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Coulomb Effects at Saddle-Type Critical Points
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The effect of the Coulomb interaction between electron and hole at an M~ (saddle-type) critical point
is studied in the eGective-mass approximation, using the adiabatic method Grst treated by Velicky and Sak.
The complete adiabatic potential for the heavy-mass degree of freedom is computed. The method is tested
by calculating the binding energy for positive heavy mass and comparing it with Kohn and Luttinger's
variational result. Reasonable accuracy for mass ratios greater than 5 is obtained. For negative heavy mass,
the two-dimensional light-mass coordinates give a bound state which results in an effective repulsive po-
tential. The contribution to e2, the imaginary part of the dielectric function, is computed, and a peak is
found at the energy of the two-dimensional bound state. A sharp drop in e2 above the peak is found, which
contrasts with the sharp drop below the peak for 3fo singularities. Quantitative agreement is found with
the structure in e2 for CdTe at 3.5 eV measured by Marple and Ehrenreich, and it is expected that other
L-point transitions in III-V semiconductors can be similarly interpreted.

I. SUMMARY

S TRUCTURE in the fundamental optical reQectivity
due to critical points has been widely used in the

empirical determination of energy band structures by
the pseudopotential method. ' The importance of this
application has motivated a considerable amount of
effort to understand the form of the critical-point struc-
ture in greater detail.

If we expand the optical energy $,(k) —h„(k) in a
Taylor series about the critical point ks, we have

h, (k) —S„(k)= hers+ k'(k, —k e;) '/2m;.

The linear terms are absent by definition. Critical points
are of four types, designated M;, where j refers to the
number of reduced mass components m; which are
negative.

If one neglects correlation effects between the electron
and hole, then all four types of critical points give a
nonanalytic contribution to e2, the imaginary part of
the dielectric constant, which is of square-root form. "
The modification of this result due to the Coulomb
attraction between electron and hole is very drastic for
an Mo singularity. Sharp exciton lines due to electron-
hole bound states occur, and even the continuum ab-
sorption is strongly modified. These well-known results
have been derived by Elliott' for the case of an iso-
tropic positive mass.

For an 3f3 singularity with isotropic negative mass,
the Coulomb problem is also tractable and has been
discussed by Velicky and Sak.4 The effect of the
Coulomb interaction here is to suppress the critical-
point structure. Xo bound states occur and the absorp-
tion near the edge is strongly suppressed, which will
make Ã3 singularities difficult to observe.

The situation at an M& singularity has been more

J. C. Phillips, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1966),Vol. 18,p. 55.

s D. Brust, Phys. Rev. 134, A1337 (1964).
3 R. J. Elliott, Phys. Rev. 108, 1384 (1957).
4 B. Velicky and J. Sak, Phys. Status Solidi 16, 147 (1966).
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controversial. Phillips' was the first to suggest that
pronounced structure would result from Coulomb effects
at M1 singularities. He called the structure "saddle-
point excitons. "This view was challenged by Duke and
Segall' who pointed out that for a monatomic attractive
potential, resonant behavior in the negative-mass degree
of freedom was impossible. They concluded that for
some types of effective potential, structure in e2 at
saddle points was still possible, but for the Coulomb
potential treated in the adiabatic approximation they
did not find important structure.
IIf' Several authors have stressed the importance of
central cell corrections when electron-hole correlations
are strong. This approach goes beyond the effective-
mass approximation and hence depends strongly on
what is assumed about the over-all band structure.
Velicky and Sak, using a 8-function interaction, found
that the optical critical points remained fixed in energy
but were strongly modified in shape by the interaction,
M1 singularities being enhanced and M2 suppressed.
Toyozawa et ul. ,

~ who also used a short-range inter-
action, found modification of band critical points and
additional new resonance-type structure associated
with bound states of the short-range interaction. Her-
manson used a longer-range interaction and also found
resonances of the Toyozawa type. The association of
these resonances with critica1 points was not completely
unambiguous but tended to support Phillips's inter-
pretation.

