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Analysis of a Method of Solution of the Problem of Two-Body
Interaction in a Common HaIirionic-Oscillator Potential

with Hard Core"
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(Received 1 November 1968)

In an earlier paper, a method was given for solving the problem of two particles in a common harmonic-
oscillator potential modi6ed by an eGective two-body potential which includes hard-core, central, spin-
orbit, and tensor parts. Using the appropriate Green's function, the wave function was expressible in terms
of the harmonic-oscillator wave functions, and energy eigenvalues were obtained. In this paper, the accuracy
and convergence of the method is tested by applying it to an exactly solvable (without hard core) case
and a partially solvable (with hard core) case, with the intention of applying the method to realistic two-
body potentials and calculation of nuclear wave functions and form factors,

l. INTRODUCTION

t lHE nuclear shell model is based on the concept that..the individual nucleons in the nucleus move in-

dependently in a common potential. The nuclear
many-body theory developed by Brueckner' and by
Bethe' is aimed to provide a justidcation of the assump-
tion of the shell theory by attempting to derive a self-
consistent potential from the two-nucleon potential.
Because of the difhculty involved in calculating the
self-consistent potential and the many approximations,
several authors' have assumed the common potential to
be the harmonic-oscillator potential. The choice of the
harmonic-oscillator potential has been largely made
because, as shown by Talmi, 4 in this case the two-
nucleon wave function is separable in the relative and
center-of-mass (c.m. ) coordinates. Thus if the two-body
interaction depends only on the relative coordinates,
the c.m. motion is factored out.

Since most "realistic" two-nucleon phenomenological
potentials' include a repulsive hard core (of infinite

strength), the usual perturbation theory is not ap-
plicable. Bauer and Moshinsky' have treated the
problem of the two nucleons moving in a common
harmonic-oscillator potential plus a hard core by
transforming the radial equation for the problem by
a simple translation such that the repulsive core dis-
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appears, and an interaction potential appears, which
can be treated by standard perturbation methods.
Nigam~ has generalized this procedure so that the two-
nucleon interaction includes hard-core, central, spin-
orbit, and tensor parts. Using the appropriate Green's
function, the relevant integral equation is solved to
obtain the ground- and excited-state wave functions in
terms of the harmonic-oscillator wave functions, and
also the corresponding energy eigenvalues. The method
thus, provides analytic expressions for the wave function
besides giving the energy eigenvalues.

The importance of knowing the wave function with
accuracy has increased in recent years because of the
precise electron scattering experiments' which de-
termine the form factors very accurately. Since the
Fourier transform of the form factor gives the nuclear
charge distribution, which is also derivable from the
wave function, a more sensitive comparison of the
wave function with the experimental results can be
made than has been available through the energy
eigenvalues (binding energies) .

The method of Ref. 7 obtains the wave function in

terms of harmonic-oscillator wave functions of the
zero and higher orders. Recent experiments' on the
determination of the form factors indicate that the
n-particle wave function contains contributions from
higher-order harmonic oscillators also. It is therefore
expected that the method of solution presented in this

paper will be appropriate to apply to such problems.
In this paper, however, a practical application will not
be considered. %e attempt to test and establish the
accuracy and convergence of the method by applying
it to an exactly solvable case (without hard core) and
a partially solvable case (with hard core) for varying
strengths of the two-body (harmonic-oscillator) in-

teraction. Application to realistic cases will be reported
subsequently.
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2. RESULTS OF NIGAM

The Hamiltonian~ for the two-particle system in a
common harmonic-oscillator potential of frequency co

is given by

Hp's= (1/2sm) pp+ (1/2rN) pss+ ~~rrlo)'rls+-'ynaPrss (1)

Separating the c.m. and relative coordinates, the
Schrodinger equation for relative motion is

Hg(r) =
C

—(1/2p) P+kr'$P(r) =E()d)(r), (2a)

where

S (S=O and 1 for the two-nucleon system) are con-
stants of motion. The second l subscript to e and v is
called for because of the complication arising due to the
tensor force which, in general, mixes the l values.
Thus, for J= l, 1'= l, and for J=l~ i, l' takes the two
values l'=l and k+2. The 'Jjlsg~(r) =

~
tSJM) are the

eigenstates' corresponding to orbital angular mo-
mentum l and total angular momentum J.

