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of strontium atoms at the temperature of the crystal
was then computed using the ideal gas law. The density
of color centers was calculated using Dexter's formula
relating the color-center density to the area under the
absorption curve. "The F' band was assumed to have
the shape depicted by curve 6 in Fig. 3. Only the leading
edges of the experimental curves were used in fitting the
data to avoid contributions due to the Ii band and any
aggregate centers present. The index of refraction used
was 1.89," and the oscillator strength was arbitrarily
chosen to be 0.8. Since some of the actual temperatures
differed by as much as 25'C from the average used, the
large points represent the data corrected to the indicated
temperature using Eq. (1) developed below. Where
significantly different, the uncorrected data are shown

by the small points connected to the large points.
Straight lines of slope 1 have been fitted to the data for
each of these temperatures.

'0 O. L. Dexter, Phys. Rev. 101, 48 (1956).
'I G. K. Pynchon and E. F. Sieckmann, Phys. Rev. 143, 595

(1966).

For thermal equilibrium, the density of color centers
E+ in the crystal should be related to the density of
atoms in the vapor E&, by the equation"

EF /Es, Ce ——«'r,

where C is a slowly varying function of the temperature
which will be treated as a constant, k is Boltzmann's
constant, and tlb is the energy of formation of the color
centers. In Fig. 5, the ratio of the densities Xt /Es,
has been plotted as a function of the reciprocal of the
temperature on a semilog graph. The three closed points
represent the ratios depicted by the straight lines in
Fig. 4. The straight line in Fig. 5 represents a least-
squares fit of the data. From its slope an estimate of
the activation energy P for E'-center creation is found
to be —1.1 eV. The negative sign indicates that energy
is released when a strontium atom is taken from the
vapor to the crystal.

I2 N. F. Mott and R. W. Gurney, Electronic Processes ie Ionic
Crystals (Clarendon Press, Oxford, England, 1940), p. 144.
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A method of calculating energy bands, which we name the mixed-basis method, is developed. This method
uses a, wave-function expansion which includes free-atom or ion wave functions and plane waves, and it may
incorporate relativistic effects. It is, in general, not equivalent to the orthogonalized-plane-wave (OPW)
method, although the cases for which the two methods are equivalent are developed. A sample calculation
is made for LiI and NaI, for which x-ray, valence, and conduction states are calculated. The agreement
between theory and x-ray and optical-absorption data is excellent. The importance of relativistic eGects is
explored, and comparisons are made with conventional OPVV results, which include relativity by 6rst-order
perturbation theory,

I. INTRO/)UCTION

AMETHOD of computing energy bands in solids is
developed. This method involves expanding an

electronic wave function in terms of plane waves and
tight-binding Bloch functions, hence, it is named the
mixed basis method (MB).

The MB method may be developed in such a way
that it offers several advantages over other current
approaches, such as the OP% or the Green's-function
method. ' ' These advantages, and certain disadvan-

*Work supported in part by the U. S. Air Force Once of
Scientific Research, Contract No. 1276-67.

' C. Herring, Phys. Rev. 57, 1169 {1940).
~ A. B. Kunz, Phys. Letters 25A, 538 (1967}.' J. C. Slater, Phys. Rev. 51, 846 (1937);92, 603 (1953).
4 P. D. DeCicco, Phys. Rev. 153, 931 (1967).
I J. C. Slater end G. F. Koster, Phys. Rev. 94, 1498 (1954).
I Y. Onodera, M. Okazaki, and T. Inui, J. Phys. Soc. Japan 21,

2229 (1966); Y. Onodera and M. Okazaki, sbQ 21, 1273 (196.6).

tages, are explored in an extensive comparison with
other approaches. In particular, it is shown that con-
vergence difhculties encountered when the OP% method
is used to compute the valence states of insulating solids
can be avoided. It is also shown how relativistic effects
may be included in a nonperturbative way; this
distinguishes the MB technique from one introduced
some time ago by Brown. '

The results of relativistic calculations on I.iI and NaI
using the MB method are presented and compared with
OP% results. Agreement with recent experimental
results is shown to be excellent.

II. MATHEMATICAL DEVELOPMENT

In the MB method, as in many other approaches, one
desires to find eigenfunctions and eigenvalues of an

r E. Brown, Phys. Rev. 126, 421 (1962).
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effective one-electron Hamiltonian of the form

H= T+ V(r)+H,.g.