Velicky and Sak4 also treated the case of an M1
singularity without central cell sects but they used
Coulomb interaction. They treated. the problem by the
adiabatic (Born-Oppenheimer) approximation which is
valid when the negative mass is much larger in absolute
value than the positive masses. They found structure
associated with the lowest bound state of the two-di-
mensional hydrogenic spectrum of the positive-mass

5 J. C. Phillips, Phys. Rev. 136, A1705 (1964).
C. B.Duke and B. Segall, Phys. Rev. Letters 17, 19 (1966).

~ Y. Toyozawa, M. Inoue, T. Inui, M. Ozaki, and E.Hanamura,
J. Phys. Soc. Japan 21, 133 (1966); Suppl. 21, 133 (1966).

J. Hermanson, Phys. Rev. 166, 893 (1968).
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degrees of freedom. Their results were rather incom-
plete, however.

We have extended the calculations of Velicky and
Sak4 and have numerically computed the effective adia-
batic potential as a function of the heavy-mass co-
ordinate. This dfective potential can, of course, be used
for either sign of heavy mass. For the positive heavy-
mass case, we have tested the adiabatic approximation
by computing the lowest bound state and comparing
it with the binding energy calculated by a variational
form due to Kohn and Luttinger. ' The adiabatic re-
sults were reasonable down to mass ratios of the order
of 5, but were not an improvement on Kohn-Luttinger
unless the mass ratio was greater than 80.

For the negative heavy-mass case (M&), we have

calculated the saddle-point line shape and 6nd definite

structure associated with the lowest two-dimensional

bound state of the light-mass degrees of freedom, as
expected from Velick$' and Sak's work. The peak is
asymmetrical and drops much more sharply on the
high-energy side, just the opposite of the lifetime-

broadened Mo line shape. This fact should permit a
clear distinction between the two types of critical

points, provided central cell corrections are not domi-

nant. Sand-structure effects beyond the effective-mass

approximation may also distort the line shape con-

siderably. The adiabatic approximation is likely to be

good for 3E~ (or Ms) critical points occurring on sym-

metry lines. The transverse masses will be equal by
symmetry, and are likely to be much smaller than the
longitudinal mass, since hk p breaks the symmetry
when Ak is transverse to the symmetry axis. The broken

symmetry allows interaction between bands of different

symmetry, which are usually closer together than bands

of the same symmetry.
The interpretation of the structure that we observe in

our calculation is identical to that given by Duke and

Segall' for structure they obtained using a parabolic

separable potential. However, by virtue of our more

detailed calculations, we conclude that Coulomb effects

do lead to pronounced structure at saddle-point edges.

A strong asymmetric line shape was observed in

CdTe at 3.5 eV by Marple and Khrenreich. '0 They in-

terpreted this shape on a pure density-of-states basis,

invoking a rather special band structure. Phillips' sug-

gested that a more likely explanation couM be based on

"saddle-point excitons. "In Sec. III, we discuss the case
of CdTe in detail and show that we can get quantitative
agreement between our calculations and Marple and
Ehrenreich's data' using only one adjustable param-

eter, the longitudinal reduced mass, which has not been

determined from other measurements. On the basis of

this detailed agreement, it seems likely that most if not
all of the "L point" line shapes in column-IV, III-V

~ W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
"D. T. F. Marple and H. Ehrenreich, Phys. Rev. Letters 8,

87 (1962).

and II-VI semiconductors can be explained in a similar
manner. Shaklee, Rowe, and Cardona" have argued
that the line shape of InSb near 1.9 eV suggests that
Coulomb effects play a dominant role. Since the line

shape of InSb is very similar to CdTe, our results sup-

port this conclusion.

.,(~)= -P~p;,
~

S(E,—E;—a~),
3m2co4'U f

(2)

where p;~ is the matrix element of momentum between
initial and final states, and 'U is the volume. There is a
6 function for energy conservation and a sum over Anal

states f. m is the free electron mass.
If we make the effective-mass approximation for the

exciton, Elliott' has shown that the matrix element

p, y can be written

p'l=(~'I plier)C'(0)«

where C(r) is the exciton envelope function and u; and.

