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onto the singlet even, singlet odd, triplet even, and
triplet odd states, respectively, and

Vse= Vse®(r) + Usk(r, p?),
Vso=Vs0°(r) +Uso(r, 1),
Vrg=Vre®(r) + Ure(r, p*) + Vre"St,
Vo= V1o®(r) + Viol®l- S+ Vo Sy,

The superscripts C, LS, and T designate the static
central, spin-orbit, and tensor parts of the potential.
The operators 1S and Sj; are the usual spin-orbit and
tensor operators. We have written

Usg(r, p*) =m~'[p*VseF (7) + Vsx® (7) p7],

Uso and Urg being similarly defined. The symbol
denotes the nucleon mass, 7 is the relative coordinate
| r,—ry|, and pis the relative momentum % | pi—p: |
The superscript P indicates that the radial form factor
is part of the momentum or velocity-dependent
potential.
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The radial functions VX (r) are given by
(i) for X#P,
VX(r) = —AX exp[— (0.6772a%ur)%]

—BX(e#7/ur)[1—exp(—aXur) ],
(ii) for X=P,

VP(r) = — AP exp[— (0.6772a%ur)?].

Here p is the inverse pion Compton wavelength,
#=0.7082 fm~.

The parameters of Vgy are listed in Table I, and
where the parameters differ from those of Green’s
potential, Vsr(a)+Vso(a)+ Vre(a)+Vro(a), the
parameters of the latter potential are quoted in paren-
theses. The parameters AX and BX for X#P have the
dimensions of energy. The quoted values are in units of
fm? i.e., they are to be multiplied by #2/m=41.469
MeV fm? to convert to MeV. All other parameters are
dimensionless.
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Effect of Woods-Saxon Wave Functions on the Calculation of
A =18, 206, 210 Spectra with a Realistic Interaction™
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The spectra of the nuclei O, F18 Ph2s, Ph0 are calculated using realistic forces and a Woods-Saxon
form for the shell-model average field. The substitution of Woods-Saxon for harmonic-oscillator single-
particle wave functions leads to appreciable upward shifts in the calculated positions for many low-lying
levels in the 4 =18 nuclei. In particular the T=0, J=1%and T=1, J=0" binding energies are decreased
by 0.6-1.7 MeV. In the heavier nuclei, one finds significant changes in observed energy levels perhaps only
for the ground states. Nevertheless, the introduction of the more realistic single-particle average field
in the Pb isotopes and in neighboring nuclei permits one to improve the conceptual basis upon which this

field is erected.

I. INTRODUCTION

ECENTLY, many authors'™ have attempted to
derive the residual interaction of the shell model
directly from the free nucleon-nucleon force. The
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spectra obtained with such interactions are invariably
calculated using harmonic-oscillator single-particle
wave functions. Several authors®® have suggested the
changes to be expected if one employs instead the more
realistic single-particle Woods-Saxon (WS) wave
functions.’® The present authors deem it necessary to
do a somewhat more complete study of the Woods-
Saxon shell model. This is especially true in light of our
results which indicate that for mass-18 nuclei, the
dislocations in level positions resulting from the use of
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WS functions can be as large as those obtained by
adding a core-polarization correction to the inter-
action.

In this preliminary paper we present the results of a
shell-model investigation with WS wave functions in
the 4=18, 206, 210 nuclei. In a later analysis, we will
discuss these and other regions of the Periodic Table
in more detail. We note here, however, that in Ca% and
Sc®, where the individual nucleons are unusually
deeply bound, and hence their wave functions are well
represented by single oscillator functions, the effect of
using a WS average field is minimal. Also we observe
perhaps the main lesson to be learned in the Pb¥®
region is that the use of the realistic form for the average
field permits one to make a more detailed and in-
telligent choice of this field. In Sec. II we outline the
general approach followed and consider the particular
case of the mass-18 nuclei. The Pb nuclei are treated
separately in Sec. III.

II. WOODS-SAXON SHELL MODEL FOR O, Fi8

A. General Procedure and Choice of
Realistic Interaction

The procedure we follow, though leading to lengthy
calculation, is quite simple. Our eventual aim is to
compute matrix elements of a two-particle residual
interaction vz of the form

[(¢n1l1f1\l’nzlzjz)JT | vg | (‘l’m’h'il"ﬁnz’lz’iz’)JTJ- (1)

The WS wave functions involved in this matrix element
may be expanded in terms of the oscillator functions
¢n2i(1r) in the fashion

Ynij(r) = Z, @ (1) (i) Pr 1 () - (2)

It is imperative that for all four WS functions in Eq.
(1), we employ a single value of the oscillator param-
eter 7iw. However, we may choose this parameter at our
convenience; for example, to minimize the number
of terms required in the expansion of Eq. (2). Finally
one can exploit the usual machinery of oscillator compu-
tations to excute the component calculations implied
by Egs. (1) and (2).

Since we are interested here only in a comparative
study of spectra calculated either with oscillator or
with WS wave functions, the choice of interaction
could perhaps be viewed as secondary. In a phenomeno-
logical shell-model calculation, one manufactures an
effective force to fit certain aspects of nuclear struc-
ture. The use of WS wave functions is then not perti-
nent. One would simply redetermine the interaction,
which could then be said to be wave-function—de-
pendent. Of course, analysis of certain data, such as
that obtained from nucleon transfer experiments,
might require the use of WS wave functions. If on the
other hand, one imagines oneself to be using a so-called
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“realistic” interaction, it is essential to investigate all
avenues which lead to appreciable changes in spectra.
For this reason, we employ interactions which have
been determined directly from the free-space force as
well as one which has been used extensively in pheno-
menological calculations.

The realistic representation of the residual inter-
action we use is the free-reaction matrix K(e), de-
termined directly by the present authors! from the
free nucleon-nucleon scattering data or derived from a
separable potential similar to that introduced by
Tabakin.’? This matrix satisfies the scattering equation

K(e) =v+o[P/(e—#) 1K (e), (3

where v is the nucleon-nucleon free-space potential, P
is a principal value operator, and e is an energylike
parameter. The nuclear reaction matrix, which defines
the residual interaction in the absence of core polariza-
tion, satisfies a similar equation:

Ky (E) =v+1[Q/(E—Hy) JKn(E), (4)

where H, is the shell-model Hamiltonian, and Q is a
projection operator out of the occupied states in the
closed shells of the core and out of the valence states.

