
PH YSICAL REVIEW VOL UM E 181, NUMBER 3 15 MA Y 1969

Generalized Ewald Potential Problem*
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The Coulomb potential due to a periodic array of point multipoles is found and expressed, in terms of
the multipole moments and dimensionless Kwald coe%cients, in a form convenient for energy-band calcula-
tions by the augmented-plane-wave method. The formalism is then applied to an array of multipoles having
the symmetry of the crystal lattice. Numerical values are given for the Ewald coeKcients for a monatomic
body-centered cubic crystal.

I. INTRODUCTION

~BLINDING
the Coulomb potential due to a periodic

array of point multipoles is a problem which
arises, for example, in a self-consistent energy-band
calculation, as part of the problem of 6nding the total
potential due to a given crystalline charge density. The
monopole problem (the potential due to an array of point
charges) has been. discussed by Ewald' and by Slater
and DeCicco. ' In the present paper the method of
Kwald is generalized to include higher multipole mo-
ments. The potential so found is then recast into a form
suitable for use in an augmented-plane-wave (APW)
energy band calculation, ' namely, into a dual repre-
sentation: inside the AP% spheres around the atomic
sites the potential is expanded as a sum of radial
functions multiplied by spherical harmonics; outside
it is expanded in a Fourier series. This Fourier series is
not unique, since it is not speci6ed inside the spheres.
Two useful forms of the series will be given. The first
converges reasonably rapidly, and has no physical
meaning inside the spheres. The second, denoted by
subscript s, is a step function, identical to zero inside
the spheres, and equal to the 6rst series outside the
spheres. The step function series, the form needed for
an APW calculation, does not converge, but the 6nite
number of basis functions used in such a calculation
couples only with a reasonably small number of the
Fourier coeKcients, and these coeKcients may be
calculated as indicated below. A set of dimensionless
"Ewald coeS.cients" depending only on the structure of
the crystal is found, so that once the strengths of the
multipole moments are known, the potential is easily
found, either numerically, or analytically (in dual form).
Finally, the solution is specialized to an array of multi-
poles having full crystalline symmetry. As an example,
numerical values are given for the Ewald coeKcients for
the monatomic body centered cubic structure.

* Based in part on a thesis submitted in partial fulhllment of
the requirements for a Ph.D. degree from the Department of
Physics at the Massachusetts Institute of Technology. Further
details are given in an expanded version of this paper, IBM
Research Report No. RJ 538 (unpublished), available from the
author.

' P. P. Ewald, Ann. Physik 64, 253 (1921);Nachr. Akad. Wiss.
Gottingen, II. Math. -Physik. Kl., 55 (1938).

~ J. C. Slater and P. D. DeCicco, Quarterly Progress Report of
the Solid State and Molecular Theory Group, M. I.T., No. 50,
p. 46, 1963 (unpublished).' J. C. Slater, Phys. Rev. 51, 846 (1937).
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are the primitive vectors de6ning the
Bravais lattice. The p determine the type
of structure, while a determines the scale
or size.
are the positions of the atoms in the
zeroth unit cell. i =1,
is any position in the crystal.
is the volume of the unit cell.
are the radii of nonoverlapping spheres
drawn about the atoms. The region in the
crystal not in one of these spheres is referred
to as the plane wave region.
are the primitive vectors for the corre-
sponding reciprocal lattice. K R =srq p
=2mS, where X is an integer depending on

q and p.

An array consisting of one point multipole on the ith
atomic site in each unit cell, with moment Qt;, may
then be represented by the charge density
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where Yt (r) is a spherical harmonic with arguments
equal to the angular coordinates of the vector r. For
later convenience in introducing lattice harmonics, it is
assumed that the spherical harmonics are normalized
to 02, although ~ is normally equal to unity. The
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II. PROBLEM AND ITS FORMAL SOLUTION

The Coulomb potential C(r) due to a charge density
p(r) must be a solution to Poisson's equation

V'C (r) = —4trnp(r), (1)

where n is a number which depends on the systems of
units used. In particular, +=2 for atomic units, in
which energies are measured in Rydbergs and distances
are measured in units of the Bohr radius.

A crystal lattice with e atoms per unit cell is intro-
duced by the following de6nitions. Corresponding
dimensionless quantities are defined simultaneously by
introducing a scaling factor a with the dimension of
length.
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multipole moment of a charge distribution p(r) is here
taken to be

Q) = dr r'V(„*(r)p(r)

In the plane-wave region, the Fourier series is clearly
the most general form for the periodic potential. The
hrst form, with coeScients Uq™,is a convergent series.