Nf are the cell-periodic parts of the Bloch function at
the critical point. The Schrodinger equation for the
envelope function is

(pr'/2mr+ ps'/2nss+ ps'/2ms e'/ar) O'= E—C . (4)

We will then have
Aa) =E+E„

where E. is the one-electron band energy at the critical
point. We use Ii., as our energy zero throughout this

paper.
We solve Kq. (4) in the adiabatic approximation by

assuming mt=ms) 0, ~ms~))mr. The adiabatic method

assumes the variational form"

C-(e,s) = i -(e,s)li -(s),
with p„dehned by

(pl /2srsl+ps /2ssss e /&(P +s ) jq' (y s)
= V-(s) ~ (e,s) (7)

y refers to the light-mass degrees of freedom, 1 and 2,
and z refers to the heavy-mass coordinate 3. z is a 6xed
parameter in Kq. (7) in accord with the idea that it
varies slowly compared to p. V„(s) is the eigenvalue for

Kq. (7). Using a variational method, it „(s) is found to

"K.L. Shaklee, J. E. Rowe, and M. Cardona, Phys. Rev. 174,
828 (1968).

"A. Messiah, Qgaltara Mechanics (North-Holland Publishing
Co. , Amsterdam, 1962), Vol. II, p. 789.

II. ADIARATIC APPROXIMATION

Our calculation follows very closely the assumptions
and approximations made by Velick$ and Sak.4 We
wish to calculate the contribution to es(co) from the
vicinity of an M& critical point. ~2 is given by'

4x'e'



W.(s) =
2m3

~~-(e,s) '
de (9)

W„(s) is clearly the extra kinetic energy coming from
the parametric dependence of p on s. This term is fre-
quently left out of adiabatic calculations and we And

that it is indeed small though not negligible. It is im-

portant to include it because otherwise the results are
not variational and one cannot guarantee that the
lowest eigenvalues of Eq. (8) are upper bounds for the
true eigenvalues of Eq. (4).

Ke work throughout in atomic units of the light-
mass problem, i.e., we set mi= e'/g= A= 1. The unit of
length is then

Gi= 5 K/tSi8

and the unit of energy (double "rydbergs")

Sinai mie4/(ts'——a')

~e can derive analytic expressions for V (s), W (s),
and p„(s) for lsl»1 and lsl«1. Some of these results
were given by Velicky and Sak. ' The two-dimensional
Coulomb problem is treated extensively by Flugge and
Marschall":

V„(s)= —1/2(e+-', )'+2~I q„(0) I"-!sl I

Isl«1 (»)

be determined by the eigenvalue equation"

(P '/2~ +U-(s)+W-(s))0-(s) =&-4-(s), (8)

Equations (17) and (18) are obtained by expanding
(p'+s') "' to terms of order p' which gives harmonic-
oscillator wave functions.

Using Eq. (13), it is easily seen that the term N=O
contains 95% of the oscillator strength associated with
the two-dimensional discrete spectrum. Hence we con-
sider only n=0 in what follows. We will consider the
contribution from the two-dimensional continuum, how-

ever, as given by Eq. (14). The adiabatic potential
Ui(s) =Pi, where Ei is the light-mass kinetic energy,
independent of s. This is because nondiagonal terms in
k are neglected and the diagonal term makes a negli-

gible contribution to Ej.
The adiabatic approximation is presumably less ac-

curate for continuum problems because the states of
the unperturbed problem whose mixing is neglected
lie so close together in this case. For lack of a better
simple alternative we make the approximation anyway.
The term Wi(z) in Eq. (9) is also zero in the limit of
infinite volume. Hence we take the fi, (s) functions as
plane waves.

The quantities V„(s) and W„(s) in Eqs. (7)—(9)
have been computed numerically for the ground state
m=0 by straightforward integration of Eq. (7) with
the eigenvalue V, (s) determined to prevent rpo(p, s)
from blowing up as p~~. dq0/ds was determined by
differentiating Eq. (7) with respect to s and integrating
the resulting inhomogeneous equation. The proper
amount of the homogeneous solution was determined by
differentiating the normalization integral

I p„(0)I'=1/ir(e+-,')'; n =0, 1, 2,

de 1 1
I ~»(0) I'

~ 1+g
—2~'"&

(13)

(14)

d(pp
vo'(s, e)de=2 ~o(s, e) (s e)&e

ds ds

=0 (19)

2~1 ~1 )

2m. q, (0)yo(0)