The selection of H,, and the concomitant choice of
energy E at which Ky(E) is evaluated, is a subject of
some controversy. We have,® in fact, found from de-
tailed study, that if E is appropriately selected a
harmonic-oscillator or core-orthogonalized plane wave
description of the intermediate states in Eq. (4) pro-
duce very similar results. If the oscillator description
is fixed upon, one may take E=FE'4-E,—A, where
E'~—12 MeV is approximately the ground-state
energy of F® or O relative to the O core, while
E,;=2(7/2)fiw is the oscillator energy of a pair of
nucleons in the 2s-1d shell. The quantity A represents
an energy gap between the 2s-1d valence levels and the
unoccupied 2p-1f shell. To get results in the oscillator
case comparable to those obtained using plane wave
intermediate states, one should properly employ a
state-dependent gap but the choice A=E,;x94 MeV
for Zw=13.4 MeV is reasonable.

The solution of Eq. (3) may for e<0 be regarded as a
reference matrix suitable for a lowest-order approxi-
mation to the nuclear reaction matrix. We have sug-
gested using two approaches in evaluating this reference
matrix. First, we simply present a parametrized form
for K(e) which is specified by exploiting the relation of
its on-the-energy-shell matrix elements to the nucleon-
nucleon phase shifts. This phenomenological approach,
which we have discussed in detail elsewhere," is clearly
a close relative of the phase-shift method. Indeed we

1S, Kahana, Nuclear and Particle Physics (W. A. Benjamin,
Inc., New York, 1968).

2 F, Tabakin, Ann. Phys. (N.Y.) 30, 51 (1964).

13 S, Kahana, H. C. Lee, and C. K. Scott, Phys. Rev. (to be
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TasBLE I. Parameters of the phenomenological free-reaction matrix determined by fitting the form presented
in Eq. (50) to the Hamada-Johnston phase shifts.

V1 Vs € I’ 1o
(MeV) (MeV) (MeV) a/le| ef el (fm™) (fm™)
K (1So) —53.8 1221 1.70 4.72 4.40 0.90 3.07
K (3S0) —103.3 849 —8.6 1.5 2.28 1.11 2.67

choose € to reflect this relationship. Second, we employ
a matrix K(e¢) determined from a Tabakin-like sepa-
rable potential, which has itself been fitted to the
scattering data. In this last, more fundamental,
approach to the solution of Eq. (3) we select the
reference energy e to ensure K(e) is an accurate first
approximation to the nuclear reaction matrix Ky(E).

In the phenomenological free-reaction matrix we
permit interaction in only the 3S; and 1S, relative states,
and take in these states for e>0

K (e) =[(et+e)/(et+eo) Jor exp(—prr)
+[(ete2) / (ete0) J[va/ (me) *][p* exp(—par)
+ exp(—uar)p*], (5)

where p? is the square of the relative-momentum
operator p. A reasonable residual interaction obtains
for ¢ in the range 70-100 MeV, and we have settled
rather arbitrarily on the value ¢=86 MeV. We recall
that the parameters in Eq. (5) are obtained from a fit
to the scattering data. These parameters are given in
Table I. The negative value of the parameter ¢ listed
for the triplet state indicates the phase shift in this
channel becomes 37 for a relative scattering energy
e=—¢ and ultimately reflects the existence of the
deuteron bound state.

TaBLE II. Parameters for the separable potential » defined
in Eq. (6). These parameters were obtained in a least-squares
fit of the Y-IV phase shifts.®

@ g/a a g/a
281, (fm™1) (MeV) (fm™1) (MeV)
351 1.59 —2.89X10? 6.23 6.87X108
351D, —7.80X10! 1.53X10¢
3D, 1.50 5.44X102 6.00 4.86X10*
1p 1.90 4,40%X102 1.90 4.58X10¢
3D, 1.29 —2.05X%10? see oes
3D 2.37 —2.56X102 see oes
150 1.51 —1,91X102 7.29 7.78X108
3P, 1.53 —2.07X10? 1.53 8.86X10?
3P 1.37 1.14X10% 1,37 3.11X102
3P, 1.57 —7.38%X10! 1.57 —1.73X10*
1Dy 1.59 —-1.21X102 s ves
® See Ref, 15,

For our more fundamental determination of K(e) we
employed a two-term factorable potential possessing
momentum-space matrix elements

2
(ko lo| Ko')= D, D gu®Pvi(k)vyi(k) Y (ko)

Wim =1
X[V jm(K'a’) T*, (6)

where the relative orbital momenta /) have been
coupled to the two-particle spin S to give a total
angular momentum j. In Eq. (6), k is the relative
momentum, ¢ is a spin label, while V;;*(ko) is the
conventional spin-orbital function. The sum over 7 in
Eq. (6) extends over two terms; in general, one of these
is attractive and the other repulsive. For the s states
the analytic form we choose for the attractive form
factor

w'(k) =1/(F*+ar) (7
coincides with that of Tabakin,® but the repulsive
term which we also take as

2@ (k) =1/(k*+a?)

differs in form from that of Tabakin. Consequently, we
obtain a potential possessing a considerably stronger
repulsive core than Tabakin’s. For the (3D;) potential
form factor we take

1}21 2 (k) f— kZ[k?_'_ (agl ,2) 2:]—2,
while in uncoupled waves for />0 we use
'I)zi(k) =kl+2i—2[k2+ (dzi) 2:[—(i+§l).

