-cubic (bcc) lithium. One-
electron states were found at five points in the first
Brillouin zone. At the end of each iteration, the resulting
charge density was used to find a new potential, and the
process was repeated until there was no significant
change in the potential from one iteration to the next.
Only the “muffin-tin” parts of these functions were
considered, that is, those parts which are spherically
symmetric inside the APW sphere about each atomic
site, and constant in the plane-wave region outside the
spheres. The lattice constant was varied over 10 values,
ranging from ¢=35.47 to 8.84 a.u. (from about 0.83 to
1.34 times the experimental value), and also to a=17.83
and ¢=72.44. (2.7 and 11.0 times the experimental
value). For all practical purposes, a=72.44 is equivalent
to an infinite separation, or isolated atoms, and has been
used numerically in place of a= . At each of these 12
lattice constants, calculations were done using the
average free-electron-exchange approximation proposed
by Slater? (fp=1) and also using two-thirds of this
quantity, as proposed by Gaspar® and by Kohn and
Sham* (fp=%). fp is that factor in the one-electron
Schrodinger’s equation which multiplies Slater’s ex-
change, as discussed in the Appendix.

For the self-consistent potentials found at every third
lattice constant, a number of excited states were calcu-
lated. The resulting one-electron energies are shown in
Fig. 1. This figure is a schematic, since there is a break
in the scale between a=28.84 and ¢=17.83. No points
were calculated in this region, and the lines drawn are
merely smooth extensions of the curves drawn on the
left. For core and conduction states, the curves pass

* Based in part on a thesis submitted in partial fulfillment of the
requirements for a Ph.D. degree from the Department of Physics
at the Massachusetts Institute of Technology. Further details are
given in an expanded version of this paper, IBM Research Report
No. RJ 539 (unpublished), available from the author.
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through 10 calculated points between @¢=35.47 and
a=8.84. For the excited states, however, the points were
calculated only at a=35.47, 6.60 (the experimental
value), 7.72, and 8.84, so that these curves, as well, can
only be taken to be schematic at points in between.

The energies plotted have been shifted so that the
average of the energies of the occupied conduction states
is always zero. The change in this shift, going from
a=5.47 to a="72.44, is about 0.6 Ry. The slope in the
graphs would have been steeper, if the shifts had not
been made.
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F16. 1. One-electron energies in lithium versus lattice constant
for two exchange potential [approximations (schematic).
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F16. 2. Morse curve parameters for fitting total energy as
a function of lattice constant in lithium.

It is instructive to note how the energy bands in the
crystal go into the atomic energy levels. The 2s level in
the atom, is, because of the energy shift introduced, at
zero energy. The separation between the 2s and 2p
levels in the atom has not been calculated, but the
experimental value of about 0.136 Ry is consistent with
the labels on Fig. 1. The figure shows that the s-like
states T'1, Ay, V1, P1, and H; all go into the 2s atomic
level, while the p«hke states F15, A1, A5, ]Vl/, N3/, N4/, P4,
and His go into the 2p atomic level. The d-like state
H 12 has not been followed into the atom, but presumably
goes into the atomic 3d level.

A spherical Fermi surface was assumed throughout
this set of calculations. To test the validity of this
assumption, the surfaces were found for some of the
potentials. For a=5.47, the maximum deviation from
sphericity was found to be 4.749, for fg=1, and 5.849,
at fp=%. For a=38.84, the deviations were 0.339, for
fe=1, and 0.57%, for fp=3%. It was found that the error
in limiting the sum over the first Brillouin zone to five
points is greater than the error introduced by assuming
a spherical Fermi surface.

TasLe I. Comparison of equilibrium lattice constant ao, com-
pressibility K, and cohesive energy D for two calculations (fp=%
and fp=1, both with fg/fp=1%) with experimental results.

ao K D
(a.u.) (a.u3/Ry) (Ry/unit cell)
=% 7.11 1343 0.084
Expt. 6.60 1200 0.12
fa=1 6.09 577 0.15

WILLIAM E. RUDGE

181

It is noted that at some point between ¢=8.84 and
a=17.83, the states N1 and N’ will become degenerate,
and then reverse their relative positions. The Fermi
surface probably becomes more and more spherical,
until this point is reached.

II. MORSE CURVE FIT OF TOTAL ENERGY
VERSUS LATTICE CONSTANT:
COMPRESSIBILITY AND
COHESIVE ENERGY

The total energy of the crystal was found at each
lattice constant, for fg=1 and fp=%, and for a range of
fE from 0.75 to 1.75, using expression (1) in the Ap-
pendix. fg is an arbitrary factor multiplying Slater’s
exchange in the expression for the total energy. In order
to analyze the results, it is convenient to fit each of these
curves, E versus @, with a curve with the form of the
Morse potential

E(a) = EA—DI:Z@—I?(G—EO) — e——2b(a—au)] ,

where b=2(ao/DK)'2. This curve was originally used
by Morse to approximate interatomic potentials, but as
seen below, it also serves well in the present application.
Es=E(a= =») is the total energy of an isolated atom,
D=E(a=»)—F(as) is the cohesive energy of the
crystal per unit cell, ¢o is the equilibrium lattice con-
stant, so that

dE

da | 4o

The bulk modulus of a solid is defined to be B
=—Vdp/dV, where V is the volume of the solid, and p
is the pressure on it. Since entropy is constant at ab-
solute zero, it is possible to write p=—dU/dV, where
U=NE is the total energy of a crystal with V atoms.
The volume, for a bcc crystal, is V=3Na®. Then, at
equilibrium, it is found that K is the reciprocal of the
bulk modulus, and hence is the compressibility.

