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A second program introduces the sphere radius x„
and using the quantities (Ar, —8r, vU, ) calculates the
Ewald coefficients, which are tabulated in Tables
I—III. For U, and U,~~, &=8 was used, again so that
the results are independent of ~. To insure convergence,
these sums were carried over 1800 stars, or about 73 000
vectors, up to a magnitude of 32.7(2ar/a). The coeK-
cients are all accurate to the number of decimal places
given in the tables.

The coefficients U~~ are a slightly different case,
since they depend heavily on e. The particular e's

chosen, e =3.50, 3.68, and 3.48 for L =0, 4, and 6, were

picked so that reasonable convergence is achieved in

the first 29 stars, so that the series may be truncated

after the vector (4,4,4)(2ar/tt). Further, with an appli-
cation to lithium in mind, ' the L=4 and L=6 series
need not converge as much as the dominant L =0 series,
owing to the small multipole moments for higher L in
lithium. In short, the e's can be chosen for each L to
suit a given application. For lithium, the coeKcients in

Table III give the potential to an accuracy of about
three significant figures, or within 0.00005 Ry in the
plane-wave region.

Pote added its proof: The author has recently become
aware of a very similar approach to this potential
problem. See B. R. A. Nijboer and F. W. DeWette,
Physica 23, 309 (1957); 24, 1105 (1958).

' W. E. Rudge, Phys. Rev. , second following paper, 181, 1033
(1969).
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The augmented-plane-wave method for energy-band calculations is presented in a form which handles

a general one-electron crystalline potential, rather than the restricted "muffin-tin" potential which has

traditionally been used. From the wave functions resulting from the band calculation, the total crystalline

charge density is found, and from this, a new potential is found, making an iterative self-consistent calcula-

tion possible. As an example, the method has been applied to body-centered cubic (bcc) lithium. The results

of two energy-band calculations are reported. One used the average free-electron-exchange approximation

suggested by Slater. The second used two-thirds of this exchange.

I. INTRODUCTION

'HE augmented-plane-wave (APW) method, origi-

nally proposed by Slater, ' ' solves the energy-
band problem by dividing a crystal into several parts.
A sphere is constructed about each atomic site. The
wave function is then expanded inside each APW sphere
in terms of radial functions multiplied by spherical har-

monics; in the region between the spheres, the plane-
wave region, the wave function is expanded in a Fourier
series of plane waves. Wood' has discussed the method
for a monatomic crystal, using group-theoretical
methods to reduce the size of the secular equation. Ern
and Switendick' have generalized the method to any
number of atoms per unit cell. Traditionally, the model

for the one-electron potential energy has been limited to

*Based in part on a thesis submitted in partial fulfillment of the
requirements for a Ph.D. degree from the Department of Physics
at the Massachusetts Institute of Technology, Further details are
given in an expanded version of this paper, IBM Research Report
No. RJ 540 (unpublished), available from the author.

' J. C. Slater, Phys. Rev. 51, 846 (1937).' J. C. Slater, Advances in QNantlm Chemistry (Academic
Press Inc. , N. Y., 1964), Vol. 1, p. 35,

' T. L. Loucks, AngnI ented Plane Wave Metttod (W. A. Ben-
jamin, Inc. , N. Y, , 1967).' J. H, Wood, Phys. Rev. 126, 517 (1962).' V. Ern and A. C. Switendick, Phys. Rev. 157, A1927 (1965).

a muon-tin form, in which the potential is assumed to
be spherically symmetric within each APK sphere, and
constant in the plane-wave region. The method is not
limited to this model. Marcus' has considered the non-

muffin-tin contributions to the matrix elements which

enter into the eigenvalue problem, and DeCicco" in-

cluded a nonconstant potential in the plane wave region
in his calculation of energy bands in KCl. The first aim
of the present paper is to present the more general APW
method for any crystal with a symmorphic space group,
allowing the use of an arbitrary potential, limited only

by the assumption that it have the full symmetry of the
crystal, and using the symmetry of the crystal to reduce
the size of the secular determinant and to simplify the
matrix elements as much as possible for use in numerical
calculations. Section II presents a set of basis functions
useful in this connection.

Section IV gives an expression for the electron density
found in the energy-band calculation, and also con-
siders the normalization of the one-electron wave func-
tions. From this, the Coulomb potential energy is found.
The average free-electron-exchange approximation is

' P. M. Marcus, Int. J. Quant. Chem. 1S, 567 (1967).
~ P. D. DeCicco, Ph.D. thesis, Department of Physics, Massa-

chusetts Institute of Technology, 1965 (unpublished).
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also discussed brie6y. The formalism presented allows
an iterative calculation to achieve self-consistency.
Several self-consistent APW calculations have been
made in the past, ' '4 but these have been limited to a
muon-tin model for the potential and also for the charge
density.