The potential parameters for the relative states in
which we permitted forces are listed in Table IT and Ref.
15. The free-reaction matrix is easily deduced from Eq.
(5) by the substitution gu-%s—Au*”(e), where the
functions A(e) are obtained by appropriate manipu-
lations on Eq. (3). For example, in the 1S state, A(e)
as a matrix in the indices ¢ and ¢’ satisfies the equation

Ae) =g+gr(e)A(e), (8)

@ 0
0 g®
7!'11 7..12
T= y
ﬂ.21 1‘.22

% R, Seaman, K. A. Friedman, G. Breit, R. D. Haracz, J. M.
Holt, and A. Prakash, Phys. Rev. 165, 1579 (1968).

where

and
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with
5 o ﬁ2q2]“1

23! =P 2 ) </ —_——

7 (e) fqdqv(q)v (q)[e -

Forces were permitted in all S, P, D relative states.
Although tensor coupling was included between the
381, 3D pair, it appeared to be rather weak for low-
energy scattering. We find that our reference matrix
K(e) for e=—80 or —200 MeV reproduces with
reasonable accuracy most matrix elements of Ky(E)
for the gaps A=0, E,,, respectively. We conclude this
description of our residual interaction by noting that
either version possesses the features one generally
associates with the term realistic. In particular, both
contain a strong short-ranged repulsion. We believe
that effects similar to those presented in the following
would result from other realistic interactions.

B. Single-Particle Potential

The WS potential we employ for an average field has
the standard form!

U(r) =Uo(r)+2Us(r)L-S,
with

Uo(r) == Uo{1+exp[(r—Ro) /al}~'=—Upf(r) (9)

and
Us(r) =Us(h/mac)*(1/7) (d/dr)f(r),

where S is the nucleon spin operator, and m, the
m-meson mass. In fact, we use the conventional value
(%i/mac) 22 fm?. The parameters in this potential were
chosen by fitting the known binding energies of the
single-particle dgs, $1/2, and dy levels in OV, The dy;
level which is unbound by about 1 MeV presents some-
thing of a problem. We treated this level by arbitrarily
increasing its potential depth and then subtracting the
added potential AUy(7) from the residual interaction.
The increment AU, was varied between 1 and 3 MeV,
the former leaving the ds2 level bound by only —0.23
MeV. Little effect was noted in the calculations of
two-body matrix elements. To deduce a correct spin-
orbit splitting it was necessary to extrapolate the dy
level into the continuum.

We felt the well radius R, would best be determined
by following the procedure of Nolen et al.!® for the Ca
isotopes. The latter authors suggest one place on the
single-particle well the additional restriction that an
accurate prediction be obtained for the energy shift
between the ds» ground state of O¥ and its analog,
the ground state of F¥. For heavier nuclei one would be
in this prescription making rather definite assumptions
about the structure of the analog state, but assump-
tions surely consistent with the shell model. When
employing oscillator wave functions, one deduces the
parameter fiw by requiring the matter distribution

167, A. Nolen, Jr.,J. P. Schiffer, N. Williams, and D. Von Ehren-
stein, Phys. Rev. Letters 18, 1140 (1967).
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TasLe III. WS wave functions obtained for the OV valence
levels by fitting the absolute positions of the dys, $172, and dga
levels in OV and of the dy/; level in FY7. The WS parameters of
Eq. (5) are Vy=57.0 MeV, Vy=5.7 MeV, a=0.63 fm, and
r0=1.17 fm, where Ro=7A413. The dy level is presented for a
potential increment AU,=1 MeV. Also shown are the level
Coulomb shifts in F17 as well as the average 72 value for the neu-
tron levels. (fiw)max is the oscillator parameter which maximizes
(Ref. 9) the WS overlap with its main oscillator component. The
explicit expansion of each level into single-particle oscillator
components is given for the first seven terms.

1dsss 2517 1ds/2
E.i(0") Calculated  —4.106 —3.268 —-0.227
(MeV) Expt —4.14 -3.27 0.94
Ec Calculated 3.51 3.14
(MeV) Expt 3.54 3.17
(r®) (fm?) 11.618 17.79 16.904
hw) max 13.5 12.0 11.0
(MeV)
Oscillator
amplitudes
n
0 0.988 —0.143 0.958
1 —0.014 0.947 0.001
2 0.137 —0.087 0.234
3 —0.053 0.228 —0.067
4 0.032 0.098 0.091
5 —0.029 0.008 -0.077
6 0.014 —0.072 0.060

coincide with the charge distribution determined from
electron scattering..For the mass-18 nuclei one thus
obtains the standard value fiw=13.4 MeV.

To deduce the Coulomb energy shift discussed above,
we have taken the charge distribution in the O* core
to be that of a uniformly charged sphere possessing an
rms radius ¢=2.71 fm.” The resulting Coulomb po-
tential

Vo(r) =(Ze*/2R,)[3— (r/R,)%],
=Zé/r,

r<R,

with R,=(5/3)V2a the radius of the equivalent charge
distribution, is then added to the neutron potential in
Eq. (9).

The WS wave functions were calculated using the
ABACUS program.’® In Table III we present the WS
potential parametrization obtained and some descrip-
tion of the resulting wave functions. The value of 7iw
which maximizes the overlap of a WS function with its
main oscillator component? ‘is indicated for each level
as are the amplitudes of some of the leading terms in the
expansion of Eq. (2) . Had we plotted the WS wave func-

7H. R. Collard, L. R. B. Elton, and R. Hofstadter, in Nuclear
Radii, edited by H. Schopper (Landolt-Bornstein, Springer-
Verlag, Berlin, 1967), Group 1, Vol. 2.

B E. H. Auerbach, BNL Report No. 6562 (unpublished).
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TasLE IV. Spectra obtained for the 4 =18 nuclei using WS
wave functions and the phenomenological free reaction matrix
K (e) for ¢=86 as a residual interaction. Only the s-wave parts
of the reaction matrix, as shown in Eq. (5) are included. The
oscillator spectra for Aw=13.4 and 12 MeV are presented for
comparison. All energies are in MeV.

Oscillator
Level hw=13.4 ho=12 WS
T=0Jr=1% —5.05 —4.80 —3.98
3+ —3.97 —3.68 -3.37
5* —4.06 —3.78 -3.90
2+ —1.67 —1.43 —1.06
1+ 1.05 —0.95 —0.12
3+ —0.32 —0.28 -0.20
T=1,J*=0% -3.05 —2.91 —2.63
2+ —-1.59 —1.43 —1.33
4+ —0.82 -0.73 —0.73
o+ 0.06 0.12 0.67
2+ 0.15 0.18 0.23

tions, their most prominent feature would be the extent
to which the 1ds, and especially the 2si2 functions
protrude beyond their oscillator counterparts. We have
illustrated this point by including in Table III the
square of the average radii for each level.