(3) The second series has been reanalyzed to be a step
function at the surface of each sphere, with the property

regardless of the value of 0. The constant term for the
monopole case (l=O) has been added to the charge
density to maintain charge neutrality in each unit cell.

The potential due to the periodic charge density
p~~;(r) can be written as

C („;(r)= (2/a)'+'ng(;U(2r/u),

where U(x), a dimensionless potential, is a solution of
the dimensionless Poisson's equation

p U ' 'e™q'x=0(inside any sphere).
q+p

The sum omits q=0 since U, q 0™=0.This follows
from the choice of the zero of energy, which is chosen
according to the traditional convention of the APK
method so that the average value of U(x) in the plane
wave region is zero.

The total potential, due to multipoles of all orders
on all atomic sites, is simply a superposition of potentials
of the type described, namely,

where

V'U(x) =—4qrp(x),
C'r(r) =2 E C'~-(r)

i lm
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within the sphere about the i'th atom, Ix—x;
I
&».;

and

(7b)U(x) =P U 'm~e~~q'x = Q U 'm~e~'«'x

q+p

in the plane-wave region outside all spheres. Note that
U(x) and p(x) depend on the indices imi To simp. lify
the notation, the indices have been omitted, but are
to be assumed wherever appropriate.

The term involving 8;; is a particular solution to
Poisson's equation for the charge inside the i'th sphere.
There is no charge in the i'th sphere when i'Ni, for it
has been assumed that the multipoles are placed only
on the ith atomic sites. The term involving 8)p is a
particular solution for the constant charge density
introduced to maintain charge neutrality in the mono-
pole case. This accounts for all the charge in the i'th
sphere. To these solutions, only solutions to Laplace's
equation which are regular everywhere within the
sphere can be added, namely, functions of the form
x'V& (x). The coefficients Ap; ™are determined by
the charges outside the sphere, or alternately, by the
boundary conditions on the surface of the sphere. Note
that an arbitrary constant added to the potential can be
absorbed by the coefficients Roe

is a dimensionless charge density. For x inside the
zeroth cell, U(x+p) = U(x) can be written in the dual
form

The task remaining is to hnd the Ewald coe%cients
, .,Lmi U lmi and U /tei

III. EWALD METHOD

The dimensionless potential U(x) can easily be
written as a direct lattice sum, but it is immediately
found that for the cases l=0, 1, and 2, the infinite sum
is at best conditionally convergent. In any case, the
sum is not in a convenient form for direct comparison
with (7) to 6nd the Ewald coeKcients. A Fourier series
representation for the potential is also easily found, but
this sum fails to converge for any /.

The result of the Ewald method is an expression for
the potential which is the sum of a direct lattice sum and
a Fourier series, where the rate of convergence of each
of these sums is controlled by a parameter e, which is
otherwise arbitrary. The derivation follows closely, for
example, that given by Born and Huang4 for the mono-
pole case. The angular dependence introduced by /&0
plays a largely passive role, and does not unduly com-
plicate the method. By this procedure, it is found that
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where U, is the average value of the potential U(x)
over all space, and I~(x), related to the incomplete 1'

4 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, 1964), p. 248. Their method is actually
to get a dipole sum from a monopole sum by differentiation, but the
formal derivation has much in common.



function, is given by

I((x) =2 dt to'e "/—I'(l+-,')
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chosen to be

U, =G(q=0)+2 or'"8i /o(&~ o'),

(11a) where
(14)

=erfc(x)+e—"P x»—'/I'(p+-', ) . (11b)

G(q=o) =—2 G(q')~( —q')/t1(0), (15a)
q

I+P

v=1 G(q) U ~m,. for q/0 (15b)

IV. EWALD COEFFICIENTS

Since the expression (10) for U(x) is independent e,
this parameter may be chosen sufficiently large so that
the direct lattice sum is negligible everywhere in the
plane wave region. Comparison of (10) to (7b) then
immediately yields

27' 3/2
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&(exp — for q&0. (12)
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In a similar manner, e may be chosen large enough so
that the only significant contribution to the potential
within the i'th sphere from the direct lattice sum is from
that term with p =0.All functions of x are then expanded
in powers of ~x—x; ~, and a comparison is made with

(7a). It is then found that

64 'l' —l l+ l '+1
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The terms from (10) which have no counterpart in (7a)
can be shown to approach zero as e becomes large.
Further, 3 l „, '' becomes independent of e iA the linlit

If it is required that the average value of the potential
over the plane wave region be zero, the U, must be