In the above equation T is the kinetic-energy operator
and V(r) is the effective lattice potential; H,.i includes
relativistic eflects. In many cases, the potential may be
given as a superposition of potentials for the free atoms
or ions which constitute that lattice. For the MB
method, this need not be the case. In any event, one
starts by solving a Hartree-Fock, Hartree-Pock-Slater,
Hartree, Dirac, or some other equation for the free
atoms or ions which constitute the lattice. These solu-
tions comprise part of the basis. The potentials obtained
from this may be used. to form the lattice potential, if
desired. ~ The remainder of the basis is formed from
linear combinations of plane waves.

It is customary and also useful to symmetrize the
basis set so that the labor of computation is reduced to
a minimum. ' Thus, one forms a wave function to
transform as the y th row of the nth irreducible repre-
sentation of the group of the wave vector k for which a
solution is desired. In terms of the mixed basis, this
wave function is of the form

f„&(k,r) =Q A„;)& g C(„&(k,r) y;(„(k,r)

+Q g ay Q g avei(s+hr)r ~ r (2)
q~l t

Here, the functions q, ~ (k,r) are Bloch functions formed
from the solutions of the free-atom or ion problem or
possibly some other convenient set of functions. There
are M such functions and the C~ & are chosen so that
the Bloch functions have the desired symmetry. The
wave vector in the 6rst Brillouin zone is k, and h, is a
reciprocal-lattice vector. It is required that

~
(k+h, ), ~

be constant for all t. One chooses b«& such that the
plane-wave part also has the desired symmetry. N such
combinations of symmetrized plane waves are used.
The coefBcients A „;~& and d„,& are chosen such that

&(k r) is a solution to Eq. (1).The quantities f and nz

refer to the angular momentum and its Z component for
the atomic states from which the Bloch sums are formed.

It is observed that the wave function P is being ex-
panded in an over-complete set of functions since both
the solutions to the atomic problem and the plane waves
form complete sets. As a practical matter, one uses only
a finite number of atomic functions and plane waves
and the solution to Eq. (1) is obtained by the variational
method. Thus, one 6nds the solution given by

Determinant PH;; &D;;)=0. —(3)

In Eq. (3), H;; is the Hamiltonian matrix and D,, is the

8 D. R. Hartree, The Calculation of Atomic Structures (Wiley-
Interscience, Inc. , New York, j957).

9 R. S. Knox and A. Gold, Symmetry in the Sold State (W. A.
Benjamin, Inc. , New York, 1964)."A. W. I uehrmann, Ph.D. thesis, University of Chicago, 1966
(unpublished) .

overlap matrix. These matrices are (M+X) X (%+X)
in size. The first M members of the basis from which
JJ;; and D,; are formed are given by

l

C'nj l P (-nj lm 0'r'lm(kyar) ~

The inal S members of the basis are given by

ay —~ b a')r&i(k+ht)q r
nq ~ qt

t

Thus, one has three types of integrals to evaluate in
forming an H or D matrix These are

A = p, ) ~*O„q„,) &de

8= q; ) ~~0„S„q&d7. ,

C= S„q&*0„5q &de

In Eq. (6) the integrals extend over the volume of the
crystal. %hen 0„=H the Hamiltonian matrix is ob-
tained, and when O~= 1, the overlap matrix is obtained.
The methods of evaluating the nonrelativistic parts of
the matrix elements are similar to those employed in
the OP% method' or the tight-binding method.

IG. INCLUSION OF RELATIVISTIC EFFECTS

Vhth the advent of large synchrotrons, sof t x-rays
are available of sufFicient intensity so that experimental
studies of x-ray absorptions by crystalline solids are
possible. "Thus, it is useful to compute the x-ray levels
of solids as well as the valence and conduction states.
Using the MB method, it is possible to compute the
x-ray terms directly along with the valence and conduc-
tion levels. For crystals containing nuclei of large atomic
number, it is important to include relativistic effects in
the calculation of the x-ray levels. Several formalisms
exist for including relativistic effects for valence and
conduction states. Soven has given a relativistic
generalization of the OP% method" and Onodera and
Okazaki have developed a relativistic Green s-function
method. e The method to be presented here diff ers from
either of the previous methods in that, by using the
MB method, it is unnecessary to solve a free-ion Dirac
equation for the constituent ions. In fact, a Dirac
equation need not be used at all.