Finally, two self-consistent energy-band calculations
for bcc lithium are reported. One used the average free-
electron-exchange approximation as proposed by
Slater. " The second uses two-thirds of Slater's ex-
change, as proposed by Gaspar" and by Kohn and
Sham 17

II. CRYSTALLINE SYMMETRY AND
LATTICE HARMONICS

The crystal is assumed, in this paper, to have a sym-
morphic space group. The Bravais lattice associated
with the crystal is defined by a set of lattice vectors R.
I et there be e atoms per unit cell. Then, with respect
to the points in the Bravais lattice, the nuclei within
a unit cell are located at the positions r;, i =1,

The crystal is left invariant under a translation
through a distance R. There is also a point group of
order G, consisting of rotations 5 which take the crystal
into itself. For a symmorphic space group it can be
shown that it is possible to consider the translational
group and the point group separately, without dealing
with the full space group explicitly. Associated with the
Sravais lattice there is a reciprocal lattice, de6ned by
a set of vectors K. These vectors have the property that
K R is equal to an integer multiplied by 2rr.

In the APK method a sphere of radius R„ is con-
structed about the ith atom. The radius is arbitrary,
although it is assumed that no two spheres intersect,
since in that case the de6nition of functions within the
volumes of intersection is ambiguous. It is customary,
but not necessary, to choose the spheres to be tangent to
their nearest neighbors. Within each APW' sphere, all
functions of interest are expanded in terms of radial
functions multiplied. by angular functions about the
center of the sphere. In the plane-wave region, outside
all of the spheres, the functions are expanded in Fourier
series. Of special interest here are functions, for example
the potential V(r) or the charge density p(r), which have
the full symmetry of the crystal. Let f(r) be such a
function.

A. C. Switendick, J. Appl. Phys. 37, 1022 (1966).' J. W. D. Connolly, S. J. Cho, J. B. Conklin, Jr., and J. C.
Slater, Quarterly Progress Report of the Solid-State and Molecu-
lar-Theory Group, M.I.T., No. 62, p. 3, 1966 (unpublished).

's E. C. Snow and J. T. Waber, Phys. Rev. 157, 570 (1967)."E.C. Snow, Phys. Rev. 158, 683 (1967)."P.D. DeCicco and A. Kitz, Phys. Rev. 162, 486 (1967)."E.C. Snow, Phys. Rev. 171, 785 (1968).
E. C. Snow, Phys. Rev. 172, 708 (1968)."J.C. Slater, Phys. Rev. 81, 385 (1951).

's R. Gaspar, Acta Phys. Hung. 3, 263 (1954).
"W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

The function may then be written

'2 fz-(lr —r'l)Wz„;(r —r;), when ~r —r,
~

&E„'
Lv

P f(K)e'"' when
~

r —r,
~
)R„for all i

Here and elsewhere throughout the paper, the first line
gives the form of the function within the ith sphere,
translated, if necessary, back into the zeroth unit cell,
so that

~

r —r,
~

&R„.The second line gives the form of
the function in the plane-wave region, where ~r —r,

~

&R„.for all i.
Within the ith sphere, it is possible to expand any

function in terms of spherical harmonics, but for a func-
tion with the symmetry of the crystal lattice, it is more
efficient to expand in terms of the lattice harmonics"
Wz„,(r). These are surface harmonics, a complete ortho-
normal set of the linear combinations of spherical har-
monics which have the symmetry of the crystal lattice.
They may be chosen to be real. The following properties
can be shown to be consistent; they do not uniquely
determine the harmonics Wz„(r), but are sufhcient for
the present purpose:

Wz „.;(r)Wz,„,(r)dQ=4rr4 z5;.

To find the coeKcients CL, „;, it is suf6cient to require
that RWz„;(r) =W&„,(R r) =Wz,„,(r) for any rotation
R from the point group (S) such that Rr, =r;+R is
valid for some lattice vector R. If T is a rotation from

fS) such that Tr, =r;+R is valid, then the ith and. jth
atoms are considered to be equivalent, and it is con-
venient to choose the Cz,„„;so that TWz„;(r) =Wz, »
(T 'r) =Wz„;(r). The reality of the lattice harmonics
requires that Cz „;——(—1) Cz „;.The index v accounts
for the fact that there may be more than one lattice
harmonic for each L. For I =0, v can take on just one
value, which is taken to be zero. In general, v may take
on from 0 to 21.+1 values for each I..

In the plane-wave region, only reciprocal vectors K
appear in the Fourier series. The series could be ex-
pressed in terms of symmetrized plane waves, but this
does not seem to be advantageous.