The sum over v is to be omitted if 1=0.
It should be noted that in general U could be any

solution to Laplace's equation. The present interest,
however, is in the bulk properties of the crystal, and
hence in a periodic potential. Since a constant is the only
periodic solution to Laplace's equation, U, has been
so chosen, and thus U(x) is the most general periodic
solution.

x 'll'
Q

' x/(g (16a)

=b,o
—P 4x,,oe-' & **j&(~qx„)/(q~) . (16b)

Finally, the step function coefhcients are

U..™=ZG(q')~(q —q') (17)

where the coefficients C& „;are determined by the sym-
metry about the ith site. The index v runs over all the
possible independent combinations of the spherical
harmonics for a given L. The advantage of introducing
the lattice harmonics is that in general there are signi-
ficantly fewer values of v for a given L than there are
values of m, so that numerical work is vastly simplified.

If the harmonics are orthonormalized to 0.2 so that

dQWL, „;*(r)lVr, „;(r)=a'81, I.e, ,

it is possible to go back to the beginning of this paper
and make the substitutions I'~ (r) ~WI,„;(r) within
the ith sphere, l~L, m —+v, and all the expressions
given remain valid. Note that / is replaced by L only
for mnemonic reasons; in fact the two have precisely
the same signihcance. It would be possible to replace
the simple exponential e' '1' by a symmeterized ex-
ponential, but this does not seem to be particularly
advantageous.

VL NUMERICAL RESULTS FOR A
MONATOMIC BODY CENTERED

CUBIC STRUCTURE

The Ewald coefficients have been calculated for the
body centered cubic structure with one atom per unit

~ D. G. Bell, Rev. Mod. Phys. 26, 311 (1954).

V. CRYSTALLINE SYMMETRY

It is useful to consider the special case when all the
point multipoles have the symmetry of the crystal
lattice in. which they are located. Any function with
such symmetry can be expanded about the ith atomic
site in terms of a sum over radial functions multiplied

by lattice harmonics, ' which are simply suitable linear
combinations of spherical harmonics:

Wr,.;(r) =Q Ci „;F'r,„(r),
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TABLE I. Kwald coefficients Al, ' for monatomic body-centered
cubic structure and maximum sphere radius.

TmLE III. Ewald coeKcients Vq for monatomic body-centered
cubic structure and maximum sphere radius.

L'=0
L'=4
L'=6

—1.504750155—0.042367827
0.033379926

—0.132471807
0.132784561—0.131952123

0.104369269—0.131952123
0.157486296

cell. The scaling factor a is chosen to be the lattice
constant, that is, equal to the distance along one cube
edge. For this choice the components of the vectors q
and y are integers.

The largest possible sphere radius is then x, =-,'V3.
In this case the spheres are tangent to one another and
to the surface of the Wigner-Seitz unit cells at the L
points (in the (1,1,1) directions). The volume of the
unit cell is Q=-, a', so that co =4. The origin is placed at
an atomic site, so that x;=0. Since i =i'=1 for one
atom, i can be dropped from the notation. The coeS-
cients CL, „have been discussed for the cubic case."
Cl, „=0unless L =0, 4, 6, 8, , and for L(12, v takes
on just one value. Assuming that the interest is in small

L, the index v is also dropped from the notation. The
cubic harmonics are normalized so that 0' 4x.

For purposes of calculating, tabulating, and using
these coefficients, :several interrelationships are of

q

(0 0 0)
(1 10)
(2 00)
(2 11)
(2 2 0)
(310)
(2 2 2)
(3 2 1)
(40 0)
(3 3 0)
(4 1 1)
(4 2 0)
(33 2)
(42 2)
(43 1)
(5 10)
(52 1)
(4 4 0)
(43 3)
(3 3 0)
(4 4 2)
(6 0 0)
(5 3 2)
(6 1 1)
(6 2 0)
(3 41)
(6 2 2)
(63 1)
(4 4 4)

L=O
& =3.50

0.2507592050
0.1063820880
0.0355538710
0.0158432404
0.0079424347
0.0042470954
0.0023656972
0.0013553790
0.0007927152
0.0004709915
0.0004709915
0.0002833374
0.0001721708
0.0001054920
0.0000650887
0.0000650887
0.0000252031
0.0000157933
0.0000099356
0.0000099356
0.0000062722
0.0000062722
0.0000039718
0.0000039718
0.0000025221
0.0000016055
0.0000010244
0.0000006549
0.0000004195