The solution of Eq. (Sa) can be written using the
Green's function g„«ss(r, r') for the differential
operator on the left-hand side. %e have

p, —gm, k = -'poP (2b) I„«,zs(r)

The solutions of Eq. (2a) are given by's

Q„p(r) = (1/r) R„l(r) Yp(r), r= (8, d))—(3a) dr'g„ll. sa(r, r')vl p ss(r')N„ll ss(r'), (6)
lII

where
R„l(r) =X„lr'+'v„l(r) exp( —-', vr'),

dr R l(r)R„.l(r) =b„„,
p

(3b) Whel e

(3c)
~ R„,l (r)R„,p(r')

ngM ~nil', nial'
(7a)

2' "+'(2l+2rs+1)!!
p l+3t2

lis~!E(2J+1)!l

v= po)/S. (3d)

The associated Laguerre polynomials v„l(r) are defined
by

v„l(r) = I~i+ps '+'"(vr') =F(—rs
( t+ ,' )

vr')-

ski (2l+2k+1)!!
The energy eigenvalue corresponding to the eigen-
function Q„p(r) is

g, JS—g, JS g nylon (7b)

N„lpga

(r+r, ) = Q dr'g„lp (r, r')
if/ p

Most realistic two-nucleon potentials' include a
hard repulsive core, that is, v(r) =+co for 0&r&r„
and v(r) for r, &r& oo. The radial function N„ll. ss(r)
then satisfies the boundary condition se„«ss(r, ) =0.
The results for this case can be derived from Eq. (Sa)
by making the transformation r~r+r, . The integral
equation satisied by the radial function, in this case,
is given by

Es"' (2ss+l+ ,*)f!o), =-'S= Op ip 2] (4)
X/Vl (r', r, )bl l. +vl l ss(r'+r, ) jg„ll ~ ss(r'+r, ), (8)In addition to the common harmonic-oscillator

potential, the two nucleons interact with an eGective
two-nucleon potential v(r) which, in general, includes
central, spin-orbit, and tensor parts. Including v(r) in
Eq. (2), carrying out a partial-wave analysis of the
resulting Schrodinger equation, the radial part of the
perturbed wave function se„ll ss(r) Lanalog of R„l in
Eq. (3)] satisfies the following differential equations:

Vl(r, r,) = Vl(r+r, ) —Vl(r).

The solution of the integral equation (8) is

N„lp "(r+r,) = Q Z„lp,„,l. "R„,p(r), (10)
n].eseO

where

tE„« —
L
—sm '(d/drs)+Vp(r))IN„lp (r)

zs s where the E„«',„,l ss satisfy the following infinite set of
simultaneous homogeneous equations:

Vl(r) = l(l+1) /smr'+kr'

vv r (r) = Idr'grvr (r) v(r)'gr'vr (r).

(5b) g g (Onleel'l" +f)n)eSP P' )~™nlv,aSl"JS~g JS
ngseeP l~ i

Rlp, ps''l'alp, alp y (11)

J. M. Blatt and V. F. Weisskopf, Theoretical Ngcleur Physics
In arriving at Eq. (5) we have used the fact that the (John Wile& 3l Sons, Inc. , New York, 1952); R. R. Roy and

B. P. Nigsm, Nmcleor Physscs (John Wiley 3( Sons, Inc., Newtotal angular momentum J(J=1+S) and the total spin Yprk, f96/), p. 553.
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TABLE I. Comparison of eigenvalues for the potential s(r) =Xr' (no hard core), using XXN matrix,
with their exact values (h, =le=&a=1, k=-„v=1).