III. APW METHOD

The APW method finds the best solution to the one-
electron Schrodinger's equation (in atomic units)

by using the variational method and the augmented-
plane-wave basis functions given below. The potential

rs D. G. Bell, Rev. Mod. Phys. 26, 311 (1954).
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is assumed to have the full symmetry of the crystal, and
to bt: known in the form

V(r)

1
V p+—Q V(K)e'"'

Q K

Note that V(K) is equal to a I'ourier coefficient multi-

plied by the volume of a unit cell.
The first term in each line, with the subscript ns, is

the muffin-tin part of the potential. The remaining
terms represent deviations from this form. Note that
the I =0 term in the first line also has a muon-tin
contribution. Ordinarily this term would be chosen to
be zero, but this is not necessary. The Fourier series in
the second line is not uniquely determined by Eq. (1).
It turns out that the matrix elements appearing in the
secular equation are considerably simpler if the series is
chosen so that it is identically zero inside each APW
sphere:

P V(K)e'K'=0 for ~r —r;) (R„for all i. .

~ith this additional requirement, the coefficients V(K)
are uniquely determined. The Fourier series could give
a constant contribution in the plane-wave region, but
this would ordinarily be absorbed by the mufIin-tin

term V 0, which traditionally has been set equal to
zero by shifting the zero of energy. It is noted that if the
ith and jth atoms are equivalent, then V;(r) =V;(r)
and Vz„,(r) = Vz„;(r) Also, V. (SK) =V(K), so that two
Fourier coeKcients are equal if they correspond to
reciprocal lattice vectors in the same star.

The unsyrnrnetrized basis functions, or raw APWs,
depend only on the muon-tin part of the potential,
namely, on V,(r). Let Nh(r, p~) be a solution, regular at
the origin, of the radial Schrodinger equation

function. The basis function @k,(r), as a result of the

definition, is continuous at all points on the surfaces
of the APW spheres, but the first derivative is not
continuous.

The size of the determinant in the secular equation is

effectively reduced if basis functions are used which

transform irreducibly under the operations of the group
of the wave vector. A suitable set of symmetrized
APW's, transforming as the ith partner in the ath
irreducible representation is

The sum over E is the sum over all the operations in the

group of the wave vector, namely, those rotations in

(5}such that Rk, =k,+K for some K in the reciprocal
lattice. The second projection operator index j is needed

in the case that more than one linearly independent
function with the proper transformation properties can
be projected from the same pz, (r). I' (R);; is the ele-

ment from the ith row and jth column of the matrix
representative of the operation R in the o.th irreducible

representation. It is always possible to choose this rep-
resentation to be unitary, and it is assumed that this

has been done.
The APW wave functions are taken to be

where the components A„of the eigenvector are to be
determined by the variational method. This leads to the
secular equation

det~(II p) pi. p i I
=—0,

where e is the eigenenergy. The APW matrix elements

are

r'(d/dr)r'(d//dr— )+l(3+1)r '+V (r)$
&&I);(r,p,) =e,u(;(r, e,).

The solution is normalized so that uh(R„., p~) =1. The
raw APW's are

The wave vector k, =k+K, determines the transforma-
tion properties of the state under question. k is the re-
duced wave vector, lying within the 6rst Brillouin zone,
and determines the translational properties of the basis
function. K, is the gth reciprocal lattice vector. 0 is the
volume of the unit cell, and j&(x) is a spherical Bessel

where e is the dimensionality of the irreducible repre-

sentation, and GA, is the order of the group of the wave

vector. The integration is over the volume 0 of any one

unit cell. The constant factor e 0/GI, has been included

to simplify the matrix elements. It is the same for every

element in the determinant, and hence does not e6ect
either the eigenenergy e or the eigenvector {A„}.Using

standard manipulations in group theory, the matrix

elements can be reduced to

It is noted. that the matrix element does not depend on

the partner index i. Finally, after a considerable amount
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of relatively straightforward analysis, it is found that
the APK matrix element is

(H g)g—j,gli g =Q(27r/G) Pgj, g~j ~ Q(6 —Vygp)Qgj, g~j ~

+Z "hagi, 'i "tR*"N~''(R-,g~))
il

The symmetry elements are

~„,„'=P r.'(R)...z(k, —Rk, ,),
8

P„,, ; =(a/2~)'g r *(R),,'(k, .Rk, .)a(k, —Rk, ),

+(& &)P 00+
z', l

&si

r ar~N„(r...) ~' =P dr, „gr,"P Gr,~(l, t', m)