9.289/m3,

Wo(s =0) =
2el8 j

(16)

dVp 2

V 0'(s, e)——,
,
de

ds li(p'+ s') "-' (20)

The quantity dUO/Cs which arises in the differentia-
tion of Eq. (7) was computed by the first-order perturba-
tion result

V (s) = —1/lsl+1/I I'"
W,(.) =9/32s2

(17)

(18)

U (0) and q (0) are obtained from the solutions of
the two-dimensional Coulomb problem. Equations (12)
and (16) are obtained by first-order perturbation theory
It is clear from Eq. (7) that the region p) s only gives
contributions to terms of order s2 or higher. Hence the
nonanalytic terms in

I sl can all be expressed in terms
of q „(0).

In Eq. (14), dn/dEi is the two-dimensional density of
states of the light-mass coordinates.

The results of the calculation are given in Table I
and plotted in Figs. 1 and 2. It is clear from Fig. I that
Eq. (12) is a very poor approximation to Vo(s) except
for very small values of s.

The calculated values suggest that Wo(s) approaches
Wo(0) like Wp(0)+ass, but we have not verified this
analytically.

The adiabatic approximation can be used for either
sign of heavy mass ma, as long as Im& I»~i=f2. A
convenient test of the adiabatic results can be obtained
by computing the lowest bound state in the adiabatic
potential for m3 positive and comparing it with the
values computed from the variational form

"S. I'lugge and H. Marschall, Rechenmethoden der QNanten-
theorie (Julius Springer-Verlag, Berlin, 1952), p. 80. C (r) = (1/1V)e i"'+'-"""', (21)
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TAsx,E I. Contributions to the adiabatic potential versus z,
the heavy-mass coordinate in a.u. The Vz(z) is the Coulomb con-
tribution; mzWz(z) is the extra kinetic-energy contribution. On the
basis of varying the interval of integration, the last digit quoted
is believed to have some significance. Vz(z) and Wz(z) are defined
in Eqs. (7) and (g).
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I' IG. 2. Extra kinetic-energy part of adiabatic potential
mzWO(z) versus z. Upper-right scales go with dashed curve, lower
left with solid curve. Wo(z) is defined in Eq. (II). The light-mass
atomic units are defined in Eqs. (10) and (11).
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In Fig. 3 the dashed line is the binding energy from
the variational form of Eq. (21) as a function of mass
ratio, razz/mi. The solid line is the binding energy com-
puted using the adiabatic potential, Vii(z)+We(z), of
Figs. 1 and 2. For a mass ratio of 5, the adiabatic energy
is about 20% in error The a.diabatic result is not an
improvement over the Kohn-Luttinger result until the
mass ratio is greater than 80. The contribution of the
IVe(z) term to the binding energy was +30% at a
mass ratio of 6, +9% at 20, and +1% at 200. If we

first used by Kohn and Kuttinger. ' Equation (21) is
exact for m3=m~, ' hence, it should serve as a good test
of the adiabatic results in the region where they are
worst.
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Fio. 1. Coulomb part of adiabatic potential Vo(z) as a function
of heavy-mass coordinate z. Light-mass atomic units. Upper
abscissa goes with upper graph. Dashed line is small z asymptote.
Vp(z) is defined in Eq. (7). The light-mass atomic units are defined
in Eqs. (10) and (11).

I'IG. 3. Hydrogenic ground-state binding energy as a function
of ellipsoidal mass ratio m3/mi. Light-mass atomic units. Dashed
curve is energy computed by Kohn-Luttinger variational func-
tion. Solid line is computed using the adiabatic approximation.
The light-mass atomic units are defined in Eqs. (10) and (11).
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had ignored this term, the adiabatic results would have
appeared to be better than they really are.

We conclude from this comparison that the adiabatic
method is reasonably reliable down to mass ratios of
the order of 5.