It is possible to start with the Dirac equation, or a
Foldy-%outhuysen transformation on the D irac equa-
tion, " or with the Pauli approximation to the 8reit

» R.. Haensel, C. Kunz, Y. Sasaki, and B. Sonntag, Appl. Opt.
7, 30& (f968); R. Haensel, C. Kunz, and B. Sonntag, Phys. Rev.I etters 20, 262 (1968)."P. Soven, Phys. Rev. 137, A1706 (1965)."L.L. Foldy snd S. A. Wouthuysen, Phys. Rev. 78, 29 (1950),
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operator for the interaction of two electrons. '4 How-
ever, if one includes only the principal effects, the results
are similar. Thus, one may approximate

and
1 dV(r)

R, i*Rj i - r'dr.
r dr

p„j)&*H„i5„q7d7-=0,

S„q&*H„iS„q&d7.=0.

Thus, one must evaluate

~ rel Pnj l L& rel pn'j ' l'. &y+ LT

In evaluating A„iit is necessary to include only one
center term. ' Thus, if about a given lattice site the
potential is given essentially as V(r), and if R,&(r) is the
radial part of q „j~& at that same lattice site, one finds
that

A

(Hm) jl j'r = ——~El

1
(HD) jl,j'r = -a'~lp

8

R;i*R,'i [e,i
—V(r)j

X[~, v —V(r) jr'dr,

d dV(r)
Ej)*Rj ).—r' dr,

8r — t&
(12)

(Hso) jl j'p = g& $jl j l ~ll (L'0) y

'4 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Tmo-E/ectron Atoms (Academic Press Inc. , New York, 1957).

~ H. A. Bethe, Intermediate Quantum Meclzani cs (W. A.
Benjamin, inc. , New York, 1964).

-' L. Liu, Phys. Rev. 126, 1317 (1962); P. C. Chow and L. Liu,

H =p'/2rrj+ V(r)+H, .i. (7)

In Eq. (7), m is the electronic mass, U(r) is the classical
lattice potential, and H„iis the relativistic correction
to the Hamiltonian. To the first order of accuracy one
has

H,.i=H„+Hn+H,.
Here H is the relativistic variation of mass with
velocity, HD is the Darwin or nonphysical operator,
and H„is the spin-orbit interaction. "One may repre-
sent these operators in rydberg units as

1~2q2q2

Hn ——-,'n'7 [VV(r)j,
H..=-,'~'~. [VV(r) &&(—zV)],

where e represents the Pauli-spin matrices, o. is the
fine-structure constant (a=1/137.037), and |7 is the
gradient operator. Since the matrix elements of the
classical part of the Hamiltonian are well defined in
numerous papers on OPW or tight-binding calculations,
we may restrict out attention to the matrix elements
of H„i.To do this, one uses the results of Liu, Chow
and Liu, and Reilly. ' That is, to a high degree of
accuracy, one may assume that

In the above equations, ej& is the classical energy of
the j/ electronic state, (L s) is the expectation value
of L s for the states j/ and j'f, and L is the orbital
angular-momentum operator, and e is the spin angular-
momentum operator. Using the results of Eq. (12) and
the formulas from OPW or tight-binding theory one
may then form the matrix for H and D and solve Eq. (3).
Thus, this method obtains the x-ray levels directly as
well as other levels of the crystal. One notes that it is
not possible to avoid obtaining the x-ray levels since
core solutions are not assumed and no orthogonalization
is performed.

It is noted that Rossler has included relativistic effects
in the augmented-plane-wave (APW) method and
Treusch has included relativistic effects in the Green s-

function method, using a technique similar to that
employed in this paper. '7 It should be mentioned that
there is an indirect relativistic effect which is ignored
in this presentation. This has been discussed by Boyd
et al."and is best understood in terms of a self-consistent
field model. States of low angular momentum (s states)
are very compact in relativistic formalism and hence in
a self-consistent calculation and states of higher angular
momentum become less well bound because the s states
shield the nuclear charge more completely in relativistic
calculations than in nonrelativistic calculations. Since in
this work the crystal problem is not considered self-

consistently, this effect is neglected. The author believes
that this effect is very small in the alkali iodides
because as is seen in Sec. VI, the relativistic shifts en-
countered here agree in size and sign with those of
Onodera et at. ,

' who use a crystal potential for KI
formed from self-consistent solutions to the free-ion
Dirac equation for the K+ and I ions.