+Z ~gi g'i' . V(k)+ Z "hagi g'i'
K iLvll'

t'& I,

XQ t X'*„.,(l,m, v, g)„; X'...,(1', M+m, v, g')„;.
SCOS

vP

Rsi

r'dr Vr, „(r)N~;(r,gt)N~, (r, c&) . +( 1)z+"—'X'* ..(l', M+m, g, g)„;

)&"X'„..(l,m, v, g') „'$,
The symbols introduced in this expression are discussed
in detail below.

u is a scaling factor, to which all the lattice constants
of the crystal are assumed to be proportional. The
volume of the unit cell, 0, is then proportional to u'.
The dimensionless symmetry elements n, P, p, and 8, as
will be seen from their definitions below, do not depend
on the potential, the energies e~ and e, or the scaling
factor a, but only on the crystal structure, the ratio
Q/a', and the size of the APW spheres relative to a. The
final results do not depend on Q/a', which is completely
arbitrary, and may be chosen for convenience.

The logarithmic derivatives

Nl (R ' 6t) lnt Nl''(r 6()$ R;
dr

on the other hand, depend on the spherically symmetric
potentials V;(r) and the trial energy g&, but not on the
symmetry of the crystal. Note that for the normaliza-
tion used for I&;(r,g,), the ordinary and logarithmic
derivatives, evaluated at the sphere radius, are equal.

It is practical and usual in implementing the AP%
method to set g = g&, and to evaluate det

~

H —
g&

~
for a

series of values of e&. The eigenenergy e is then found by
inverse interpolation so that det~H g~ =0. If this is-
done, then the term in the matrix elements involving
the difference e&

—e vanishes, and is correctly omitted
from the calculation.

An alternative approach is to set the trial energy t. &

equal to some initial guess, and to solve for the eigen-
energy e in a conventional way, holding e& fixed. If e is
not then equal to e&, the procedure is repeated, now using
the e just found as the new e&. As Marcus' has pointed
out, the convergence of this iterative procedure will de-
pend significantly on the inclusion of the term involving
the difference t.~

—e in the matrix elements, although in
the limit of self-consistency (e = g&), this term will make
Do qgntribution.

hagi, g .. =P F.*(R),, B(K*(kg—Rkg. ))/err.

Pgi, g i does not depend on a, since both k, and k, are
proportional to I/a. The new quantities will be discussed
in the order they appear.

a(K) =Q-& e '"'dr

=bx, o Z4grR —2Q ' '*"'Z 'J (ER )

The integration is over the plane-wave region of any
one unit cell, and bx, o is a Kronecker 8 function. Note
that k, —Rk, is always equal to some reciprocal lattice
vector.

The symmetry elements z"hagi, g;"' are associated,
through I. and v, with the lattice harmonics. It is more
convenient to calculate the symmetry elements associ-
ated with the spherical harmonics, and then to relate
the needed elements to these through the real coefE-
cients dl.„~;",which are defined by requiring that the
expression

F~-(r) =2 ~~.-'L(f~-(r)+( —&)"fi='(r))j
+2 or "L(fr '(r) —(—~) fr. '(r))/ij (2)

be valid for any function f(r) with full crystalline sym-
metry, where

f(r) =P Fr,„;(r)Wr,„,(r) =P f~;(r) V~„(r).

The coeKcients are not uniquely defined, in general,
but any set satisfying (2) will do.

The coefficients Gz~(l, l', m) are proportional to Gaunt
coeflicients, that is, the integral over all angles of the
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product of three spherical harmonics:

Gr. ij(l, l', m)

4gr(47r) '"
1)-;i~m~+~nj+m) —)tj)(2

G

(f Im—! ) r(P
X(2l'+1) (2L+1)

(t+ Im!)!(t'+IM+m!)!

/l l' L l t' L ix!
(0 0 0 —m M+m MJ—

Because of the properties of the 3-j symbols"

j l l' Lq
! !
E—m M+m —m)

'

Gr, ij(l, l', m) is zero unless a triangle can be constructed
with sides t, I', and L; l+1'+L is an even number; and
the following inequalities hold: —L&M &L; —/& ng & l;
and —l'&3II+m&/'. These establish the range of M
and m in the summations.

The quantities X are defined by

"X'„.,(l,m, v, g) „,=Q I' *(E)„jt,' ~ ""'j,(k,Z„)

and

Ov, , ll'i 2 5,', oo, , lli+gj, g'P = ~vO~ l' l Vgq', g'P

»z„..., «'=4~(2t+1) J,(k,R„)ji(kg &„)PI'.*(&)jj

X~ltml(COSr rrRkg) SCOS " (mrPT„Rkg) .

