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Diffusion of Lattice Defects in a Stress Field
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The diffusion of lattice defects in a stress 6eld produced by other defects such as dislocations, precipitates,
or other point defects is considered. It is shown by calculation that in addition to the Einstein term which
results from the force on the defect there is another term resulting from the influence of strain on the saddle-
point configuration. This alters the migration energy. Detailed calculations for vacancy migration show
that vacancy migration energies may be altered by 10%. The additional terms which should appear in
the expression for the diffusion current are obtained. The diffusion equation is also modi6ed by the appear-
ance of additional terms, which are calculated. Finally, experimental evidence for changes in the migration
energies of lattice vacancies, of divacancies, and of interstitials is described.

INTRODUCTION

HE object of this paper is to clarify the discussion
concerning diffusion of point defects in a stress

field. The traditional description first given by Einstein'
supposes that the defect migrates in a potential V(r)
and that the elementary act of jumping over a migration
barrier can be either assisted or resisted by the potential.
The migration energy which results is

which is in a (110)direction from an interstitial cluster
at the origin in a fcc crystal. Let us calculate how large
such effects can be. Consider lattice vacancies migrating
in the stress field of an interstitial cluster in an isotropic
elastic solid. The strains at distance r from the center of
the cluster are'

e,„=—2A/rs,

Ging= cyy=c4yF'
&

A/I

where
Est+ F —',a, A =v¹/4orI'. (3)

where F is the force resulting from the potential and a
is the vector distance between two neighboring equilib-
rium positions. This effect is well known.

There is also another effect which is not well known.
Consider the elementary act of migration, i.e., consider
an atomic jump: Let us examine vacancy migration in
a fcc crystal, to be specific; actually, the argument is
general but the geometrical details differ for each
specific mechanism. The vacancy makes an atomic jump
if an atom jumps through the rectangle shown in Fig. 1.
The saddle-point configuration occurs when the moving
atom is at the center of the rectangle. It is evident that
a strain which increases the area of the rectangle will
lower the migration barrier. Moreover, it is possible to
imagine a strain field such that V (r) is zero everywhere
and yet which would have an influence on the barrier
height. There are therefore two effects: One (the
Einstein term) is associated with changes in the equi-
librium defect energy with position; another (the
barrier term) results because stress fields can alter the
height of the activation barrier. Both effects are
important.

Here X~ is the number of interstitials per cluster, and v

is the volume increase which results when one inter-
stitial is created in an infinite solid by inserting an atom
into an interstitial site. I' is the Eshelby surface cor-
rection LF=3(1—v)/(1+v)=1. 5, where v is Poisson's
ratio).

Consider a lattice vacancy which lies along a (110)
direction which passes through the center of the inter-
stitial cluster. Ke shall do our illustrative calculations
for copper. Let us assume that the ion-ion interaction
potential is that used by Huntington. ' If we suppose
that the change in the barrier height is given by the
change in this closed-shell repulsion between the atom
at the saddle point X in Fig. 1 and the four neighboring
atoms, then

gPvsr —4V'o(e~[ro —(P+»)1 /ro —en(ro —P)/ro) (4)

where for copper Huntington' suggests V0=0.053 eV

ESTIMATES FOR VACANCY MIGRATION

If one considers a lattice vacancy in a fcc crystal, then
V(r) is determined by the pressure at r. But one can
lower the migration barrier by a strain field which has
displacements as shown by the arrows in Fig. 1.This is
just the type of strain field one expects at a vacancy
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W. Jost, Diffusion in Solids Iiguids and Gases I'Academic
Press Inc. , New York, 1952), p. 139.

Fic. 1. The saddle-point
configuration for vacancy dif-
fusion in a fcc metal.

2A. E. H. Love, Mathematical Theory of L&lasticity (Dover
Publications, Inc. , New York, 1944), 4th ed. , p. 142.' H. B. Huntington, Phys. Rev. 91, 1092 (1953),
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a vacancy along a (110) direction from an interstitial
cluster using Huntington's potential, the interaction
between the cluster and the vacancy is

I/'(9) gp&as/'sp(&paAs/2s +&3aAs/2s 2) (6)

Thus, the change in Ey~ resulting from the interaction
ls

0 AEv~ —(8I/=/Br) (/I/K2)
—(4gl/' &g9/9/~/~9)3as/sp(339aAs/2ss+paAs/2s ) (7)

For a vacancy which is 25 A from an interstitial cluster
containing 100 interstitials, AE~~ is 6.17&(10 5 eV
and thus, this effect is negligible. We took s=0.021ro
=0.021a/V2 in this calculation.