C. Matrix Elements and Spectra

Finally, we consider the residual interaction matrix
elements obtained with WS wave functions. If one uses
as a yardstick, the matrix elements calculated with
oscillator functions for iw=13.4 MeV, then one finds
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all WS matrix elements are reduced in magnitude. The
amount of this reduction varies from as little as 109,
for a matrix element involving four ds;» wave functions
to as much as 509, for a purely si; matrix element.
Some of this quenching of the force can be obtained by
considering, in Table III, the amplitude of the main
oscillator components in the WS functions. However,
other terms in the expansion are of importance. The
physical reason for the reduction is simply the degree to
which the cutoff WS potential allows wave functions to
spread out in space. The full extension of the wave
functions is not described adequately by a single-
oscillator component. For example, if one calculated
the (si2'), T=0, J=1% matrix element using just the
largest oscillator component in Table III, only a 229
reduction in size would result. In all matrix elements
calculated in this section, proton wave functions de-
rived from only the nuclear potential were employed.
Had we used the proper Coulomb wave functions, the
observed quenching would have been even greater.
The A=18 spectra calculated both from WS wave
functions and from oscillator functions for fw=13.4
and 12 MeV are shown in Tables IV and V and in
Figs. 1 and 2. The residual interactions employed were
the phenomenological free-reaction matrix K(e) for
e¢=86 MeV and the more fundamental free-reaction
matrix for e=—200 MeV, respectively. The latter
choice was made to ensure our fundamental interaction
was reasonably closely matched to that of Wong® or of
Kuo and Brown.* The latter authors use plane-wave
intermediate states in solving Eq. (4). The maximum
effects relative to the 7iw=13.4 oscillator spectrum are
seen for the T'=0, J=1* or T'=1, J=0% levels. The
displacement produced in the ground state of F'® was
large indeed, some 2 MeV, when the more fundamental

TaBLE V. Spectra obtained for the 4 =18 nuclei using WS wave functions and as a residual interaction the solution K(e) of Eq.

(3) for the potential of Eq. (6) with e=—200 M

eV. The experimental spectrum and spectra calculated using harmonic-oscillator

wave functicns with fuw=13.4 and 12 MeV are presented for comparison. All energies are in MeV.

Harmonic oscillator

Level Experiment WS (i) hw=134 (i) hw=12

T=0,J7=1% —5.01 -3.81 —5.84 -=5.21
3+ —4.07 -3.18 —4.21 —3.66
5+ —3.88 —3.50 —4.02 -3.53
2+ —2.49 —1.29 —2.67 —2.00
1* 0.02 —1.67 —1.37
3+(2Y) —1.65 -0.29 —0.48 —0.37

T=1,J7=0% -3.90 —2.05 —2.87 -2.41
2+ —1.92 —1.35 —1.78 —1.53
4+ —0.35 —0.58 —0.74 —0.63
o+ —-0.27 0.80 —0.24 —-0.10
2+ 0.02 0.09 —0.10 —0.02
3+ 1.47 0.63 0.55
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free-reaction matrix was used. When we employed a
purely s-state force with a repulsive component, this
shift was just over 1 MeV. As oscillator components of
higher 7 are included in the WS calculation, other
partial waves, especially the 3P; and P; waves in which
the potential is known to be strongly repulsive at high
energies, play an increasingly important role.

If one uses for comparison purposes the oscillator
spectrum calculated with a value of Zw~12 MeV,
arrived at by roughly averaging over the oscillator
energy parameters which best describe the three
valence states, the discrepancies between oscillator and
WS spectra are somewhat less. No purely oscillator
calculation, however, can reproduce all of the changes
wrought by introducing WS wave functions. Our cal-
culations perhaps, indicate the need for a more intelli-
gent choice of 7w, a choice more consistent with the
spatial extent of the valence orbits than is the value
fuwv=13~14 MeV commonly employed with realistic
forces. This lesson is of equal importance in other
regions of the Periodic Table.

Indeed in hole-hole calculations in N we find that a
reasonable one-oscillator function description of the
single-particle states obtains for 7iw=16 MeV. The
WS well appropriate for the py» and pg» holes is deeper
than the corresponding well for particles. In the region
of Pb?® we shall see that this situation between particles
and holes is reversed. It is evident that in N the use of
our prescription for determining the single-particle
potential would lead to greater binding energies than
those obtained with an oscillator calculation for 7iw=
13.4 MeV. This behavior of hole-hole states relative to
particle-particle states had previously been commented
on by Wong and Wong.?

A computational point worthy of note concerns the
advisability of limiting the number of components
which enter into the calculation of WS matrix elements.
One must certainly truncate the expansion in Eq. (2).
We have for the programs involving pure s-wave forces
included as many as ten oscillator components to de-
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- 4 +
+ —_— 4
34 4
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1 2+ _ % 3t
0 2+ —_— ,‘:.':-—— 2+ 2F
—_— —_— - 4* 2:
-] -
-~ 2+ +
—_—— 2
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Fic. 1. T=1 two-particle spectrum of O calculated with
harmonic oscillator (HO) or Woods-Saxon (WS) wave functions
and the fundamental free reaction matrix as a residual interaction.
The calculations are for (a) HO, 7iw=13.4 MeV, ¢=—200 MeV;
(b) WS, e=—200 MeV; (c) HO, iw=12.0 MeV, e=—200 MeV.
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Fi16. 2. T=0 two-particle states in F® calculated with harmonic
oscillator (HO) or Woods-Saxon (WS) wave functions and the
fundamental free reaction matrix as a residual interaction. The
calculated spectra are (a) HO, fiw=13.4 MeV, e=—200 MeV;
(b) WS, e=—200 MeV; (c) HO, 7iw=12.0 MeV, e=—200 MeV.

scribe the O valence wave functions. Also for these
simpler situations we retained in the matrix elements
terms of all orders, up to quartic, in the small amplitudes
displayed in Table III. For the more fundamentally
derived free-reaction matrix, which contains forces in
relative S, P, and D waves, it is tempting to ignore all
but terms linear in the small oscillator amplitudes.
This can be somewhat inaccurate for a matrix element
involving, say, four 2s1/, wave functions. If, for example,
one were using a very long-ranged force, this matrix
element becomes more or less proportional to a product
of normalization integrals. Only some 78% of this
normalization resides in the single term containing the
large n=1 oscillator component. A major portion of the
missing normalization strength is to be located not in
the linear terms, which are clearly off-diagonal in the
oscillator radial quantum number, but rather in the
terms quadratic in small amplitudes. For matrix ele-
ments which vanish in the limit of an infinite-range
force or obtained using short-range forces, the situation
is not so dramatic.