For the negative-mass case, we have used the adia-
batic potential in Eq. (8) to compute Ip„(0)Is. This
was done by integrating the equation from the origin
to a suKciently large value of z, so that the WEB ap-
proximation could be adopted,

4(s) =
I Eps —Vp(s) —iVp(s) I

'"
z

&&exp i k(s')ds'+i b, (22)
0

A'(s)/2nrp+ Vp(s)+Wp(s) =Ept. (23)

The quantity

m3

dE3 kr 2E3
(24)

The integration determined u and b, and the wave func-
tion was then scaled to give unit normalization. Since
the potential U(s) is symmetric, the wave functions are
even Q'(0) =0j or odd P(0) =0. Only even states con-
tribute to ps by Eq. (3). The one-dimensional density
of even states per unit length without spin is

potential, the WKH approximation is applicable, and
the value of lf(0) I

' is proportional to

I Epj —Vp(0) —Wp(0)i ',
which increases as EOA, increases. When Eo~ is greater
than the bottom of the barrier, the particle must
"tunnel" to the origin (because of the negative mass)
and the value of If(0) I

' drops rapidly. The peak occurs
near —2, the value of the light-mass binding energy.
The curve broadens as the mass ratio decreases (in ab-
solute value), but the dependence on mass is rather
weak. The high-energy dropoff due to tunneling re-
mains abrupt. Figure 1 suggests that the tunneling
penetration of the true Vp(s) is very much less than it
would be for the triangular potential which it approaches
asymptotically at small z.

The total oscillator strength of the higher two-
dimensional bound states is only 5% of that of the
ground state, so we neglect them. Ke must include the
two-dimensional continuum, however. The adiabatic
approximation is less reliable and we cannot trust the
continuum structure that we 6nd, but we wish to know
if the continuum contribution will "wash out" the
bound-state structure. The results say that it does not,
and we feel that the approximation is adequate to justify
this conclusion.

In the adiabatic approximation for pI, ln the con-
tinuum, QI, is a plane wave, so that we can write

(26)

Sp(Ep)—:
I pp(0) I I

1/Ip@(0)
I
'dn/dEp (25)

is plotted in Fig. 4 for mass ratios m3= —5, —40, and
—320.

The shape of the curve is easily interpreted. For an
energy EOI, well below the minimum of the adiabatic

(spin is not included). We must multiply Eq. (26) by
Eq. (14) and integrate dErdEpb(Et+Ep —A&p) with the b

function for energy conservation. This gives the con-
tinuum analog of Eq. (25),

—-—m = —320 m&=-40

Scant (Are) —=
dS dQ

I ~~t(0) I'lk»(0) I'-
dEg dE3

12—

10—
3
0 8—

I I I I I I I &(b(Et+E, App)dErdEp. (—27)

The total contribution to ps(A&o) is then

ps(A(o) =ca)-'LSp(As))+S, .„t'(Arp) $ ) (28)

where c is independent of cu.

Substituting Eqs. (14) and (26) into Eq. (27), we have

Scont (A~) =& f(A(o,Et)dEt,' A(p) 0

I I I

-6.0 -5.5 -5.0 —2.5 -2.0 —I.5 —I.0 -0.5 0
ENERGY IN LIGHT MASS ATOMIC UNITS

f(Acp, Et)dEt, Ao) (0 (29)

Pro. 4. Sp(AM) versus Ace in light-mass atomic units. Contribu-
tion to the dielectric function from the two-dimensional ground
state for three negative masses (3f& singularity). Energy zero at
the critical point. 50 is plotted for m3= —320, 550 for me= —40,
and 2050 for ma= —5.

n =gnsp/2~'N (30)

f(Arp, Er) =I (E,—A(o)'"]—'

&& (1+expl 2s./(2Et) t j) (31)
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The limits of integration are determined by the require-
ments E»0, E3&0. An energy cutoff E&&E„has been
introduced to make the integrals finite. Although the
value of S„„s'(II&u) depends on the choice of E„, the
Ace dependence of S„„,' will not depend on E„provided
E,))Ace. Hence, we are led to de6ne the quantity

S,.„t,(koo) —= lim S,'(Aoo) —n
Eg-moo

0

f(0,E,)dE, . (32)

S...,(hco) —2%2o.(IIa) '~'/or;

—v2o. (boo) '~'/s. ;
—(In2) nk&o/z'

', n 1n(—2h-a&/z-') .

co&0, io)i((1
co &0, i

co
i
))1

co) 0, (
~

) ((1
&u)0, [ooi))1. (33)

The complete function $„„,(ha&) is readily computed
numerically. We have plotted the combined function

Ss t(kro) =Sp(kto)+S „t(ACo) (34)

in Fig. 5 for three values of the mass ratio, m3= —5,—40, and —320. The continuum structure occurs at
the critical point E, (our energy zero) as expected, but
is relatively weak compared to the structure associated
with the two-dimensional bound state.