The symbol scos stands for the two functions, sine and
cosine, and the sum over scos means a sum over the two
functional forms. The superscript e on scos'") q can be
considered to be a derivative with respect to the argu-
ment. By definition, if scos=sin, then scos"'p=sinq
and scos("q =cosy, if scos=cos, then scos("y=cosy
and scos")q = —sing. The function Pi (cos8) is an as-
sociated Legendre polymonial. The sum over v is a sum
over the left cosets of the group (R) of the wave vector
k. The rotation T„ is any one of the operations in the
vth left coset. The choice of which member of the coset
is to be T„ is arbitrary, but once made, is considered to
be fixed. 8z„gi,, and q p,g~, are the angular coordinates
of the vector T„Rkg

In the interest of comparison with previous APW
calculations, as well as for numerical simplification, it
is worth noting that

Note also that Lvy . ' ""=LE ~
""' is valid if the

ith and i'th atoms are equivalent.
Finally, b(K*K') is a 8 function which is defined to be

1 if K and K' lie in the same star, so that SR =K' for
some rotation 5. If K and K' are in different stars, then
the 5 function is equal to 0. ez is the number of vectors
in the star of K. From this definition, it follows that the
contribution to the matrix element from the Fourier
potential may also be written as

&gj, g j V(K) P I' (R)jj V(kg Rkg ),

IV. ELECTRON DENSITY AND
NORMALIZATION

The electron density from a given state does not in
general have the symmetry of the crystal. It can be
shown, however, that the collection of all the states
which transform as partners in the nth irreducible rep-
resentation for the wave vector k, along with all the
partners for all the other states with wave vectors in the
star of k, are degenerate in energy. Further, since these
Ge„/G& states will therefore fill with equal probability,
it can be shown that the total electron density, due to
the electrons in these states, will have the symmetry of
the crystal. Finally, to get the total electron density, it
will suffice to project the part with crystalline symmetry
out of the density for any one state, and multiply by the
number of states.

The number Gn /Gk of states should be multiplied by
two in order to get the total for spin up and spin down.

In this sense, the electron density for one state is

It is found that
GA:

p~„,(r) = P N„(r,g,)N, „(r,«)
4~0'

.+ A, ., Lv, , ll'iX P gj g'j' Vgjg'j'
gj, g'j'

and

p(K) = 2 r4 gj*~g' j'~gjg'j',
Qtt gj, g'j'

The components Agj of the eigenvector, found to
within a normalization factor by the variational method,
can be normalized so that the state represents one elec-
tron per unit cell:

~gj*~u r
g~ glrg 2

h, Zk, .
Xp X p r j(kg Rkg') sr;— —

kgkg, G s

"M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten,
The 3-j aM 6-j Symbols (Technology Press, Massachusetts In-
stitute of Technology, Cambridge, 1959).

~ OO . . 2liX &gj,g'j'~ ~ Pgj, g'j'
Q .l

8
r&dr! N„(r,«)l' =1.
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The erst term in square brackets corresponds to the
fraction of an electron in the plane-wave region, while
the second term is a sum over the fractions in each of
the APW spheres. i(r) Vi(r)+2 V2z (r)+Z Voz (r)

Lvi Lvi

By the linearity of this equation, the potential may be
expressed as

V. COULOMB POTENTIAL ENERGY

Once the electron density (3) is known for each oc-
cupied state, the total charge density is easily found.
Taking into account also the nuclear charge, the crystal-
line charge density is in the form

Z,b(l r —r, l)—P pz-(Ir —r'I) Wz-(r —r')+
p( )

z 4m'I 1'—i'
I

—P p(K)e'K'

where each part of the potential is due to the correspond-
ing part of the charge density. Historically, the zero of
potential has been chosen so that the average value of
the potential in the plane-wave region is zero. This con-
vention will be enforced on each of the separate parts of
the potential.

Fourier Series Problem: Pi(r). The solution to
Poisson's equation for Pi(r) can immediately be seen
to be

Vi(r) =Z G(K)e"',

P(r) =Pi(r)+Z Poz-(r)+Z Poz. '(r)
LviLV2

The negative sign is due to the fact the p(r) is an electron
density, while P(r) is a charge density. Z; is the charge
on the nucleus at the center of the ith sphere. In order
to 6nd the Coulomb potential energy, the charge den-

sity is conveniently decomposed into several parts, so
that

G(K) =8m p(K)/E', for E~0.
The arbitrary constant G(K =0) is chosen so that the

average value of the potential outside the sphere is zero.