This model gives the vacancy migration energy in a
perfect crystal to be

FIG. 2. Vacancy diffusion near an edge dislocation in a fcc
metal. The double ended arrows show possible jump directions
perpendicular to the dislocation axis. + means AEz &0. —means
hEy &0. The cube axes are shown on the left.

and +=13.9. Here ro is the equilibrium interatomic
distance, p is the distance from the saddle-point atom
to its four neighbors in the normal lattice (p=rg/5/2),
and Ar is the increase caused by the displacements near
the interstitial cluster. One has

hr =P (-', 9992+ 91 9992)'/2= rgl3A/2r3.

If there are 100 interstitials per cluster and if v is 2
atomic volumes, then

EE1/~ —0.0162 eV at r=50A—, dr=2. 204&(10 3A

alid

AEy~ 0.125 eV at 9
——=25 A, Dr=1.763&&10 2A.

These are decreases in migration energy for jumps
directly towards or away from the interstitial cluster.
Vacancies jumping in a direction perpendicular to the
radial direction experience a much smaller effect since
the rectangle is compressed in the radial direction and
expanded in the perpendicular direction. Note that this
introduces an anisotropy into the jump rate (C. P.
Flynn in unpublished work noted that external stresses
change the diffusion constant to a diffusion tensor).

We should also calculate the equilibrium energy of
the vacancy as a function of its position near the inter-
stitial cluster using a discrete defect model. In this case,
the inQuence of the interstitial cluster is to change the
separation distances between the 12 atoms which are
nearest neighbors of the vacancy. Actually, we should
calculate these distance changes starting from a situa-
tion in which the 12 nearest neighbors have collapsed
in towards the vacancy through a distance s. For

M 4P &+a (ro—p) Ip

b xg
&11 1+

29r r2 2(1—1)

cos28beg v

922 + +
29r r2 1—p 2(1—v)

(9)

In this system, vacancy jumps which occur in the plane
normal to the dislocation axis can occur either parallel
to b or perpendicular to it. The symmetry of the changes
in E9~ are shown in Fig. 2, where + means that AEv~
is positive. There are, of course, jumps which take place
at 45' to the dislocation axis. Such jumps also have
their migration energies altered, but the change is
smaller than the changes seen in the 12 plane. In the 12
plane, the effects are largest at tt =45'. In Eqs. (9), if we

J. Friedel, Dislocations (Addison Wesley Publishing Co., inc. ,
Reading, Mass. , 1964), p. 21.

where the influence of any collapse around the vacancy
in its equilibrium configuration has been neglected. For
copper, using Huntingtons soft potential, this gives
Ey~=1.364 eV, whereas the experimental value is
0.88 eV. If the four surrounding atoms are relaxed
outward to /9+0. 0300rp, the migration energy drops to
0.90 eV. The influence of strain on the migration energy
can then be calculated in the manner described above,
but using the relaxed saddle-point configuration. One
finds that the unrelaxed AEy~s are decreased by the
factor E9 ~(relaxed)/E9~(rigid) = 0.90/1.364= 0.66.

If one considers the diffusion of point defects near a
dislocation since the stress fields are of long range, one
should expect important effects. Consider, for example,
an edge dislocation in an isotropic elastic fcc crystal.
Assume that the dislocation lies along a (001) direction.
For a whole dislocation the Burgers vector is 2a(1,1,0).
The tensile strains perpendicular to the dislocation axis
are' (see Fig. 2)
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Bc ( grad4
(10) J= vcVb—'e E«'rgh

~

1—Q — pu
~

a Bp, k i kT )(&l)(b/4 )(1/ )

For the fcc crystals, where b=a/v2, if r=2.5X10 ~ cm,

take the square brackets equal to unity (as they are diffusion current J is given by
near 45'), then

dr=1. 794X10 'A r=25A
dr=0.897X10 'A, r=50A.

Thus, using Eq. (4), the magnitude of the changes in
activation energy are for copper

BEv~ (0.14——0 eV)X0.66=0.092 eV (r=25 A),
8—45'

BEv~ (0.0683 —e—V) X0.66= 0.0451 eV (r=50 A) .

We have used v= 3. The changes at 0= &90 are about
one quarter of the changes at 45'. It is apparent, there-
fore, that the dislocation strains can have appreciable
effect on Ey~. Screw dislocations will also produce
changes in E~~.