+19

Exact

&=0.1

1.6431678 3.834301 6.072531

1.6431677 3.834058 6.024956 8.218

1.6431677 3.834058 6.024948 8.2i6

10.5

10.4

10

Exact

2. 121763

2. 121321

2.121320

2.121320

5.01497

X=O.S

8.626741

4.950Q72 7. /99874 iQ. 94740 15.43129

4.949747 7.7781/5 10.606608 13.43545 33.3
4.949747 7.778175 10.606602 13.43503 27, 6

10

20

Exact

3.984725

3.968643

3,968627

3.968627

x=3.0
9.752432 17.706

9.262696 14.629

29.793

20.535

48.763

27.866 109.96

9.260130 14.55163 19.84319 25.13646 56.92 238.8

9.260130 14.55163 19.84314 25.13464 51.59 104.5

10

20

Exact

&=4.0

4.500129 10.513766 16.76907 24. 16678 33.73

4.500000 10.500000 16.50002 22.50110 28.522

4.500000 10.500000 16.500000 22.50000 28.500

140.7

69.1 306.2

58.5 118.5

with

unlnsl'P'= (l V(r1 rc) ) ll', nsV'bnVV'

dry„, ) r V) r, r, 8„,) r, 12

bnlnSV V' (VVl" (r+re) )nil', nal"Z8 I Jaf'

df Ezg$~ r 'V)s L« f fc E~gls~ r 13
0

Equation (11) can be solved as an eigenvalue equation
to determine the eigenvalues 8„~~,„,~ and the
eigenvectors E $$, 1) and hence the perturbed
radial solution N«1 ~s(r+r, ), using Eq. (10).

3. APPLICATION OF THE METHOD TO
TWO CASES

In order to test the accuracy and convergence of the
method outlined in Sec. 2, we consider 6rst an example
which is also exactly solvable. %e restrict consider-
ation to a purely central potential and confine our
attention to the two particles in a relative angular
momentum state l=0 (J=/). Rewriting Eqs. (10)-
(13), after dropping the indices l, J, and S, we have

(14)

with

Z (unlns+bnlns)+ns gnl +nl (~ +s )+nl 1 (15)

unlnS= km'bnlnS+ 2krn(r) n,n» (16a)

b„„,= (v(r+r, ) )„,„,. (16b)

The harmonic-oscillator matrix elements that we will
need are~ "
(r) „,„,= —(1/2~v) X„,X„,/[4(n, —n, )'—1j,

E =2 "+'(2n+1)!!/(Qv)n!, (17a)

(r').1.1= (1/v) f (2nt+5) b l.s—C:(nt+5) (nl+1) j'"
X!lnl ms-1 Lnl('n1+ s) $ !lnl,ns+1I ~ (1~b)

The examples of potentials for which we carry out
calculations are the following:

A. Eo hurd core: (i) v(r) =mrs, (ii) v(r) =0, but re-
place k by k'= k(1+X/k), so that cs~'=co(1+X/k)'~s
and v-+v'= v(1+X/k) 'fs.

B. Hurd core of rudisg r,: (i) v(r)=mrs for r)r„
(ii) v(r) =0 for r& r„but replace k by k'=k(1+X/k),

cu—&cs'= co(1+X/k) 'Is and v-+v'= v(1+X/k) '~s.

"W. H. Shaffer, Rev. Mod. Phys. 16, 245 (1944) .
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TAszm II. Comparison of eigenvalues of the potential (i) v(r) = ~ for 0&r&r„v(r) =Xr for r) r„elastic constant k, with (ii)
s(r) = ~ for 0&r&r„s(r) =0 for r) r„elastic constant k =k(1+X/k), using NXN matrix. Dt= p=~ =1, k =$, v=1; the two values
of r,/(k/peg)»' chosen correspond to r, =0.4X 10 "cm for ru in the region of light nuclei. ] The values against N = (10) and (20) are
for (i) and those against N = 10 and 20 are for (ii).