G(K=O) = —Q G(K)h( —K)/A(0)
K&0

where

Pi(r) = —P p(K)e'K' for all r.
K&0

I

—pz-(lr —r'I)+iz 2jz(E I
r r I)—

Gz„,(r) =P G(K')izWz, „,(K')gz(E'r)e'K' ",

The Fourier series may be reanalyzed to get a new
series which gives a step function on the surface of each
sphere, and is zero inside each sphere, but which gives
the original function in the plane-wave region. Defining

Poz,„;(r)=
Xp(K) Wz, ;(K)e'"'*

(g,„,—bzoZ, )b(l r —r, I)
Wz„, (r —r;)

4 Ir —r, lz+'
G, (K) =P G(K') ~(K—K'),

.0, outside ith sphere the desired result is

Qz-b(l r —r'I )
bzogz„;/D+ — Wz„,(r —r~)

P, z,„,(r) = 4s Ir —r, lz+'

where

&zogz. ,/ft, —outside ith sphere

Qz 4~i zR z+o Q e'K'."hz+1(ER„)p(K)Wz„,(K)/E

dr r'+'pz„, (r)+4oZ'

Each part of the charge denitys is electrically neutral.
The electrostatic potential is a solution of Poisson's

equation. The potential Vo. i(r), however, is the poten-
tial energy of an electron, and hence is the negative of
the electrostatic potential. In the atomic units used, the
appropriate Poisson's equation is

V'Vo,„i(r)=8~P(r) .

P G„,(lr —r, l)W.„,(r —r,)
'

Iv
V, (r) =

p G(K)eiK. r p G (K)e~K r

K&0

The series with coeflicients G(K) will normally converge
rapidly Lin the case of an APW charge density, only a
small number of charge density coefficients p(K) are
nonzero, since only a 6nite number of basis functions
are used), while the series with coeflicients G, (K), hav-
ing a step at the sphere radius, does not converge well.
However, for an AP% calculation, only the 6rst few
coeflicients are needed (depending on the number of
basis functions used), and these can easily be calculated.

Zero Multi pole 3fomemt Problem: Poz„,(r). The multi-
pole moments Qz„; have been defined so that the multi-

'

pole moment of the charge density P&z„;(r) is zero for
each sphere. Thus these charge densities give rise to no
potential outside the spheres, nor does the charge in one
sphere give rise to a potential in any other sphere. The
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potential inside a sphere is due entirely to the charge
density P&L„,(r) inside that sphere. Define

FL„,(r) =
(2L+1)r'+'

yx+'I pL„,(x) iLQ jL(Kx)p(K)wL„;(K)e*'"'*
I

r l
K r

8WyL Rsi

function Ewald coe%cients U, KL"' depend also on the
fraction R„/E„„„., where R„,„ is the maximum pos-
sible sphere radius for a given structure. The scale is set
by the scaling factor, a, the precise meaning of which is
determined by the de6nition of the dimensionless co-
e%cients AL „'L"'and UKL"'

As already mentioned, the singular contributions to
V0L„,(r), with rL+' in the denominator, are identical,
except for sign, to terms in V0L„;(r), and so will cancel in
the total potential.

&&p'-' pp ;(p) ppx„jp—(Icp)p(K)wp;(K}p'p"').

The desired result is then

V"„()=

2Z'—8L0 +I FL„;(lr—r;I)
lr r, l—

2QLp,.

WL„,(r r;)—
(2L+1) Ir —r'IL+'&

The potential outside the sphere is identically zero, so
that no adjustment of the arbitrary constant is needed.
The terms involving QL„; will be seen to cancel identical
terms in the potential arising from the third part of the
charge density, P0L„,(r). This is to be expected, since
these terms are due to the point multipole moments

QL„; which were introduced for convenience in the de-
composition of the total charge density. The only true
singular contributions to the potential are the nuclear
contributions —2Z;,/y.

Generalized Ewald Potential Problem: P0L„;(r) The.
third and last part of the charge density is an array of
point multipole moments of strengths Qz,„;. In the case
of L=O, the array of point charges (monopoles) is sup-
plemented by a constant charge density to maintain
charge neutrality. The potential arising from such an
array of multipole moments has been discussed in
another paper, "where it is shown that the potential is

VI. FREE-ELECTRON-EXCHANGE
POTENTIAL ENERGY

An approximate expression for the exchange part of
the one-electron potential energy is given, assuming that
the electronic charge density of the crystal is approxi-
mately a muffin-tin charge density, that is, dominantly
spherical inside of each APW sphere, and dominantly
constant outside the spheres. The average free-electron
exchange, given by

V, (r) = —3(3/n-)) j'P —P(r)]'j'+C.„
where C, is an arbitrary constant, which will be chosen
so that the average value of V,„(r) outside the sphere
will be zero, can be expanded using the binomial theorem
for the one-third power, and retaining only the first two
terms. When this is done, the exchange potential is
found to be

Z F"'(Ir—r'l)W"(r —r')

V.,(r)= '"
P F,(K)e'I'= P F,(K)e'K'

K&p

where

F (K~o) = —3(3/~)"'I p-]'"p(K)/3p. ,

F (K=O) =3(3/~)'"Lp-1'" 2 p(K)~( —K)/3p. ~(0),
K~p

F00,(r) =3(3/~)'"fp. ]'"
X[2p, +p(K=O)+ P p(K)D( —K)/'(0)]/3p. .