In general, the saddle-point con6gurations are planar.
One can dehne unit vectors i and j along two lines join-
ing the saddle-point position of the central moving atom
and two noncollinear nearest neighbors. The strains
which are important are «; and ~;;, the tensile strains
along i and j.Linear combinations of i and j may also be
involved. For example, if one has a saddle-point con-
6guration which has the central atom at the middle of
an equilateral triangle of atoms then «&, ~;;, and «+, ,&+,

.

would be the important tensile strains. If the local
strains are not too large, the change in the migration
energy can be written

DER +grady( pi+-,'b——(iXj) gradV,

where qadi is the atom-atom interaction potential. pi is the
change in the distance between the central atom and its
/th nearest neighbor (pi ——rieii, where ri is the vector
distance between the central atom and its 3th nearest
neighbor. The r~ used shouM be the relaxed value
appropriate for migration in the unstrained crystal. )
b is the atomic jump distance, and V is the potential
energy of the defect. The sum is over all nearest neigh-
bors of the central jumping atom. If one considers two
successive atomic planes along a given jump direction,
distinguished by the unit vector h, one finds that the

+ . (12)
kT Bpg

Bc B2c grad/zlkgx y x ~ )Ops & k1

c O'VBc grad/ Bpp, 1 BV)
I+

Bpy, i kT Bpi, kT Bpg) 2kT Bpi,'
(13)

Note that contributions from the alteration of the
activation energy occur in both J and in the diffusion
equation.

It is instructive to calculate orders of magnitude. For
a given (110) direction in copper,

0.0107 eVgrad/
Pll =

k T 0.02585 eV
=0.414

for a vacancy which is 50 A from an interstitial cluster
containing 100 interstitials. T is 300 K. Thus, even at
50A from the cluster the expansion is not rapidly
convergent. From Kq. (5), one finds with relaxation that

grad& Bpp,
2b Q =0.06428,

l p7 /pe

so that this term in the expansion is not very large at50A
from the cluster and the expansion is justified. At 25 A
this term is sixteen times larger. This again shows the
large influence of strains on the diffusion. If the ex-
ponentials are not expanded, one obtains

where E is the number of atoms per unit volume, b is the
jump distance, p& is distance measured along the hth
jump direction, J is the atomic vibration frequency, and
the sum over h is over all crystallographic jump direc-
tions. Eo is the migration energy of the defect in a
perfect crystal. If one considers three successive atomic
planes perpendicular to a particular jump direction, one
obtains the diffusion equation. It is

Bc —
b Byp, BV O' B'V)

J= vs' Q h + —cosh Q grad& — — exp —
~
Eo+Q yp, grad& ——

~

kT
Bp@ 2kT ~ Bpg, Bpi, 4 Bpi,')

c b ( Bpp, BV)——sinh
~ P grad&+

~
exp/ —(Ep+P pp, grad&)/kT)

b 2kT( i Bpi„ Bpa) -~ l

c b Bp~y, BVq- O' B'V)——sinh Q grad& —
~

exp —
~
Eq+Q yp, grad& —

~

kT
2k 2 & Bpg Bp,) 4 BpyP)
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alld

8c—=vP +b'
8$

cosh
~pI

b ( Bp(I, dV b' d'V
grad/ — exp —Eo+P pp, grad/ —— kT

2kT( ~ Bpg Bpg 4 Bpg

—2b sinh
~pa

b ~1Itu b' O'V

2kT & Bpg ~pal
gradP —

I
exp —Eo+P ptq grad& —— kT

~ph

b f Bpp, BV O' cI'V
+2c cosh

~ P — grad/ — exp —E,+P p, „grad&—— kT
2kT 4 2p@ rlpg l 4 Bpg

b Bpij, BU
2c—cosh — P grad&+ expL —(Eo+P ptq grad&)/kT j

l Qpj cIpa

These expressions are complicated, and as yet we have
not used them to follow the evolution of a system as
time goes on.

EXPERIMENTAL

In a series of recent papers, Sharma, I.ee, and
Koehler' have shown that lattice vacancies are responsi-
ble for the annealing which occurs just above room
temperature in three different experiments in 99.999+%
and 99.9999+% pure gold. Defects were produced by
(a) fast quenching from 700'C, (b) electron irradiation
at 100'K, and (c) a, few percent extension at 4.2'K. The
defect migrating during annealing was identified by
determining its activation energy for migration by
measuring the rate of annealing before and after a
sudden temperature change. Figure 3 shows some of
these data on 99.9999% gold and on 99.999% gold. The
less pure gold shows some annealing before stage III
begins. The activation energies measured by the slope
change method are given along the curves. Note that
the activation energies associated with this low-
temperature annealing are lower than those associated
with stage III. Shimomura' has shown that interstitial
platelets exist below stage III in these electron irradi-
ated gold specimens. He found that these interstitial
clusters disappear during stage-III annealing. Shimo-
mura observed that the number of such clusters does
not change with the irradiation dose; the average size
increases with dose. Moreover, he found that the
cluster density is a function of purity; the 99.9999%
pure specimens contain 8& 10'4 clusters per crn', whereas
the 99.999% specimens contain 1.8X10" clusters per
cm'. In the 99.9999% specimens, after 2.8X10" elec-
trons per cm' (3 MeV), the average diameter was about
60A. This cluster therefore contains about 396 inter-
stitials. At a similar dose the clusters in the 99.999%
specimens have an average diameter of something like
5.5 A and contain only three or four interstitials.