For the spectra obtained using the more funda-
mental K (¢) and presented in Table V we have used the
linear approximation. The matrix elements expected
to be sensitive to this approximation were recalculated
using the quadratic terms in addition. We found, in
particular, that the 7'=0, J=1%(sy,)* matrix element
was altered from —1.93 to —2.15 MeV while the
corresponding T'=1, J=0% matrix element changed
from —1.14 to —1.29 MeV, in the presence of the
quadratic terms. Consequently, the binding energies of
the lowest T'=1, J=0% or =0, J =1+ states increased
by 0.12 and 0.25 MeV, respectively. Energies for states
of higher angular momentum are considerably less
effected. The disparity indicated in Table V between
the harmonic-oscillator %iw=13.4 MeV spectrum and
the WS spectrum is thus lessened.

We have further tested the sensitivity of our results
to the nature of the force by employing in place of
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K (¢) the Rosenfeld mixture®®

7)3(7’12) =1 exp(—ru/a) (712/0)_1(0.3+0.761‘ G2) %1° %2

(11)
for the two parametrizations

yp=—50MeV, 2=1.36 fm

and

v=—12MeV, ¢=2.72 fm.

We found, for this force, differences between the
oscillator and WS spectra very similar to those de-
scribed above. We used only the s-wave part of the
Rosenfeld force and consequently the maximum os-
cillator-WS shift observed was ~1 MeV for the T=0,
J=1% states. One of the criticisms that can be brought
against our fundamental realistic interaction K(e) is
the rather short range of the underlying separable
potential. We conclude from the Rosenfeld-mixture
spectra that although the WS quenching is not too
dependent on range, one may be slightly over-estimat-
ing the reduction in matrix elements by using K(e) as a
residual interaction.

In concluding this section, we may reiterate a state-
ment made in Sec. I. For light nuclei, one can expect
the use of realistic single-particle wave functions to
produce level shifts comparable to those which were
obtained in the core-polarization calculations of Kuo
and Brown.* The realistic force we have employed
is not unlike that of the latter authors or of Wong.®
The low-lying =0, J=1% and T=1, J=0%* states
were found to be most effected by the change in wave
functions. The fits to the experimental 0* levels pre-
sented by Kuo and Brown for the 0* states in O were
perhaps uncomfortably good. From E2 transition
probabilities observed in this nucleus one expects these
states to have a partially deformed character.?® The
weakening of the residual force by the WS wave
functions now permits the collective components to
play some role in determining the energies of low-lying
states.

The use of WS single-particle wave functions leads
to some changes in these E2 transition probabilities.
If we label the states of O® in the transparent fashion
0+, 2,1, 041, etc., then the interesting transitions are
E2(0,t+—2;%) and E2(2;—0;%). The use of WS wave
functions allows one at a first stage to fit the quad-
rupole moment of the OY ds» ground state and the
syz—dsj2 reduced transition strength with effective
charges which differ by only 49%,. A reasonable common
value for this charge is e.ss=0.4e. If one employs
oscillator single-particle functions and #iw=13.4 MeV,

® L. Rosenfeld, Nuclear Forces (North-Holland Publishing
Co., Amsterdam, 1948).

2 G. E. Brown, Compt. Rend. Congr. Intern. Phys. Nucl.
Paris 1, 129 (1964).
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one requires an effective charge e.ss=0.52¢ to fit the
transition probability but a reduced value 0.42¢ to
fit the static moment. With WS two-particle wave
functions obtained by diagonalizing our phenomeno-
logical free-reaction matrix, the strength of the transi-
tion 0;+—2;* is increased by a factor of 2.5 over the
value obtained from corresponding oscillator functions.
Thefinal calculated strength, or BE(2), is still an order of
magnitude less than the experimentally observed value
2.22 ¢? fm?*. This effect of the WS functions is at least
in part attributable to the weakening of the interaction
between the lowest two Ot levels. A smaller mixing
between the (sys?) and (ds;?) configurations in these
and the 2;* levels considerably reduces the degree of
cancellation in the 0;t—2;* transition. At the same
time the 2,%—0,* transition is slightly decreased.

III. Pb REGION

We have promised to briefly consider the 4 =208
region of the Periodic Table. The procedures discussed
in the earlier sections of this paper were used to de-
termine what were essentially four independent wells
for the neutron and proton particle and hole states.
The energy shift between the Pb?® particle states and
their analogs in Bi*® played a major role in determin-
ing the size of the neutron well. We placed an additional
restriction on the proton well, asking that the proton
matter distribution, obtained by taking our local well
seriously, not possess an rms radius less than that de-
termined in electron scattering. For Pb*® the root-
mean-square radius we employed was ¢p=>5.49 fm.?

The parameters in these wells are displayed in
Table VI. Although we did not invoke an independent
size parameter for the spin-orbit component, our
proton potentials for both particles and holes are not
unlike those of Rost.”? However, our neutron para-
metrization differs significantly from that of the latter
author. We have written the radii for the different
Woods-Saxon potentials in the conventional fashion

R0= foAlls,

allowing particle and hole radii to differ only by this
explicit mass dependence. Rost?® has used for his
neutron well an 7 between 1.295 and 1.347 fm, a con-
siderably larger figure than that given in Table VI.
Clearly, the Rost well will not correctly describe the
analog Coulomb energy shift within our framework
for the analog state. In addition there seems to be
evidence from stripping data® that the Rost well leads
to unusually small spectroscopic factors for what one
believes to be reasonably good single-particle states

21 H. L. Acker, G. Backenstoss, C. Daum, J. C. Sens, and S. A,
DeWitt, Nucl. Phys. 87, 1 (1966).

22 E, Rost, Phys. Letters 26B, 184 (1968).

28 (. Igo, E. R. Flynn, P. Barnes, and D. D. Armstrong (to be
published).
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TasLE VI. Proton and neutron well parameters which are fitted to the proton charge distribution and analog-state Coulomb energy
as well as the single-particle and single-hole energies in appropriate nuclei near Pb®8, The proton particle and hole wells were identical
for all but the 1/, hole level. To describe the neutron wells, it is convenient to use the oscillator quanta label » =2r+-I. The well pa-
rameters listed for the =7 level place the j=15/2" level at the position of the lowest observed level of this character.