IV. DISCUSSION OF THE METHOD

In this section, the advantages and disadvantages of
the MB method are discussed. (The MB method is seen
to be equivalent to the OPW approach in certain
circumstances. ) For most applications, it is necessary
to obtain solutions for both the valence bands and the
conduction bands. Tight-binding theory is often used
for valence bands but to use it accurately is extremely
dificult. ' Thus, if one wishes to compute the valence
bands accurately, it is necessary in many cases to use
OPW, APW, or Green's-function techniques. The
Green's-function technique is limited to the use of a
muon-tin potential, ' which may be unreasonable in

ibid. 140, A1817 (1965); M. H. Reilly, J. Phys. Chem. Solids 28,
2067 (1967).

"U. Rossler, Solid State Commun. 5, 45 (1967); J. Treusch,
Phys. Status Solidi 19, 603 (1967)."R.G. Boyd, A. C. Larson, and J. T. Waber, Phys. Rev. 129,
1629 (1N3l.
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some cases. ' " In many cases the APW method also
uses this potential; however, this is not an essential
limitation of this method. 4 Nonetheless, some of the
restrictions of the mufFin-tin potential can be removed
only by perturbation theory.

The MB method is not limited in its choice of
potential. This is an advantage which this method
shares with the OPW method. However, unlike the
OPW method, it is not required that one be able to
solve the pertinent free-ion or atom problems. Thus, the
core states used in this method need not be even
approximate eigenfunctions to the core states of the
crystal. Hence one's choice of Hamiltonian need not be
limited to one for which the equivalent atomic problem
is soluble.

In the OPW method it is assumed that

&+HS
q &dr=a„ji & y, i r+Sq &dr. (13)

In the above equation, ~„j&& is the energy eigenvalue in
the crystal of the Hamiltonian II. If this equation is
valid and if

pnjl P~gnyr ll = Cnjl ~jj'~ll' ~ (14)

' A. Barry Kunz„Phys. Rev. 162, 789 (1967).
"A. Barry Kunz, Phys. Rev. 175, 1147 (1968); R, S. Knox,

1965 (private communication) .
"W. Beall Fowler, Phys. Rev, 132, 1591 (1963).

the MB method is equivalent to the OPW method. In
other words, if the core states are very good eigenstates
of the crystal Hamiltonian, the two methods are
equivalent.

There are additional advantages of the MB method
over the OPW method. For insulating solids, it is not
always possible to compute the conduction bands by
OPW and the valence states by tight-binding methods.
This is because the tight-binding valence states may be
poor eigenstates of the crystal Hamiltonian; this in turn
may lead to the lowest OPW energy value converging
to the valence band. "Thus, it is necessary to evaluate
the valence bands by OPW also. Unfortunately, this
requires that a large number of plane waves be used
(400—600). This also means that one may evaluate the
energy levels for only a few points of high symmetry in
the Brillouin zone. ' When it is possible to represent the
valence states by tight-binding functions, fewer than
100 plane waves are needed to represent the conduction
states. "Using the MB method and including core states
for the valence band, we shall see that it is possible to
obtain reasonable results for both core and valence
states with very few plane waves. With this improve-
ment, it is possible to compute the energy levels for even
general points in the Brillouin zone using modern digital
computers.

A formalism to facilitate OPW calculations using

pseudocore orbitals has been developed by Deegan and
Twose. "These pseudo-orbitals are chosen to be non-

overlapping between the various ion sites. This is also
a form of mixed basis technique. In general, the method
of Deegan and Twose is not equivalent to that given in
this paper; however, it could be of considerable practical
advantage to incorporate the nonoverlapping pseudo-
core orbitals into the mixed basis formalism as
developed here.