K+p

3(3/~)'"EP0—0'(r)]'",

V0L.;(r) =

2QL„,5;;.WL„;.(r—r,')

(2L+1)lr —r'I +'

—4 bL QL, 'lr —r' I'/3"

2Q, P g . . .L (2/a)L+L'+1'
L'v'

)&lr —r; I WL, ;(r—r;)

2 2Q (2/a)"'~ '"'e'*'

= 2 2Q (2/a)L+'~ '"'e'I'
K+0

FL»(r) = —3(3/~)'"(poo'(r)]ij0pL»(r)/3p00, (r) for
L/0.

The series with coeScients F,(K) converges, while
that with coeKcients F,(K) is the step functio~ n, ceded
for the APW matrix elements.

VII. APPLICATION TO LITHIUM

The APW method described in the previous sections
has been used to calculate self-consistent energy bands
in bcc lithium. The calculations were done on an IBM
System/360Model65computer, using programs written

The generalized Kwald coefhcients "AL "' "' and UK "' » gr. E. Rudge, preceding paper, Phys. Rev. ]8], y020 (y969)
depend only on the crystal structure, while the step IBM Research Report No. RJ 538 (unpublished).
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in the PQRTRAN Iv language. The monatomic crystal
and cubic symmetry lead to a, number of simplifications
in the formalism. In particular, all the quantities given
previously are real. Further, there are nonvanishing
cubic harmonics only for L=O, 4, 6, 8, and for
I & 12, there is only one harmonic for each of these L's.

Three separate calculations were done. The first (1)
used the exchange potential proposed by Gaspar" and
by Kohn and Sham" and equal to two-thirds of the
exchange proposed by Slater. "The second calculation
(2) used Slater's exchange. Each of these calculations,
referred to as full calculations, included non-muffin-tin
contributions to the potential and to the charge density.
Inside the AP% sphere, terms in L=O, 4, and 6 were
retained, while in the region outside the sphere,
the Fourier coeKcients for the first 29 inequivalent
reciprocal lattice vectors were found and used.
For these calculations, energies and charge densities
were found in each iteration for the core states at five
inequivalent points in the first Brillouin zone, and for
the conduction band at 14 inequivalent points. An ap-
proximate Fermi surface was found by calculating en-
ergies at a total of nine additional points in the 6, Z,
and A. directions, and then fitting the function k(e,r9, y)
with quadratics in e multiplied by the first three cubic
harmonics (L=O, 4, 6). The Fermi energy es is then
simply found by requiring that the surface ks ——k(es, t), &p)

enclose the correct volume, namely, one-half of the
Brillouin zone. The total charge density was found by
summing over states under the Fermi surface.

For comparison, a third calculation (3) was done
which used Slater's exchange, but which used only the
muon-tin parts of the potential and charge density.
Further, the core states were approximated by an
atomiclike 1s state, found by a simple radial integration
out to the surface of the AP% sphere, requiring that
the wave function go to zero on that surface. In the con-
duction band, calculations were done at only five in-
equivalent points. A spherical Fermi surface was
assumed.

In all three calculations, the experimental lattice
constant was used as given by Barrett": a=6.597 a.u.
at 78'K. The APK sphere was taken as large as possible,
so that each sphere was tangent to its nearest neighbors.

The vector lists used were sufficiently long to insure
convergence in the one-electron energies to better than
0.0003 Ry. The first two calculations were taken through
four iterations. The final potentials were within 0.0001
Ry of self-consistency. The third calculation was car-
ried through six iterations, starting with the muffin-tin
part of the final charge density from the second calcu-
lation. The final muffi-tin potential was within 10 Ry
of self-consistency.

The self-consistent energies from a few points of high
symmetry are shown in Table I. Also given are the
Fermi energy and the asphericity of the Fermi surface,

"C.S. Barrett, Acta Cryst. 9, 671 (1956).