Vo Vso 7o a

(MeV) (MeV) (fm) (fm)

A. Proton wells level description (n+1,1,7)
3puiz, 3Pz, 2siz, 2furz, irar 60.6 7.40 1.27 0.70
3s1/2, 2d3s2, 2dss2, 1812, 18012 60.6 7.40 1.27 0.70
1hgs9, 101142 59.6 11.0 1.27 0.70

B. Neutron holes level description (2rn+1)

52.0 5.32 1.135 0.70
6 55.0 6.32 1.135 0.70
57.8 6.82 1.135 0.70

in Pb*. Smaller neutron valence orbits would in-
crease these spectroscopic factors.*

It is of interest to note, parenthetically, that the
neutron and photon mass distributions predicted from
our local potentials differ in their average radii by only
a negligible amount. The neutrons, however, extend
well beyond the Coulomb-confined protons. These
conclusions had already been arrived at for the Pb
isotopes by Nolen et al.% using a technique which
treated the mass distributions in a more direct geometric
fashion. With this latter approach, these authors de-
duce for the neutron excess a rms radius of 5.70 fm,
whereas our microscopic picture yields 5.72 fm for this
same radius. In Table VII we have listed Coulomb
energies and neutron excess radii for ours and a variety
of earlier wells.

From the well parametrizations listed in Table VI
we see that the neutron particle and hole states cannot
be described by the same well depths. To properly
bind the particle states one must increase the central
and spin-orbit strengths of the well used for holes by
3 and 1 MeV, respectively. This is perhaps equivalent
to introducing an effective mass into the particle
single-particle Hamiltonian.®® In this latter discussion
we find it necessary to place the 432 hole state in the
particle well. If the hole parameters are used for this
level, insufficient binding results. A further deepening
of the well is required to place the ji5» single-particle
strength at 1.41 MeV above the Pb*® ground state
(where the first such level is observed). Recent experi-
ments by Igo ef ol indicate the lowest 15/2— level

2485, A, A, Zaidi and S. Darmodjo, Phys. Rev. Letters 19, 1446
(1967) . These authors have also used a neutron well with a small
?ai{di}ls,z 3:; well which leads to reasonable spectroscopic factors

ef. 23).

2 J. A. Nolen, Jr., J. P. Schiffer, and N. Williams, Phys. Letters
27B, 1 (1968).

26 G, E. Brown, J. G. Gunn, and P. Gould, Nucl. Phys. 46, 598
(1963) ; G. F. Bertsch and T. T. S. Kuo, sbid. A112, 204 (1968).

contains perhaps only 509, of the total single-particle
strength. Assuming that the remainder of this strength
islocated at 3.56 MeV, as suggested by these authors,
one still finds it necessary to use a deeper well for the
15/2~ state than for the other particle states.

Whether or not the above correlation between
oscillator major shell and neutron well depth is sig-
nificant, one may still conclude that the single-particle
wells in the A~208 nuclei are unusual. The use of
different proton and neutron nuclear wells appears to
imply that isobaric spin invariance fails for the single-
particle part of the nuclear Hamiltonian. If this in-
variance is to be restored, one must presumably employ
a noninvariant residual interaction. We should note
at this point that we advocate, at the very least, an
isotopic dependence in the proton well. In the analog
state where the proton interacts with the neutron excess
via only the T'=1 part of the particle-particle force we
use a proton well identical to that for neutrons. In the
states of lower isotopic spin, for nuclei with one proton

TaBLeE VII. Coulomb energies and neutron excess rms radii
for our well, Rost’s NoT well,> and the Blomqvist-Wahlborn well.
The Rost (Blomqvist-Wahlborn) well parameters are Vo=40.5
(44.0) MeV, V=830 (7.82) MeV, r=1.349 (1.27) fm, and
a=0.70 (0.67) fm.

Direct Neutron
Coulomb excess
energy radius
Neutron well (MeV) (fm)
Rost? 18.16 6.53
Blomgqvist-Wahlborn® 18.73 6.21
Ours 19.62 5.72
Geometric description of Nolen, 19.69 5.70
Schiffer et al.c
8 See Ref, 21.

by, Blomqvist and S, Wahlborn, Arkiv Fysik 16, 545 (1960).
© See Ref. 24.
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TasrLe VIII. Single-particle and single-hole energy for Pb%s,
The binding energies calculated from the potential wells pa-
rametrized in Table VI are compared to the experimental energies.
Also listed are (a) the values of (Aw)max Which yield a maximum
overlap for each WS wave function with its largest oscillator
component and (b) the amplitude ama., of this oscillator com-
ponent when the choice fw= (fiw)max is made in the expansion.

Experimental® Calculated

binding energy  energy = (Aw)max  @max
Level (MeV) (MeV) (MeV) (fm)
(a) Proton particles (Bi%?)
3pua 0.18 —0.14 6.69 0.979
3ps2 —0.57 —0.21 6.50  0.977
s —0.94 —0.84 7.00  0.985
131372 —2.16 —1.92 7.50  0.995
2f12 —2.87 —2.93 6.62 0.980
1hgs2 -3.77 —3.93 7.75  0.996
(b) Proton holes T127
35172 —8.03 —-7.71 6.12 0.966
2ds2 —8.38 —8.52 6.38  0.975
1h172 —9.37 —9.58 7.00 0.993
2ds/2 -9.70 —9.84 6.19 0.971
1g12 —11.51(?) —12.3 7.06 0.994
(c) Neutron particles Ph2®
3ds/2 —1.42 —1.34 7.81 0.956
2g112 —1.45 —-1.37 8.44 0.988
451 —1.91 —1.98 7.56  0.946
3dsi2 —2.36 —2.52 7.81 0.976
171672 —2.53 —2.54 9.38 0.998
1ous -3.15 -3.39 9.38 0.998
2g012 —3.94 —4.24 8.25 0.995
(d) Neutron holes (Pb%7)
3pue —7.38 —7.22 7.75 0.992
2fs12 —-7.95 —-7.97 8.12.  0.996
3par —8.27 —-7.94 7.75  0.992
131372 -9.01 —8.76 9.00  0.998
2fur2 —9.72 —9.87 8.00 0.994
12 —10.85 —10.70  8.81 0.998
& See Ref. 27.