L=4
e =3.68

—0.0900009516—0.0261103148
0.1450930920—0.0377939814—0.0350030609
0.0668626152—0.0675546578—0.0205294823
0.0651890387—0.0127353754
0.0249990702
0.0078632823—0.0174410312—0.0056909453—0.0042824387
0.0139622707
0.0027020041—0.0017664515—0.0031081121
0.0001398425—0.0018466437
0.0038353368—0.0007030226
0.0021012779
0.0011308708—0.0003749076
0.0002344878
0.0001014929—0.0003829295

L 6
a=3.48

0.0687998522
0.0124839844—0.0204452067—0.0157280512
0.0588258466—0.0020698039—0.0640970638
0.0035815275—0.0283727518
0.0388232180—0.0059113542
0.0133442362—0.0188825151—0.0064280589
0.0066290377—0.0059744140
Q QQQA A zl A.961
0.0070805682—0.0047677260
0.0034156532—0.0010346991—0.0024410862—0.0004875159—0.0009861454—0.0000733709
0.0009799112—0.0000944811
0.0002320375—0.0006691570

TABLE II. Kwald coefficients V,q for monatomic body-centered
cubic structure and maximum sphere radius.

L=O

interest:

Az z Azz'+(bz p
——5zp) U, — (20)

(0 0 0)(» 0)
(2 00)
(2 11)
(2 20)
(3 1 0)
(2 2 2)
(3 21)
(4 0 0)
(3 3 0)
(4 1 1)
(4 2 0)
(3 3 2)
(4 2 2)
(4 3 1)
(5 1 0)
(5 21)
(4 4 0)
(43 3)
(5 3 0)
(4 4 2)
(6 0 0)
(53 2)
(611)
(6 2 0)
(54 1)
(6 2 2)
(6 3 1)
(4 4 4)

0.0
0.0005416870—0.0026460662
0.0000086981
0.0002166606
0.0012079119
0.0005834899—0.0005977479—0.0014744587—0.0000762771—0.0005744615
0.0001905379
0.0002571742
0.0002760030
0.0003554952
0.0005710762
0.0000831868—0.0002747543—0.0003233022—0.0003479692—0.0002529031—0.0001474853—0.0001800681—0.0002877577—0.0003028214—0.0000622982
0.0000133636
0.0000981623
0.0003528538

0.0—0.0032529063
0.0223914757—0,0055765699
0.0076716496—0.0072346557
0.0056430467
0.0020274549
0.0061950817—0.0036068060
0.0037050944—0.0005591625—0.0042307754—0.0005704390—0.0001601095—0.0016667357—0.0009119892
0.0027274541
0.0033426048
0.0011229409
0.0016243754—0.0017810185
0.0002290063
0.0000998761
0.0010839216—0.0007462787
0.0001522324—0.0000715873—0.0030195845

0.0
0.0005432944
0.0016733617—0.0043464848
0.0108606447—0.0004018551
0.0027581433—0.00139505i.5—0.0001347041—0.0065981030
0.0012440220
0.0009995303
0.0015130121—0.0010789687
0,0017783182—0.0007014597—0.0002660176
0.0020461388—0.0021105218
0.0001198405—0.0000716619
'0.0009625362
0.0000836403
0.0001657651—0.0008026855—0.0015553375
0.0008850772—0.0003007473
0.0024593024

'F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947); P. D. DeCicco and A. Kitz, Quarterly Progress Report of
the Solid State and Molecular Theory Group, M. I. T., No. 59,
p. 34, 1966 (unpublished).

Usaq =Ueq (21)

where the rotation E. is any operation in the cubic
group, so that Eq is any vector in the star of q.

Also, it is noted that while U,~, Uq 0, and Uq
dePend on the sPhere radius x„(Az, z Bz, pU, ), and-
Uq&0 do not depend on this parameter.

The coefficients were calculated using FORTRAN IV
programs on an IBM System/360 Model 65 computer.
Double-precision arithmetic (approximately 15 decimal
places) was used throughout.

First the quantities (Az, z —5z pU, ) are found, using
e =6, which is large enough so that results do not depend
on e to the number of 6gures given. The sum over q in

(13) was carried out over 1250 stars, or about 50 000
vectors in reciprocal space to insure convergence.
The magnitude of the largest vector used is 28.8(2'/a).
The only numerical problem is with the diagonal
coefficients A I.~, where there is a difference between two
nearly equal quantities, namely, the sum over q and the
bL, I, term. For A4', the first five decimal places cancel,
while for A6', six places cancel. This leaves a maximum
of 15—6=9 decimal place accuracy in the difference.
The number of decimal places lost in the difference
increases with e.
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A second program introduces the sphere radius x„
and using the quantities (Ar, —8r, vU, ) calculates the
Ewald coefficients, which are tabulated in Tables
I—III. For U, and U,~~, &=8 was used, again so that
the results are independent of ~. To insure convergence,
these sums were carried over 1800 stars, or about 73 000
vectors, up to a magnitude of 32.7(2ar/a). The coeK-
cients are all accurate to the number of decimal places
given in the tables.