H= p'/2m+ V(r)+H +Ho. (13/)

The core states used for the calculation were those non-

overlapping core orbitals which were solutions to the
equation

$p'/2m+V(r)]q, i (k,r)=e, ( (k)y, i (k,r). (14')

Thus, the core orbitals chosen were eigenfunctions of
the nonrelativistic Hamiltonian. Therefore, in setting
up the MB Hamiltonian matrix defined by Eqs. (6)
there are nondiagonal matrix elements between the core
orbitals due to the presence of II and HD in the Hamil-
tonian. Thus, in the context of the variational method
one is obtaining exact eigenvalues to the Hamiltonian
given by Eq. (13).

In Tables I and II, we present the results for the
valence and conduction bands of I iI and NaI. The
notation is that of Bouckaert et al.24 An iodine ion site
is used as the origin of the coordinate system. Because
of their small size, spin-orbit effects are neglected in
presenting the conduction-band effects." The x-ray
levels and the probable atomic state of origin are given

"R.A. Deegan and W. D. Twose, Phys. Rev. 164, 993 (1967).
2' A. Barry Kunz, Phys. Rev. 159, 738 (1967)."I.. P. Bouchaert, R. Smoluchowski, and E. Wigner, Phys.

Rev. 50, 58 (1956)."Y.Onodera and Y. Toyozawa, J. Phys. Soc. Japan 22, 833
(1967).

V. APPLICATION

In order to test the MB formalism, the band struc-
tures of I iI and NaI were computed at points of high
symmetry in the first Brillouin zone. In this particular
case the MB formalism is not equivalent to the OPW
formalism. Solutions are obtained in three different
ways. Firstly, the conventional nonrelativistic OPW
equations were solved'; second, relativistic effects were
added by erst-order perturbation theory" '; third, the
relativistic MB equations were solved for these systems.
Spin-orbit effects were neglected initially and were later
added using degenerate perturbation theory for those
states for which they were important. This use of
perturbation theory seems totally adequate for the
alkali halides. ""The potential used is that which the
author has used in recent OPW calculations on the
alkali halides. "A discussion of this potential is given
in R.ef. 20, along with a discussion of the results obtained

by changing the form of the potential.
In the case of the MB problem the Hamiltonian is
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II III
s-type valence state (Ss I mostly)

IV

Xg

bg

Fs
Xy
Xg-
L4
Lg
Fg
Xg
Lg

—1.428—1.401—1.407—1.415

p-type valence
—0.657—0.696—0.728—0.674—0.712—0.740—0.817—0.820

—1.600—1.586—1.590—1.593

state (5p I mostly)
—0.726—0.757—0.783-0.740—0.770—0.809—0.872—0.878

—1.576—1.557—1.562—1.567

—0.721—0.752—0.782—0.735—0.771—0.804—0.866—0.869

TAsI.E I. The energies of selected symmetry points in the first
Brillouin zone of NaI are given. Column I gives the symmetry of
the state, column II is the nonrelativistic OPW energy, column III
is the OPW result, including relativistic effects by first-order
perturbation theory, and column IV contains the MB energies
including relativistic corrections. Rydberg units are used and the
notation is that of Bouchaert et al. &=0.0277 Ry and a= 12.3
Bohr units.

one diagonalizes the Hatniltonian equation (13') using

only the core states as a basis. One then computes the
eigenstates of this problem. These eigenstates are then
used as the core eigenstates of Eq. (13'), and one then

attempts to compute the valence and conduction states
of the Hamiltonian by the OP% method. This technique
was attempted for NaI and the lowest-energy eigen-

values were found to lie in the core region when about
400 plane waves were used. Thus, one concludes that
the linear combination of nonrelativistic core states is
not an adequate representation of the eigenfunction of
the Hamiltonian and that the plane waves form a
nonnegligible part of the core eigenfunctions.