particle plus a neutron excess composed of closed shells,
the proton interacts with the neutron excess through the
T=0part of the force. It is this altered environment, for
what we have previously referred to as proton particles,
that presumably results in a proton well altered in
depth and size from the neutron-hole well. The increase
in proton well size is reasonable in view of a tendency
for protons and neutrons to remain spatially together.

A more consistent treatment would, no doubt, be ob-
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tained if one mentally stripped off the neutron excess
and considered the entire proton-neutron-excess inter-
actions in detail. However, since it is our intent to
follow the usual shell-model procedures for nuclei such
as Pb? and Pb?° we have submerged the proton-
neutron excess interaction into an over-all single-
particle potential. This potential was, nevertheless,
chosen so as not to violate certain physical features of
these nuclei.

Finally, we should, of course, reemphasize that the
analog-state Coulomb energies are obtained in the
manner discussed in Sec. II for the 4 =17 nuclei. Of
course, the relationship between a single-particle state
in Pb? and its analog in Bi?*® is considerably more
complex than the relation between the ground states of
OY and FY. The entire neutron excess is involved in a
characteristic fashion in the heavier nuclei,” and in
fact the single-particle go» component is only a very
small part of the total analog wave function. Since
this is true also for any of the single-particle excited
states, the Coulomb shifts one observes should, to a
high degree of accuracy, be state-independent.

In our calculations we chose to fit the Coulomb shift
in the Pb¥5-Bj2® pair. We increased the experimentally
observed shift of 18.98 MeV by some 0.7 MeV to
account for a Coulomb exchange energy. The latter
had been estimated by Nolan et al.%® to be 3.5%, of the
direct Coulomb energy. In the 4 =17 nuclei we omitted
reference to an exchange energy; including it would have
slightly decreased the effects we obtained. One might
also question the accuracy of the form shown in Eq.
(10) for the proton-nucleus Coulomb potential. We
did not feel that the differences produced by employing,
say, a Fermi charge distribution would significantly
alter our results.

We have presented, in Table VIII and Fig. 3, the
level positions determined from our well and for com-
parison the experimentally observed energies. Also

0 -

— P32
=1 - ds/2 — fsp ——
gvy == ‘
-2 Si/2 13/2 ————
m—— dsp ———
=3 {us/z —_— — T2 T
12 -
-4 — he/2
9/2
_5 =
-6 -
i —Piz
-8 - Ls/z — SN2 —_
/2 T —_— D —
=9 higz —— 2
RN, —h —_—
- f ———— MNiya
-0 772 ds/z
-l - —hgyp ——
-2 =
MeV CALCULATED EXPT CALCULATED EXP

NEUTRON LEVELS PROTON LEVELS

F1c. 3. Diagramatic representation of the fits to single-particle
energies in the Pb2% region with the potential well of Table VI.

2 D. Robson, Ann. Rev. Nucl. Sci. 16, 119 (1966).
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presented in Table VIII are the values of the oscillator
parameter which leads to a maximum overlap between
a WS wave function and its main oscillator component.
Clearly, all hole levels and many-particle levels are well
described by a single-oscillator component. Typically
particle states with low angular momentum and
several nodes require a multicomponent oscillator
description. In any case, no single value of the oscillator
parameter can be used to give an adequate single-
oscillator function representation of all levels. In
particular there is a considerable disparity between
what one might regard as an average proton value
fiw=6.75 MeV and an average neutron value fiw=_8-9
MeV. A structure calculation involving both neutron
and proton levels is then no longer simple. Even if one
employs a single-oscillator component for protons and
neutrons separately to calculate interaction matrix
elements, one will be forced to expand one or other of
the sets of wave functions in the mode of Eq. (2).

For our illustrative calculations in the Pb region we
have employed as a residual interaction the separable-
potential-based free-reaction matrix K(e) for the
choice e= —200 MeV. Although a proper nuclear reac-
tion matrix calculation should be performed to deter-
mine the bare residual interaction, we felt the above
choice would be adequate for delineating the effect of
WS wave functions. It should be noted that our bare
force does not take account of the asymmetric treat-
ment of the Pauli principle in intermediate states that is
required in the presence of a neutron excess. The latter
may have serious consequences for the residual inter-
action.

In Table IX we display spectra for Pb* and Pb??
obtained from a WS calculation and from pure oscillator
calculations for 7iw=6 MeV and 8 MeV. For compara-
tive purposes, both the unperturbed and experimental
positions of levels are included. It is immediately
evident that the valence particle-particle or hole-hole
interactions for the Pb isotopes are considerably weaker
than those observed in light nuclei. With the exception
of the ground-state energies for the two nuclei con-
sidered in Table IX, most levels suffer shifts due to the
interaction which are small relative to the unperturbed
spacings between configurations. In most cases the
changes produced by employing WS wave functions are
also small and seem inconsequential in relation to other
uncertainties in level position and structure.

The hole states for a single type of particle are, as we
have indicated, rather well described by single oscillator
functions. One does not therefore expect WS functions
to alter calculated hole spectra, provided of course one
employs the correct value of %iw. In particular, we see
that the interaction energy for the ground state of
Pb*® predicted by a WS calculation is bracketed by the
energies obtained from oscillator calculations. In con-
trast, the corresponding WS energy for the ground
state of Pb?? is less than the value obtained with either
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TaBLe IX. (a) Pb® and (b) Pb2° spectra obtained from
WS calculations and from oscillator calculations with fiw=6 and
8 MeV. The fundamental free-reaction matrix with e=—200
MeV is used as a residual interaction. The unperturbed and
experimental level positions are listed for comparison. Only a
few states were considered in the WS diagonalizations because
of the large amounts of computer time required. For Pb%8 one
can probably trust the oscillator calculations for /iw=8.0 MeV.
All energies are in MeV.