The three parameters describing the Morse curve are
then the equilibrium lattice constant @, the compressi-
bility K, and the cohesive energy D. Taking the fourth
parameter E4 to be fixed at the calculated value for an
isolated atom, the first three parameters were found by
finding a least-squares fit of the Morse curve to the 12
calculated points. The values so found are shown
graphically in Fig. 2. The variational principle for total
energy is satisfied only for fg/fp=3%, as indicated by a
vertical dashed line. The results for that case are shown
in Table I, along with the experimental results. Each
experimental value lies between the two calculated
values. On these strictly empirical grounds, it is sug-
gested that 2< fg<1 would be a better choice for the
exchange potential. The Morse curves using these
parameters have been plotted in Fig. 3. The calculated
points fall on the curve, to the scale drawn. An enlarged
detail of the minimum for each case, with the energy

=0.
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scale multiplied by ten, has been included to show the
calculated points. The dashed line through each calcu-
lated point is the computed tangent to the curve at that
point, using the result of the virial theorem for dE/da.
The figure shows that the virial theorem is very well
satisfied for fg/fp=%. If this ratio is changed to
fr/fe=1.45 or 1.55, the slope predicted by the virial
theorem (which of course is no longer applicable) is
incorrect by a factor of 2 or more, showing that the
theorem depends critically on the correctness of the
ratio fg/fz.

All four of the Morse curve parameters (ao, K, D,
and E,4) can be chosen by the least-squares procedure,
but when this is done, the rms error is reduced only by
a small amount, and the resulting parameters are not
significantly different from the ones given above.

APPENDIX

The total energy of a crystal may be written in terms
of a spin-independent Hamiltonian for the system and
a determinantal wave function, made up of one electron
functions #;(r). If this is done, a troublesome exchange
integral appears. This may be replaced by a factor fz,
as yet undetermined, multiplied by the average ex-
change integral for a free-electron gas with the same
local charge density. If the variational method is applied
to minimize this energy, the result is known as the
Hartree-Fock-Slater equations.

The total energy may then be written as

E = Vnn‘*-‘z /dsrlui* (1'1) [ - V7-12+ Vne (rl)
F5Vee(r)+5feVex(r) Jui(ry), (1)

where V,, is the nuclear-nuclear interaction, V,.(r) and
Vee(r) are the nuclear-electron and electron-electron
Coulomb potentials, p(r) is the total electron density,
and the average free-electron exchange is

Vex(r))=—3[(3/m)p(r:) J'/3.

In the same terms, the Hartree-Fock-Slater equations
can be written

l:_ Vr12+ Vne (rl)"— Veeo (l‘1)+ fBVexo (rl)]u/i(rl)
=eui(r), (2)

where fp=2fg if the variational principle is satisfied.
At this point, however, it is convenient to leave fa
unspecified. The self-consistent solution of this set of
equations is to be found by an iterative procedure, for
instance, by using the APW method. The superscript 0
on the potentials indicates that these are derived from
the charge density of the previous iteration. The
explicit kinetic energy operator V,2 may be eliminated

APW ENERGY BAND CALCULATION FOR Li
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Fic. 3. Total energy versus lattice constant near minimum of
curve, showing calculated points and slopes (dashed lines) pre-
dicted by the virial theorem, and Morse curve fit. Note that
vertical scale is magnified 10 times in insert to show detail.

from (1) by using (2), which in turn can be used to find
a practical expression to calculate the total energy per
unit cell, E/N.

The Virial theorem has been discussed by Slater® in
the context of the Born-Oppenheimer and Hartree-Fock
approximations. From Slater’s more general result, the
form of the virial theorem

0E/da=— (1/a)[2(KE)ay+ (PE)ay]
=— (l/d)[E+ (KE)BV] (3)

follows quite simply. Further, it can be shown from (1)
and (2) that this same expression for dE/da holds in
the Hartree-Fock-Slater approximation, provided that
fe/f=3%.

The conclusions of this Appendix can be generalized
without difficulty to include also the more general ex-
change potential proposed by Lindgren.® In that case a
third factor arises, weighting the contribution of the
exchange to the average potential energy in (3) in a way
depending simply on Lindgren’s parameters. The ratio
fr/fB is in general then not equal to § to satisfy the
variational principle.

5 J. C. Slater, Quanium Theory of Molecules and Solids (McGraw-

Hill Book Co., New York, 1963), Vol. 1.
¢ I. Lindgren, Arkiv Fysik 31(4), 59 (1966).