We have subtracted off a quantity, independent of cv,

which tends to ~ as E„—+~, so that the resulting S,
is Gnite. This is permissible, since we are only interested
in structure near the critical energy A~, . We must as-
sume that k points far from the critical point k, do not
contribute to this structure. Such contributions could
not be treated in the effective-mass approximation in

any case.
The following limiting expressions for the function

S„„,(h&o) are easily established:

The most characteristic feature of the M~ saddle point
with Coulomb effects appears to be the steep dropoff
on the high-energy side associated with the tunneling
penetration of the barrier in the adiabatic approxima-
tion. Where the adiabatic approximation does not apply,
much less pronounced structure is anticipated. Of course,
we have neglected central cell corrections and contribu-
tions from k-space regions far from the critical point,
which may lead to structure in special cases.

In conclusion, we have shown that Mp and M~ singu-
larities with strong Coulomb effects can be distinguished
by noting the steep slopes on the low- and high-energy
sides of the singularities, respectively.

III. APPLICATION TO CdTe

1 1 2A'(2 P' 1 P'
,=—+ I- +-

m, ' mo mo'&3 Eeo 3 Ego+&o~
(36)

We use Eg,——1.61 eV" and hp=0. 81 eV" This gives
P'=0.31 a.u. which is to be compared with P'=0.47
a.u. for Ge, also at k=0.

We can then use this result to estimate the mass at
L. The equivalent three-band formulas are

The close resemblance between our results and the
line shape of CdTe as measured by Marple and Khren-
reich' was brought to our attention by Phillips. We can
make reasonable estimates of the parameters of our
model appropriate to this case and show that their
data appears to be quite well described by our theory.

We begin by estimating the momentum matrix
element

(35)

at k=0 using Kanazawa and Brown's" measurement
of the conduction-band mass, m, =0.096mp. We assume
a three-band formula

——-m' =-5
3

I0—

—- —m = —3203
I I I I

IT) = -403

1 1 2A'(1 Ps 1 P'
!,=—+ I- +-

m, * mo mp k2 Ect 2 E&,+d„l
1 1 2A'1( P'
,=—+

m„g* mp mp 2 4—Egt)

(37)

3

DI-
V)

4

—2—4.0 —3.5 -3.0 —2.5 -2.0 —I.5 -I.O -0.5 0
ENERGY IN LIGHT MASS ATOMIC UNITS

0.5 I.O

Fro. 5. St,,t,(~) versus Aco in light-mass atomic units. Total
contribution to the dielectric function from the continuum and
discrete states of the light-mass spectrum for three negative
masses (3fq singularity). Energy zero at the critical point. S&,&
is plotted for m3= —320, 5',g for m3= —40, and 20St,og for
m3= —5.

We use Ear=3.60 eV, Ay=0. 55 eV frolTl Ma, lples data. p

The. reduced mass ns„~* '=m, ~* '—~,z+ ' is equal to
6.8 top . The analogous procedure applied to Ge yields
the transverse conduction-band mass accurate to 2%.
Stated differently, the value of I'2 at the L point in
Ge is 0.48 a.u. , only 2% higher than the value at I'.
This result gives us conidence in our procedure. How-
ever, it should. be noted that the three-band formulas
are not expected to be as accurate for CdTe as for Ge,

"K. K. Kanazawa and F. C. Brown, Phys. Rev. 135, A1757
(1964)."D.T. F. Marple, Phys. Rev. 150, 728 (1966)."M. Cardona and D. L. Greenaway, Phys. Rev. 131,98 (1963).
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both because the band gaps are larger in comparison
to the energies of bands which are neglected and because
the symmetry is lower, which means that more bands
"interact" in thezinc blende than in thediamond lattice.

To calculate the "light-mass atomic unit" of energy
in Eq. (11), we need a "dielectric constant. " We use
K = 7.05.'~ The light-mass atomic unit then is 0.080 eV.
Since the light-mass binding energy is then 0.16 eV,
the use of K„rather than Kp is justified since the phonon
energy is of the order of 0.02 eV.