Unper- Oscillator
J* turbed Experiment* hw=6.0 hw=8.0 WS
(a) Pb¥e
o+ 0.00 —0.64 -0.37 —0.52 —0.46
1.14 0.52 0.62 0.58 0.60
1+ 0.89 1.09 0.84 0.83 0.81
1.46 (1.51) 1.40 2.82 1.39
2+ 0.57 0.16 0.24 0.00 0.08
0.89 0.82 0.59 0.54 0.48
1.14 1.14 1.03 0.99 1.00
3+ 0.57 0.70 0.54 0.52 0.53
1.46 2.48 1.39 1.34 1.34
&+ 114 1.04 1.05 0.93
1.46 1.36 1.22 1.16
2.20 2.28 2.21 2.18
5t 291 2.84 2.80
3.26 3.18 3.16
6t  2.91 (2.61) 2.48 2.29
3.26 3.18 3.16
3= 3.97 1.89 3.69 3.63 3.66
4 2.2 2.14 2.11 2.11
3.97 3.90 3.84 3.82
5 2.20 2.14 2.13 2.09 2.12
3.97 (2.55) 2.37 2.33 2.34
6 1.63 1.74 1.60 1.58
2.20 2.16 2.14
[ 1.63 1.56 1.50 1.44
2.20 2.12 2.10
& 2.2 2.16 2.13
2.52 2.49 2.48
9= 2.2 (2.01) 1.95 1.84
3.97 3.93 3.92
0= 3.97 3.94 3.93
(b) Pbo
o+ 0.00 —1.24 —-0.68 —0.76 —0.55
1.58 0.91 0.90 0.98
1t 0.79 0.68 0.66 0.72
2.49 2.4 2.42 2.36
2t 0.00 —0.44 —0.24 —0.34 —0.30
0.79 0.77 0.74 0.79
4+ 0.00 —0.15 —-0.11 —0.15
6t  0.00 —0.05 —0.06 —0.09
8+ 0.00 +0.03 —0.04 —0.06
2= 2.2 2.03 2.00 2.00
3= 1.41 1.17 1.14 1.16
2.20 2.10 2.04 2.03
4= 1.14 1.32 1.25 1.22
2.20 2.09 2.05 2.05

& W. W. True, Phys. Rev. 168, 1388 (1968).
b C, Reidel, R. A. Broglia, and A. Miranda, Nucl. Phys. A113, 503
(1968).



966

fuw=06 or 8 MeV. The particle-particle states expected
to be most affected by the use of WS functions unfortun-
ately lie higher up, in energy regions as yet unexplored
experimentally.

Since the radii of the Pb nuclei are considerably
larger than the range of the bare force, one might have
expected the 7iw dependence of our potential to be
described simply in terms of geometry. If only the rela-
tive s-wave part of the force were included one would
in fact observe a proportionate increase in the size of
oscillator matrix elements as 7w increased. However,
the triplet-odd part of the potential, in particular the
relative 3P state, seems to be strong and repulsive in its
contribution to the residual interaction. The combined
interaction from the 1S, !D,, and 3P; states is then
much less sensitive to fiw. Indeed in certain cases in-
creasing 7iw can lead to a decrease in attractive matrix
elements, and even repulsive matrix elements may result
if the singlet-even potential is overwhelmed.

Table IX lists the /=0% matrix elements appropriate
to Pb?0 for a variety of situations. The eventual out-
come in Pb?% we recall was, as one might have expected,
an increase in the binding energy of the lowest 0% level
when 7iw was increased from 6.0 to 8.0 MeV. This
increase was, however, less than a purely geometric
argument would have yielded. For particle-particle or
hole-hole states coupled to higher total angular mo-
mentum, the role of the 3P; state diminishes and one
will for such states find more sensitivity to 7w.

Our spectra for Pb?® and Pb?° are not likely to be
good fits to the experimentally observed levels. We have
employed only the bare force, neglecting for the moment
core polarization. Kuo® has found, using a bare force
also calculated in an approximation ignoring the
neutron excess, that on occasion the core polarization
contribution is considerably larger than the bare in-
teraction. Such corrections may, for example, yield the
additional binding energy required in the ground
states of Pb*® and Pb?.

2T. T. S. Kuo (report of work prior to publication) and
(private communication).
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Kuo® has, in his study, considered the particle-hole
states of Bi?®. Of particular interest is the separation
between the Pb* analog state and the low-lying
particle-hole states of one unit less in isotopic spin.
Kuo’s calculation,”® which employs a common oscillator
field with 7iw=7 MeV for the proton in the analog
state or in the low-lying states and the same field for the
neutron holes, appears to underestimate this energy.
We have suggested using different nuclear wells for the
proton particles in the two types of states, and in
addition prefer a considerably larger 7w value close to
9 MeV, for some of the important constituents of the
analogue state. Indeed if for the OF states of Bi*® the
particle-hole interaction were as weak as we have
observed the hole-hole and particle-particle interactions
to be, then the energy separation we have been referring
to is already present in the single-particle symmetry
energy of the nuclear average fields. Of course, in
principle, one ought also to predict this symmetry
energy from the interaction of a proton with the
neutron excess. At this point the bare force may prove
inadequate.

We would like, finally, to comment on what appears to
be a possible inconsistency in our approach. First the
realistic interactions we use have not contained any
core-mediated force?; that is, they have been bare
residual interactions. Just how matrix elements of this
quite significant part of the force are altered by WS
single-particle wave functions, we cannot say without
further calculation. Secondly, and perhaps more dis-
turbing, our bare force has been obtained from a
reaction matrix calculation which invoked either an
oscillator or plane-wave basis for intermediate states.
One might speculate that sizeable changes in the bare
interaction would result from the use of WS functions
for the intermediate states. However, since one sums
over an essentially complete set of intermediate states,
such an eventuality is unlikely.

The calculations in this work were done on the
CDC-6600 Computer at the Brookhaven National
Laboratory Computing Center.