+19

(i0)
(2o)
10
20

(10)
(20)
10
20

(io)
(2o)
10
20

(10)
(20)
10
20

(i0)
(20)
10
20

(i0)
(20)
10
20

(10)
(20)
10
20

(10)
(2o)
10
20

(i0)
(2o)
10
20

(10)
(20)
10
20

2.0/3753
2.0737460
2.075456
2.075452

2.21706
2.21705
2.218661
2.218652

2.756004

2.755963
2.754937
2.754930

2,96994
2.96986
2.96515
2.96513

3.47654

3.47635
3.45643

3.45642

3.7'l510

3.7/469
3.74166
3.74164

4.70400

4, 70245

4.61255
4.61253

5.16671
S.16358
5.03187
5.03182

5.78137
5.77541
5.58799
5.58796

6.40614
6.39494
6.12878
6.12871

4.77616
4.77613
4.78427

4.78426

5.08016
5.08009
5.0894S
S.08941

6.3150
6.3148
6.33816
6.33813

6.7598
6.7592

6. /8293

6.78286

7.92589
7.92408
7.93785
7.93780

8.53'l42

8.53350
8.53754
8.53742

10.65264

10.6322

10.5655

10.5654

11.5922

11.5541
11.4394
11.4391

13.0594
12.9757
12.7750
12.7749

14.3366
14.1978
13.8948
13.8945

X=0.1, r&=0. 15
/. 4880 10.2021
7.487982 10.2018
7.S012/ 10.22020

7.50122 10.22004

) =0.1, r, =0.20
7.9565 10.8360
7.9563 10.8351
7.97169 10.8566
7.97156 10.8562

X=O.S, r.=0.15
9.8956 13.485

9.8941 13.477
9.93363 13.532

9.93353 13.$317

x=0,5, r, =0.20
10.580 14.419
10.$77 14.399
10.6179 14.457

10.61'l7 14.4$6

&=1.0, ~.=0.15
12.4227 16.9955
12.4085 16.8980
12.4362 16.9385
12.4360 16.9379

) =1,0, r, =0.20

13.3'li4 18.3296
13.3428 18.1592

13.3572 18.1828
13.3568 18.1814

x=2.0, r.=0.1S

16.8031 23.4916
16.6359 22.6523

16.$438 22.5282

16.543$ 22.5272

X=2.0, r, =0.20
18.3154 25. /28

18.046/ 24, 562

17.8828 24.335
17.882 24.332

&=3.0, r.=0.1S
20.8758 29.9227
20.2949 27.6586
19.9953 27.2235

19.9948 27.2218

&=3.0, r.=0.20
22.9952 33.094
22, 1689 30.222

21.7081 29.534
21.7069 29.529

12.918
12.916
12.9401
12.9396

13.719
13.715
13.743

13.742

17.12

17.06
17.1320
17.1309

18,332
18.223

18.299
18.296

21.8682

21.3902
21.4432

21.4413

23, 694
22, 980
23.013
23.008

21.3495
28, 6941
28.$168
28.5129

34.466
31.128
30.797
30.785

40.971
35.161
34.458
34.452

45.37
38.50
37.37
37.35

29.0
26.5
27. 'l

26.5

31.4
28, 1
29.9
28.2

45.8
35.0
36.9
35.1

50.0
3/. 5
40.3
37.5

6'l. 3
44.6
46.5
44.0

73.6
48.3
Si.i
47.2

110.59
64.0
62.5
58.5

120.9
70.4
69.3
63.1

153.7
83.9
76.0
70.6

168.3
92.9
84.8
76.5

60.4

5/. 0

65.7

62.0

97.5

/6. 2

106.4

83.6

144.3

96.2

157.7,

106.2

238.4

129.5

260.7

144.2

332.4

15'l.8

363.7

176.7
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Examples (i) and (ii), in each case, correspond to
the same situations. Case A(i) can be solved by using
the method of Eqs. (14)—(17) with r,=0. However, it
also corresponds to a harmonic oscillator with the
elastic constant k'=k(1+X/k), as indicated in case
A(ii). A comparison of the solution of A(i), using
Eqs. (14)-(17), with its exact solution A(ii) will

provide a measure of the accuracy and convergence of
our method S.imilarly, the solutions of B(i) can be
compared with the solutions of B(ii).