The coefficients U~~ are a slightly different case,
since they depend heavily on e. The particular e's

chosen, e =3.50, 3.68, and 3.48 for L =0, 4, and 6, were

picked so that reasonable convergence is achieved in

the first 29 stars, so that the series may be truncated

after the vector (4,4,4)(2ar/tt). Further, with an appli-
cation to lithium in mind, ' the L=4 and L=6 series
need not converge as much as the dominant L =0 series,
owing to the small multipole moments for higher L in
lithium. In short, the e's can be chosen for each L to
suit a given application. For lithium, the coeKcients in

Table III give the potential to an accuracy of about
three significant figures, or within 0.00005 Ry in the
plane-wave region.

Pote added its proof: The author has recently become
aware of a very similar approach to this potential
problem. See B. R. A. Nijboer and F. W. DeWette,
Physica 23, 309 (1957); 24, 1105 (1958).

' W. E. Rudge, Phys. Rev. , second following paper, 181, 1033
(1969).
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Self-Consistent Augmented-Plane-Wave Method*
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The augmented-plane-wave method for energy-band calculations is presented in a form which handles

a general one-electron crystalline potential, rather than the restricted "muffin-tin" potential which has

traditionally been used. From the wave functions resulting from the band calculation, the total crystalline

charge density is found, and from this, a new potential is found, making an iterative self-consistent calcula-

tion possible. As an example, the method has been applied to body-centered cubic (bcc) lithium. The results

of two energy-band calculations are reported. One used the average free-electron-exchange approximation

suggested by Slater. The second used two-thirds of this exchange.

I. INTRODUCTION

'HE augmented-plane-wave (APW) method, origi-

nally proposed by Slater, ' ' solves the energy-
band problem by dividing a crystal into several parts.
A sphere is constructed about each atomic site. The
wave function is then expanded inside each APW sphere
in terms of radial functions multiplied by spherical har-

monics; in the region between the spheres, the plane-
wave region, the wave function is expanded in a Fourier
series of plane waves. Wood' has discussed the method
for a monatomic crystal, using group-theoretical
methods to reduce the size of the secular equation. Ern
and Switendick' have generalized the method to any
number of atoms per unit cell. Traditionally, the model

for the one-electron potential energy has been limited to

*Based in part on a thesis submitted in partial fulfillment of the
requirements for a Ph.D. degree from the Department of Physics
at the Massachusetts Institute of Technology, Further details are
given in an expanded version of this paper, IBM Research Report
No. RJ 540 (unpublished), available from the author.

' J. C. Slater, Phys. Rev. 51, 846 (1937).' J. C. Slater, Advances in QNantlm Chemistry (Academic
Press Inc. , N. Y., 1964), Vol. 1, p. 35,

' T. L. Loucks, AngnI ented Plane Wave Metttod (W. A. Ben-
jamin, Inc. , N. Y, , 1967).' J. H, Wood, Phys. Rev. 126, 517 (1962).' V. Ern and A. C. Switendick, Phys. Rev. 157, A1927 (1965).

a muon-tin form, in which the potential is assumed to
be spherically symmetric within each APK sphere, and
constant in the plane-wave region. The method is not
limited to this model. Marcus' has considered the non-

muffin-tin contributions to the matrix elements which

enter into the eigenvalue problem, and DeCicco" in-

cluded a nonconstant potential in the plane wave region
in his calculation of energy bands in KCl. The first aim
of the present paper is to present the more general APW
method for any crystal with a symmorphic space group,
allowing the use of an arbitrary potential, limited only

by the assumption that it have the full symmetry of the
crystal, and using the symmetry of the crystal to reduce
the size of the secular determinant and to simplify the
matrix elements as much as possible for use in numerical
calculations. Section II presents a set of basis functions
useful in this connection.

Section IV gives an expression for the electron density
found in the energy-band calculation, and also con-
siders the normalization of the one-electron wave func-
tions. From this, the Coulomb potential energy is found.
The average free-electron-exchange approximation is

' P. M. Marcus, Int. J. Quant. Chem. 1S, 567 (1967).
~ P. D. DeCicco, Ph.D. thesis, Department of Physics, Massa-

chusetts Institute of Technology, 1965 (unpublished).