5 R. K. Sharma, C. Lee, and J. S. Koehler, Phys. Rev. Letters
19, 1379 (1967); C. Lee and J. S. Koehler, Phys. R,ev. 176, 813
(1968).

6 Y. Shimomura, Phil. Mag. (to be published).

The annealing which occurs below stage III in the
99.999% specimens results, we believe, from the migra-
tion of vacancies which are close to the interstitial
clusters and hence experience a large reduction in

migration energy. There is more of such annealing in a
99.999% specimen than in a 99.9999% specimen since a
larger volume is affected. In attempting to use the
theory given above for strains near interstitial clusters
to establish this point we run into the following diffi-

culty. The strains given in Eq. (2) assumed that the
cluster was an oversized defect which is spherically
symmetric. Actually the defects are platelike precipi-
tates on the (111}planes. For calculations involving
large strains, i.e., for vacancies close to the cluster, the
shape of the cluster is important.

Meshii and KauRrnan7 have done the following inter-
esting experiment on pure gold. They quenched from
1000'C and cooled quickly to 80'K where they plastic-
ally bent the specimen. The specimen was then annealed
at —10, 0, 10'C, etc. The activation energies measured
by slope change increased from 0.26 eV to 0.65&0.05 eV
and for further annealing stayed at the 0.65-eV value.
In this experiment one is probably observing divacancies
migrating in the dislocation strain fields since Ytterhus
and Halluffi have shown that the divacancy migrates
with an activation energy of 0.70 eV in gold.

In the case of interstitials one has clear evidence that
the energy of migration of an interstitial is lowered if a
lattice vacancy is nearby. In the stage-I annealing of
irradiated copper and silver there are a number of close
pair peaks which obey 6rst-order annealing kinetics and
then at a slightly higher temperature there is a second-
order peak. The first-order peaks are commonly
assigned to the recombination of close interstitial
vacancy pairs. The second-order process is assigned to
long-range migration of the interstitial. In copper and
in silver, Palmer, Magnuson, and Koehler' assign

7 M. Meshii and J. W. KauRman, Acta Met. 8, 815 {1960).
J. A. Vtterhus and R. W. Balluffi, Phil. Mag. 11, 707 (1965).
G. D. Magnuson, W. Palmer, and J. S. Koehler, Phys. Rev.

109, 1990 l1958).
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Fro. 3. The annealing of pure Au electron irradiated at 100'K. Full line gives data for 99.999% pure Au; dashed line gives data for
99.9999/& pure Au. Activation energies determined by slope change at the temperatures shown (for example 0.50 eV by change from
—100 to —90'C) are displayed along the isochronal annealing curves. Time at each temperature, 32 min; temperatures, 10'C apart.

activation energies as follows:

+A IB +0 ~D jv@

Cu 0.048 eV 0.080 0.092 0.112 0.120+0.005 eV
Ag 0.045 0.060 0.080 eV.

The 0.120-eV value was obtained for stage I~ by
Corbett and Walker' who believe that ID and I~ are
associated with the same activation energy. Granato
and Nilan" believe that I~ and I~ have diGerent acti-
vation energies. Thus in copper the presence of a
nearby vacancy lowers the migration energy of an
interstitial by as much as 0.07 eV (for Ez). Moreover
the interstitial and vacancy are probably separated by
a distance greater than approximately 4 A since
theoretical calculations show that for smaller separa-
tions spontaneous recombination occurs. "

'o J. W. Corbett, R. B. Smith, and R. M. Walker, Phys. Rev.
114, 1460 (1959);J. W. Corbett, ibid. 13?, A1806 {1965)."A. V. Granato and T. G. Nilan, Phys. Rev. 137, A1250 (1965).

"M. Doyama and R. M. J. Cotterill, Phys. Rev. 137, A994
(1965);L. Tewordt, ibid 109, 61 (1958)..

CONCLUSIONS

We have attempted to show by rather rough calcu-
lations that defect migration energies are altered by the
strain fields near other defects such as dislocations and
clusters of interstitial atoms. The important changes
which are produced in the diffusion equations are
described. Finally, experimental evidence for the in-

huence of strain fields on the migration energies of
vacancies, divacancies, and interstitials, is given.

The calculations made here should be repeated using
the strain fields appropriate for an elastically aniso-

tropic solid. The point of view adopted here is similar to
that of Overhauser, ' but he discussed averaged values
rather than considering the detailed spatial variation.
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