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It is noted that at some point between a=8.84 and
a= 17.83, the states Xj and S~' will become degenerate,
and then reverse their relative positions. The Fermi
surface probably becomes more and more spherical,
until this point is reached.

II. MORSE CURVE FIT OF TOTAL ENERGY
VERSUS LATTICE CONSTANT:

COMPRESSIBILITY AND
COHESIVE ENERGY

The total energy of the crystal was found at each
lattice constant, for fn 1and——fn ——ss, and for a range of
fs from 0.75 to 1.75, using expression (1) in the Ap-
pendix. fz is an arbitrary factor multiplying Slater s
exchange in the expression for the total energy. In order
to analyze the results, it is convenient to fit each of these
curves, E versus u, with a curve with the form of the
Morse potential

.05— fe=2

.oo
.75 1.00 l.25

I

I
I

I

I

l. 50 1.75

I io. 2. Morse curve parameters for fitting total energy as
a function of lattice. constant in lithium.

TABLE I. Comparison of equilibrium lattice constant ao, com-
pressibility E, and cohesive energy D for two calculations (fs= —,

'
and f~——1, both with f~/f~=-,') with experimental results.

(a.u.)

7.11
6.60
6.09

E
(a.u.'/Ry)

1343
1200
577

D
(Ry/unit cell)

0.084
0.12
0.15

It is instructive to note how the energy bands in the
crystal go into the atomic energy levels. The 2s level in
the atom, is, because of the energy shift introduced, at
zero energy. The separation between the 2s and 2p
levels in the atom has not been calculated, but the
experimental value of about 0.136 Ry is consistent with
the labels on Fig. 1. The figure shows that the s-like
states I'i, 5i, Ei, I'~, and IIi all go into the 2s atomic
level, while the p-like states Fts, Ai, As, Xi', E3 Ã4 I'4,
and His go into the 2p atomic level. The d-like state
II» has not been followed into the atom, but presumably
goes into the atomic 3d level.

A spherical Fermi surface was assumed throughout
this set of calculations. To test the validity of this
assumption, the surfaces were found for some of the
potentials. For a=5.47, the maximum deviation from
sphericity was found to be 4.74% for fn 1, and 5.84jz-—
at fn ——s. For a=8.84, the deviations were 0.33% for

fn 1, and 0.57%%u~
——for fn ———', . it was found that the error

in limiting the sum over the first Srillouin zone to Ave

points is greater than the error introduced by assuming
a spherical Fermi surface.

E(&) E Dp& s(a a—o) —
&
—ss(a—ap)j

where b= —,'(as/DE)'". This curve was originally used

by Morse to approximate interatomic potentials, but as
seen below, it also serves well in the present application.
E~=E(a= Do) is the total energy of an isolated atom,
D=E(a= ~)—E(as) is the cohesive energy of the
crystal per unit cell, ao is the equilibrium lattice con-
stant, so that

=0.

The bulk. modulus of a solid is defined to be 8
= —Vdp/d U, where V is the volume of the solid, and p
is the pressure on it. Since entropy is constant at ab-
solute zero, it is possible to write p= —dU/dV, where
V=SR is the total energy of a crystal with E atoms.
The volume, for a bcc crystal, is V= —,'Eas. Then, at
equilibrium, it is found that E is the reciprocal of the
bulk modulus, and hence is the compressibility.

The three parameters describing the Morse curve are
then the equilibrium lattice constant ao, the compressi-
bility I, and the cohesive energy D. Taking the fourth
parameter E~ to be fixed at the calculated value for an
isolated atom, the erst three parameters were found by
finding a least-squares fit of the Morse curve to the 12
calculated points. The values so found are shown

graphically in Fig. 2. The variational principle for total
energy is satisfied only for fs/f& s, as indicated ——by a
vertical dashed line. The results for that case are shown
in Table I, along with the experimental results. Each
experimental value lies between the two calculated
values. On these strictly empirical grounds, it is sug-
gested that s(fn(1 would be a better choice for the
exchange potential. The Morse curves using these
parameters have been plotted in Fig. 3. The calculated
points fall on the curve, to the scale drawn. An enlarged
detail of the minimum for each case, with the en.ergy
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scale multiplied by ten, has been included to show the
calculated points. The dashed line through each calcu-
lated point is the computed tangent to the curve at that
point, using the result of the virial theorem for dE/da.
The figure shows that the virial theorem is very well
satisfied for f~/fbi ss.——If this ratio is changed to
fz/fr=145 or 1.55, the slope predicted by the virial
theorem (which of course is no longer applicable) is
incorrect by a factor of 2 or more, showing that the
theorem depends critically on the correctness of the
iatlo fir/f~.

All four of the Morse curve parameters (uo, E, D,
and E~) can be chosen by the least-squares procedure,
but when this is done, the rms error is reduced only by
a small amount, and the resulting parameters are not
significantly different from the ones given above.
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APPENDIX

The total energy of a crystal may be written in terms
of a spin-independent Hamiltonian for the system and
a determinantal wave function, made up of one electron
functions u, (r). If this is done, a troublesome exchange
integral appears. This may be replaced by a factor fz,
as yet undetermined, multiplied by the average ex-
change integral for a free-electron gas with the same
local charge density. If the variational method is applied
to minimize this energy, the result is known as the
Hartree-Fock-Slater equations.

The total energy may then be written as

E= V„„+Q d'ril;*(ri) f—V'„,'+V„.(ri)

+s V„(r,)+,fsV (r,)7u, (r,) (1)

where V„„is the nuclear-nuclear interaction, V„,(r) and
V„(r) are the nuclear-electron and electron-electron
Coulomb potentials, p(r) is the total electron density,
and the average free-electron exchange is

En the same terms, the Hartree-Pock-Slater equations
can be written

I
—V„,'+ V„,(ri)+ V„'(ri)+ f~V,„'(ri))N, (ri)

= e;N, (ri), (2)

where f~ ,f~ if the variat——io—nal principle is satisfied.
At this point, however, it is convenient to leave fn
unspecified. The self-consistent solution of this set of
equations is to be found by an iterative procedure, for
instance, by using the APW method. The superscript 0
on the potentials indicates that these are derived from
the charge density of the previous iteration. The
explicit kinetic energy operator V'„' may be eliminated
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Fxo. 3. Total energy versus lattice constant near minimum of
curve, showing calculated points and slopes (dashed lines) pre-
dicted by the virial theorem, and Morse curve Qt. Note that
vertical scale is magniled 10 times in insert to show detail.

from (1) by using (2), which in turn can be used to 6nd
a practical expression to calculate the total energy per
unit cell, E/X.

The Virial theorem has been discussed by Slater' in
the context of the Born-Oppenheimer and Hartree-Fock
approximations. From Slater's more general result, the
form of the virial theorem

8E/Ba= —(1/a)L2(KE), + (PE), j
= —(1/~)LE+(«)-j (3)

follows quite simply. Further, it can be shown from (1)
and (2) that this same expression for BE/Ba holds in
the Hartree-Fock. -Slater approximation, provided that
fJ./f~= s.

The conclusions of this Appendix can be generalized
without difhculty to include also the more general ex-
change potential proposed by I indgren. ' In that case a
third factor arises, weighting the contribution of the
exchange to the average potential energy in (3) in a way
depending simply on Lindgren's parameters. The ratio
fz/fz is in general then not equal to ssto satisfy the
variational principle.

5 J.C. Slater, Quantum Theory of Molecules and Solids (McGraw-
Hill Book Co., New York, 1963), Vol. 1.' I. Lindgren, Arkiv Fysik 31(4), 59 (1966).