The exact solution of the Hamiltonian Hp' p/s2i——+(

k'r', case A (ii), is given by (with l=0)

(R„~(r))'=N„~(1+X/k) "'+sl'r'+'o„~(v(1+X/k)'"r']

Xe~L-—',.(1+~/k)»sr~], (1S)

(E(p') '= (2n+l+-s, ) (1+X/k)»sir((p (19)

dr (R„~(r))'(R„.~(r) )'=8„„. (20)

Also, we note that

(r)„, ,'= f dr (2,)'r(Z„)'=(1+I/k)-'&'(r), „,.
0

(21)

The matrix elements involved in cases 8 are given
as follows (for cases A, they are obtained by putting
r, =O):

Case B(i):
r, (

(fc/pcs)" & k)

»s 14' s+ (&'"r) x s &(p (20')
1(

b „,= —', (X/k) (rr') „,„Pcg, (20")

(&o)s,ss &o (8s,ss (2osq+ s) fuse„(„s (20 )

Case B(ii):

o.i-= -I
~

'
„,111+k I~.,-k (21')

1( r,

r,
b~gss= (»s I 1+

I ((Qp) r)~( fo(p& ((21 )

(&o)mss= (&o ) &sass= (2N1+ s) D+ (&/k) $ bsans~y

(21/ I/)

with the R„,(r) in Eq. (14) now replaced by (R„,(r))'
in Eq. (18).

The solution of the problem now involves the
diagonalization of the matrix (u+k+Ep)sgggs ssgy Ns=
0, 1, 2, ~ ~, whose eigenvalues give the perturbed
energies E" and whose eigenvectors give E„~". In
doing the numerical calculations we have chosen the
units A=p=eu=1, so that k=~ and v=1. The calcu-
lations were done for several values of X by diagonaliz-

ing" S)(E matrices, where in order to test the con-
vergence of method, for each value of X, results for at
least two values of S were obtained. The results of the
calculations are given in Tables I and II.

In Table I, we have listed the energy eigenvalues
E" for X=0.1, 0.5, 1.0, 2.0, 3.0, and 4.0, for case A (i)
and also the exact values as obtained from case A(ii).
It is clear from the table that the low levels are given to
an extremely good accuracy even if the order X of
the matrix diagonalized is small; for higher levels, the
accuracy can be improved by going to larger values of
N. The eigenfunctions N„(r) were also calculated and
compared with their exact values over a range of
r/(5/(u(o)»s from 0 to 3. For the higher value of N
shown, the agreement of the wave function ranged
from 1 to 10%, the best agreement appearing where
the wave function is largest and worst in the asymptotic
region where the wave function is very small. This is to
be expected, since when the wave function is very
small, each additional term in Eq. (14) affects the
value of N„(r) by a higher percentage. However, the
asymptotic tail of the wave function contributes
negligibly compared to the rest. Thus, this in no way
constitutes a defect of the method.

In Table II, we have given the eigenvalues for cases
B(i) (indicated in the table by putting N, in the first
column, within parentheses) and B(ii) (N without
parentheses). Again the agreement is very good, be-
coming less good as X increases. The wave functions
were found to agree within 1 to 10%, as in case A.

4. CONCLUSION

The method, Eqs. (10)—(13),of solving the Schrodin-

ger equation for two particles in a con@non harmonic-
oscillator potential together with a two-particle
interaction, which here has been also taken to be
harmonic, is found to work with extremely good
accuracy as seen by comparison with the exact solution.
The order of the matrix required to accomplish the
same accuracy increases with the strength of the two-

particle interaction, but the method seems to converge
fast and it was not necessary to diagonalize matrices
of very large order. The method is equally well ap-
plicable when a repulsive hard core in the two-particle
interaction is included. The application of the method
to realistic two-nucleon interactions will be of interest
and will be reported subsequently. The method is also
applicable to solutions of two-body (and many-body)
problems without a common harmonic-oscillator po-
tential, if we are interested in choosing the harmonic-
oscillator wave functions as a basis representative.
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