TAsrE II. The energies of selected symmetry points in the first
Brillouin zone of LiI are given. Column I gives the symmetry
type, column II is the nonrelativistic OPW energy, column III is
the MB relativistic result. Rydberg units are used and the notation
is that of Bouchaert et al. / =0.03015 Ry and a= 11.3 Bohr units.

s-like valence state

Fl
F25

F2'
F15
Fl
Xg
Xg
X4'
X4'
X5'
X5'
X3
X3
X2
X5
X5

Lj
L1
L2'
L2'
L2'
L3'
L3
L3
L3
L3
b, j

conduction
—0.240

0.037
0.144
0.150
0.422
0.868—0.125
0.482
0.099
0.841
0.315
0.831—0.177
0.864
0.266
0.310
0.840—0.234
0.361
0.708
0.092
0.290
0.830
0.387
0.859—0.133
0.116
0.856—0.125
0.020
0.579
0.746

states
—0.302

0.035
0.139
0.150
0.420
0.867—0.138
0.408
0.059
0.832
0.291
0.830—0.179
0.862
0.258
0.309
0.840—0.254
0.306
0.701
0.052
0.284
0.827
0.377
0.849—0.133
0.115
0.855—0.179
0.008
0.573
0.692

—0.287
0.035
0.139
0.150
0.421
0.867—0.136
0.424
0.064
0.833
0.294
0.830—0.179
0.862
0.258
0.309
0.840—0.250
0.317
0.701
0.056
0.286
0.827
0.378
0.850—0.133
0.116
0.856—0.169
0.011
0.5 /4
0.700

a Reference 24.

in Tables III and IV. These results are discussed in Sec.
VI.

There are several comments which may be made at
this time about the MB technique. The first comment
is that the plane-wave part of the basis makes non-
negligible contributions to the core states. This may be
seen from the following results. It is assumed for the
sake of argument that a given core state is only a linear
combination of other nonrelativistic core states. Thus

Fl
Xg
Lg

p-like

F —(r„)x —(x ')
x —(x ')
L4—(L3')
Lg —(L2')
Fg
Xg-
Lg

r,
F25'

F2'
F15
Fg
X3
Xg
X4'
X2
X5
X5'
X1
X4'
X5'
X5

L3
L2'
L2'

L3'
L3
L3
Lg
L2'
L3'

& Reference 24.

—1.490—1.440—1.454—1.467

valence state (I SP mostly)
—0.701—0.857—0.917—0.789—0.921

conduction states
—0.189

0.049
0.168
0.183
0.350
0.969—0.201—0.147
0.192
0.313
0.319
0.336
0.659
0.825
0.858
0.998—0.270—0.255
0.189
0.326
0.423
0.464
0.585
0.752
0.821
0.937
0.988

~ ~ ~

0.658
0.930

—1.635—1.599—1.609—1.618

—0.739—0.827—0.857—0.759—0.804—0.830—0.947—0.937

—0.253
0.046
0.161
0.183
0.347
0.988—0.203—0.159
0.145
0.302
0.318
0.311
0.587
0.820
0.857
0.998—0.291—0.256
0.155
0.318
0.373
0.455
0.585
0.751
0.815
0.933
0.981—0.122—0.027
0.652
0.884
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Another comment which must be made is that the
Hamiltonian and overlap matrices are generally com-
plex. The author does not have in his possession a
program which evaluates the eigenfunctions of a com-
plex matrix and hence is not able to provide any infor-
mation on the eigenfunctions of the Hamiltonian.

This method is rather fast in terms of computer time
used. The calculations presented here for LiI and NaI
were performed using less than 14 min of time on a
CDC 6600. The OPW calculations including relativistic
eRects by 6rst-order perturbation theory required less
than 20 min of CDC 6600 time for both NaI and LiI.

It is possible to reduce the computer time by includ-
ing overlapping valence orbitals in the basis. This has
been done for LiI and it was found that one can obtain
reasonable convergence with about 150 plane waves
when overlapping valence orbitals are included in the
basis. If these are neglected, it is necessary to use about
400 plane waves. By including the overlapping valence
orbitals in the basis, one reduces the computer time to
about one-half of that used when only nonoverlapping
core orbitals are included in the basis. This is discussed
in the Appendix.

It should be mentioned that the core states as com-
puted were found to be totally independent of K. This
result is expected since the core states are nonover-
lapping. The author estimates that the core states are
convergent to one part in 10 ' and the valence and
conduction levels are convergent to about 10 ' Ry. This
claim is based upon studying the change in energy as
the number of plane waves are increased and also upon
second-order perturbation theory. This use of second-
order perturbation theory to study the convergence has
been the subject of recent discussion. "

TABLE IV. The x-ray levels of I iI are given. In each case, the
atomic state of origin is indicated. The free-ion nonrelativistic
energies are also given. The results are valid for all points in the
Brillouin zone. Rydberg units are used and spin-orbit effects are
included.