TABLE I. One-electron energies from self-consistent APW cal-
culations in lithium for: (1) full calculation using two-thir(ls of
Slater's exchange; (2) full calculation using Slater's exchange; (3)
muffin-tin calculation using Slater's exchange. (Energies in ryd-
bergs, wave vectors in units of 2s-/a. )

Core states
l 1 (0,0,0)
H1 (0,1,0)

Conduction states
I'r (0,0,0)
H15 (,0,1,0)I 4

(0,-'„0)

—3.016—3.014

0.039
0.680
0.532
0.309
0.210

(2)

—3.624—3.623

0.016
0.665
0.524
0.302
0.194

(3)

0.017
0.670
0.525
0.303
0.195

Excited
115
H1
H12
~1

Es'
3(4'

states
(0,0,0)
(0,1,0)
(0,1,0)

(0,—,',0)
(0,5,0)

1.135
1.244
0.851
0.881
0.522
1.018
1 ~ 127
1.186
0,893

1.275
1.177
0.851
0.831
0.497
0 994
1.105
1.144
0.876

1.276
1.177
0.847
0.836
0 499
0.998
1.103
1.143
0.880

Fermi energy ~F
Asphericity

0,289
2.87%

0.278
2.32%

where n is the distance from Ã, along Z; e(Et') is the
energy of X&', and Vi is half of the (positive) energy gap

s' F. S. Ham, Phys. Rev. 128, 82 (1962); 128, 2524 (1962).

defined as the per cent of the average radius equal to
the maximum deviation. The energy bands for the full
calculation (2) using Slater's exchange are shown in
Fig. 1. Note that while the conduction bands are ac-
curately plotted, the excited bands were calculated only
at a relatively few points of high symmetry. The bands
for the other two calculations do not differ significantly
from those shown in Fig. 1, and hence were not plotted.

As is well known, the potential and charge density in
lithium are both very nearly muffin tin in form, and this
is reQected in the closeness of the results of calculations
(2) and (3). The greater difference is between (1) and
(2), showing that in lithium, at. least, the choice of
exchange potential is of greater importance than
whether or not the non-muffin-tin contributions are in-
cluded in the calculation.

Following Ham, "the energy bands near I'& can be fit
in the spherical form

e(k) = ss+esk +e4k

where the coefficients 6p 6g, and e4 are chosen by a least-
squares fit to 13 calculated points at I' and along 5 and
A up to the Fermi surface, but along Z only half way to
Ã, thus avoiding the distortion in the bands in this di-
rection. Further, to describe the bulge, Ham uses the
following form for the energy along the Z direction near
Ã, derived from a nearly-free-electron model:
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FIG. 1. Self-consis ten t energy
bands for bcc lithium, found by
full APW calculation (2) using
Slater's exchange. I.attice con-
stant a=6.597 a.u.

FERMI
ENERGY

N'

.Oo-r,
I I I I I

0 0 0 0 0
2m. 0 I/4 I/2 3/4 I

0 0 0 0 0

I I I

I/4
5/4
I/4

I/2
I/2
I/2

I I I

I/4
I/4
I/O

0
. 0
0

I I. I I I I

I/4 I/2 I/4 0
I/O I/2 &4 I

0 0 0 0.

t'p

deN(e) =0

TABLE II. Comparison of quantities for lithium found from
APW calculations (t) and (2) with those of Ham, ' interpolated to
the same lattice constant a= 6.597 a.u.

62

64

~x

Thermal effective
mass m~ /ms

APW(1)

0.7468
0.0084
0.7872
1.1337
0.1064

1.6510

APW(2)

0.7825—0.0116
0.7862
1.1677
0.0976

1.5477

Ham

0.752
0.004
0.7681
1.1133
0.1045

1.66

a Reference 22.

at lV. The parameters $ and ao are chosen so that f(N)
gives the calculated energies at Zr(s, ~,0) and Zq(s, s,0).

The various parameters have been ht to the results
of the two full APW calculations (1) and (2), and are
given in Table II along with the results of Ham inter-
polated to the same lattice constant. ~0 has not been
given, since it depends on the arbitrary choice of zero
energy.

Using the fitting scheme described, Ham also Gnds the
density of states e(e) and hence the Fermi energy es by
requiring that

The thermal effective mass m~/ms may be expressed in
terms of the density of states at the Fermi surface.

Using Ham's method, the Fermi energies for the two
AP% calculations were found to be only about 0.002
Ry lower than when calculated by the method described
earlier. The thermal effective masses found are given in
Table II, along with the results of Ham.

It is interesting to note that Ham's results, the prod-
uct of a t reen's-function calculation and the quantum
defect method, generally lie between the two APW re-
sults, and a little closer to APW(1), which used two
thirds of Slaters exchange potential.

VIII. CONCLUSIONS

The AP|A" method is not limited to the traditional
muffin-tin form, and expressions for the more general
form have been given. The feasibility of carrying out
such a calculation on a modern computer has been shown
by an application to lithium.
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