Equation (2) for e& can be written in terms of St,&

of Eq. (34),
8n'(m„, */mo)'(p'). &VS...(A&a)

e, ((o) = . (38)
35Sp Gp Keo

Here ap is the real Bohr radius, Ã is the number of
critical points, and (p')„ is the average value of

~ p, ~

',
say, averaged over the E extrema. Equation (38) refers
to the contribution from one of the spin-orbit split pair
of bands (counting its Krarners degeneracy, of course).
The average value of

~ p, ~' is ~3P' and we take %=4,
assuming the transition is at J. Substituting in Eq.
(38), we have

En(G)) = 2.1Sgot(&CO) (39)
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FIG. 6. The solid curve is the contribution of one of the spin-
orbit components to e2(co) in CdTe, extracted from Marple and
Ehrenreich's data (Ref. 10).The theoretical curve, shown dashed,
is computed from the theory of the present paper using parameters
discussed in the text. The vertical scale was "adjusted" by use of a
mass ratio of —60. Introduction of lifetime broadening into the
theoretical curve would clearly improve the agreement,

& B. Segall, Phys. Rev, 150, P4 f966).

for CdTe near 3.5 eV.
In Fig. 6, we have used Marple's data" (see Acknowl-

edgments) to separate out the contribution from one of
the spin-orbit split bands by assuming that both bands
give contributions of the same shape and amplitude
but shifted by 0.55 eV relative to each other. In Fig. 5,
we have arbitrarily taken our energy zero and our zero
of S~,~ to coincide. Kith this same zero, the experimental
amplitude at the 3.46-eV peak is 5.0, which requires
St,,~(peak) =2.4. Considering the amplitudes in Fig. 5,
we estimate that this would correspond to a longi-
tudinal-to-transverse mass ratio of about —60. We
have accordingly used the computed line shape for mass

ratio —40 and scaled the amplitude to make the peaks
agree. The energy scale is fixed by the "light-
mass atomic unit" which was calculated to be 0.080 eV.
It is seen that the energy scale agrees extremely well.
The amplitude, of course, was fitted by choosing a mass
ratio of —60. We don't know of any other determina-
tion of this quantity. If it really is this large, it would
be difFicult to compute theoretically even from a very
good pseudopotential band structure. We do not con-
sider this to be a reliable determination of the mass
ratio. A variation of a factor of 2 in the determination of
~2 would lead to about a factor 2 change in mass ratio.

The theoretical curve shape is seen to agree fairly
well with the experimental shape except that the experi-
mental shape is significantly broader. Lifetime broaden-
ing is the most likely source of the discrepancy. In this
case, the experimental and theoretical curves should
have been matched in area rather than peak amplitude,
which would require a somewhat larger mass ratio.
Nonparabolic effects along the A line would be expected
to increase the theoretical curve somewhat on the low-

energy side.
In summary, the agreement between theory and ex-

periment in Fig. 6 constitutes strong support for the
present interpretation of this structure as due to
Coulomb effects at a saddle point in the effective-mass
approximation. Central cell effects and nonparabolic
effects do not appear to be of major importance in
determining the characteristic shape of the structure.

It appears likely that the shape of most of the other
"I.-type" critical points which are generally similar to
CdTe can also be explained in this way. InSb seems to be
a particularly clear cut example. The importance of
Coulomb effects in the interpretation of the InSb spec-
trum has recently been stressed by Shaklee, Rowe, and
Cardona. "The importance of exciton effects in CdTe
were first suggested by Cardona and Harbeke" and
later reemphasized by Cardona. '9 Phillips has suggested
the importance of Coulomb effects at saddle points in
a wide variety of materials, including alkali halides.
The present calculation seems to apply fairly well to
columns IV, III—V, and II—VI semiconductors. It is not
clear at present whether it can be applied to the alkali
halides, since "central cell" corrections are presumably
much more important in these materials.

Pote added ie proof. The author would like to note
that the importance of exciton effects at A critical points
was also suggested by Y. Hamakawa, F. Germano, and
P. Handler, J. Phys. Soc. Japan Suppl. 21, 111 (1966).
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