State
of origin

I 1s
I 2s
I 2Pp j 2I 2pp j QI 3s
I 3P, j=-',
E 3P, j=$
I 3d j—.
I 3dq j=g
I 4s
I 4P~ j=-'

Li+ is

Relativistic
energies on
the crystal

—2430—379—359—339—77.6—69.1—65.2—48.5
47 6—14.1—10.9—10.2—4.85—4.71

-4.64

Free-ion
energy

—2340—355—334
-334—71.9—63.1—63.1—46.7—46.7

12.3—9.27—9.27—3.85—3.85-5.38

If one uses only nonoverlapping core orbitals in both
MB and OPW formalism, one must use about the same
number of plane waves in each case. Thus, in order to
fully utilize the advantages of the MB method, it is
necessary to include overlapping valence orbitals in the
basis. The increase in the number of rows and columns
in the mixed-basis secular determinant due to the
presence of the core orbitals seems to have a negligible
effect on the time of calculation if one compares this
time to that required for the equivalent OPW calcula-
tion. In the case of NaI and LiI, the advantage of the
MB method lies in its ability to solve the relativistic
problem in the solid while one need only solve a much
simpler nonrelativistic equation for the free members
of the lattice.

Free-ion
state

I 1$
I 2s
I2P jI2pj 2
Na+ is
I 3s
I 3P j=s
I 3P7 j 2I3dj
I 3d, j=—',

4$
I 4p, j=-,'
I 4P, j=k
Na+ 2s
I 4d, j=$
Na+2P, j=-',
Na+2P, j=$

Energy
in

crystal

—2430—379—359—339—78.2—77.6—69.0—65.2—48.5—47.6—14.0—10.9—10.1—4.80—4.68—4.54—2.77—2.75

Nonrelativistic
free-ion
energy

—2340—355—334—334 .—78.8—71.9—63.1—63.1—46.7—46.7—12.2—9.27—9.27—5.38—3.85—3.85—3.34—3.34

Relativistic
free-ion
energy

—2430—379.0—360—339—78.9—77.0—68.5—64.6—48.0—47.0—13.46—10.34—9.59—5.65—4.09—3.97—3.34—3.34

TABLE III. The x-ray levels of NaI are given. In each case, the
atomic state of origin is indicated. The free-ion nonrelativistic and
relativistic energies are also given. Spin-orbit splittings are in-
cluded and rydberg units used. The results are valid in the entire
Brillouin zone.

VI. DISCUSSION OF RESULTS

The author finds the valence band of sodium iodide
to be 0.101 Ry wide if spin-orbit e8ects are neglected.
By the tight-binding method, the width was found to
be about 0.103 Ry. This agreement is excellent. The
inclusion of spin-orbit effects splits the valence band
into two nonoverlapping bands. At the point I', the
splitting is 0.092 Ry, a result which agrees well with
experiment. "The band gap is found to be 0.43 Ry.
Experimentally, the band gap is 0.44 Ry."This agree-
ment is excellent. Using soft x-ray absorption, Haensel
et a/. have found the onset of absorption from the Na+
2P state to the lowest conduction band to lie to about
2.42 Ry."This energy is predicted by the MB method
to be 2.48 Ry. Again the agreement is good.

Relativity is important in the band structure of NaI.
Because of relativistic effects, the 7~5 point of the
valence band is shifted downward by about 0.059 Ry,
"K. Teegarden and G. Baldini, Phys, Rev. 155, 896 (1967)."R. Haensel, C. Kunz, T. Sasaki, and 8, Sonntag, Phys.

Rev. Letters 20, 1436 (1968).
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and the lowest conduction F» state is shifted downward

by about 0.052 Ry; however, the F25 conduction state
is shifted by only about 0.005 Ry. Thus, the structure
of the conduction band is seen to be rather sensitive to
the inclusion of relativistic effects even though the
effect on the band gap is small. The size of the rela-
tivistic contributions is essentially the same as that
found for KI by Onodera, Okazaki, and Inui, ' who
solve a Dirac equation for the lattice.

At the point X, the lowest level is X3. This level lies
about 0.044 Ry below the next state which is of X» type.
Thus, it is reasonable to expect that an exciton might
be associated with X3 in NaI as it is in KI."Based on
the present calculation, this should lie at about 0.125 Ry
above the I' exciton. There is a sharp spike in the NaI
absorption at about 0.54 Ry,"which is, in fact, about
0.125 Ry above the first F exciton. It is suggested that
this peak is due to an exciton associated with X.

The valence band of LiI is found to be about 0.16 Ry
wide if spin-orbit eRects are neglected. The inclusion of
spin-orbit effects increases the band width to about
0.26 Ry. The band gap is found to be 0.485 Ry at I' and
is 0.467 Ry at L. Hence, the direct edge is predicted to
be at the point L rather than at F. There should be an
indirect transition from F8 to L» at about 0.022 Ry
before the onset of the fundamental absorption. In the
x-ray spectrum, it is predicted that the onset of absorp-
tion should be at about 4.38 Ry for transitions from the
Li+ 1s level to the conduction band. This is in excellent
agreement with the results of Haensel et al. ,

" who

predict the onset of absorption to be at about 4.40 Ry.
It is found that there is an I d-like level just below the
Li+ 1s level and this is in keeping with the conjecture
given by Haensel et al. ; however, the present work finds
the order of the levels to be the reverse of the order
which Haensel et al. suggest. At present, it is not
possible to say which assignment is correct.

The optical data for LiI is sparse. Fischer and Hilsch
measured the optical-absorption spectrum of LiI in its
fcc phase at 78'K, but very little structure is visible in
their data. "The erst exciton peak occurs at 0.44 Ry
and is not as great as the exciton peak found in the other
alkali halides. They are unable to resolve any well-

defined structure at energies higher than the first
exciton peak. Recently, Bachrach has measured the
absorption of thin films of LiI in the exciton region at
4.7, 78, and 295'K."These measurements were made
using strain-reduced thin-61m techniques. The first
exciton peak is found to occur at 0.41 Ry at 4.7'K,
0.43 Ry at 78'K, and 0.44 Ry at 295'K. Bachrach
observes a rather broad indirect edge preceding the
first exciton peak. There is a second exciton peak about
0.025 Ry above the first exciton peak which is nearly as
strong as the first peak. This splitting is in good agree-
ment with the computed splitting for the L and I' band

28 F. Fischer and R. Hilsch, Z. Physik 158, 553 (1960)."R. Bachrach (private communication, 1969).

edges. It appears that this data is in good agreement
with the predictions of this present calculation. Un-
fortunately, because of instrument limitations, Bachrach
was unable to measure the spectrum of LiI above 0.47
Ry and no more comparison with experiment is
presently possible.

The band structure of LiI is quite different from that
obtained for the other alkali halides. This is not believed
to be function of the model potential chosen since
essentially the same band structure has been obtained
using several different model potentials.

There is one important point to be made at this time.
A true Hartree-Fock type of calculation has not been
performed, and hence, Koopman's theorem is not
satisfied. "Therefore, the calculation must be regarded
as using a type of model potential and is not a first-
principles calculation. In this sense, the good agreement
between theory and experiment is fortuitous. This does
not imply that the calculation is of no value, but that it
must be used as a qualitative tool for understanding the
optical properties of NaI and LiI. Thus one must await
more and better experimental data before the validity
of these calculations can be either accepted or rejected.

VII. CONCLUSIONS

The MB method is seen to produce reasonable results
for LiI and NaI for the model potential which was
chosen. The OPW results which include relativistic
effects by first-order perturbation theory are in excellent
agreement with the MB results, where these effects are
treated in an essentially exact manner. It is also noted
that the size and direction of the relativistic effects are
the same as those for KI which were obtained by
Onodera using a Dirac equation. Therefore, it is felt
that the MB method presented here provides an excel-
lent method for the inclusion of relativistic effects into
band-structure calculations.

It has been seen that by including overlapping valence
orbitals in the basis one may achieve a considerable
saving in computer time. The author believes that this
method would work as well for metals or semiconductors
as it does for NaI and LiI.

Continuing development of the MB method is being
undertaken and more calculations are being performed.
At the present time, calculations on LiF and KI are
being completed. It is also expected that true Hartree-
Fock calculations will be performed using this method
and that one will overcome the theoretical limitations
inherent to the use of model potentials.
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