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A similar analysis for the variation of the heavy elec-
tron mass with & has not been attempted, since the cor-
responding peaks in the spectra are not resolved over
a large spectral range. However, an average value of
mne may be used for a determination of m;. Considering
the case of H||[110] with E_L H, we get an average value
of mue=1(0.35240.006)m, on the basis of the first 10
peaks, excluding that due to the lowest (#=0) exci-
ton. Using an average value of 0.081m, for m, as ex-
pected from the variation shown in Fig. 10, we find
my=(1.542£0.06)m,.

Table III gives a summary of the conduction-band-
edge effective masses obtained from the present work
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along with the results of cyclotron resonance?:3* and
magnetoabsorption experiments.®
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Magnetic Freeze-Out of Electrons in Extrinsic Semiconductors
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The density of states was derived and the statistics of conduction electrons were studied for the case of a
strongly doped compensated semiconductor in an external magnetic field. The tail of the density of states
and the spread in the energy distribution of impurity levels were investigated, and the temperature and
magnetic field dependences of the concentration of electrons not localized in impurities were calculated. It
is shown that, because of the tail of the density of states, this concentration approaches a finite limit when
T — 0. The freeze-out of carriers begins when the magnetic field attains such a value that the binding
energy becomes larger than the rms potential energy of an electron in the field of the impurities. For suffi-
ciently large magnetic fields, the Fermi level will drop into the tail, although the electrons may remain degen-
erate. This last conclusion will also be true for uncompensated semiconductors.

I. INTRODUCTION

N semiconductors with shallow donor (acceptor)
levels the impurity band emerges with the con-
duction band at comparatively low impurity concen-
trations. It has been pointed out previously'® that the
impurity band will split off in sufficiently strong mag-
netic fields. This is because of the disappearance of the
overlap of electronic wave functions situated on
neighboring impurity sites due to their constriction
to a cigar-shaped region under the influence of the
magnetic field. The radius of this region is of the order
of the magnetic length A= (%c/eH)"? which may become
much smaller than the Bohr radius a. Thus, localized
states with a binding energy which increases with
magnetic field will appear’*® when the volume of the

* Visiting scientist under the exchange program between the
National Academy of Sciences U.S.A. and the Academy of
Sciences U.S.S.R. On leave from the Naval Research Laboratory,
Washington, D. C.
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bound state (wA\%a) becomes less than the average
volume of an impurity (N—Y), i.e., NmA%a<1.

This behavior becomes evident in the freeze-out
effect, i.e., the electron concentration begins to depend
on the temperature and magnetic field. This effect was
studied in InSb by Sladek® and later by Beckman ef al.®
and by Neuringer.” In earlier works,?? a theory for this
effect was proposed which did not take into account the
shifts in the impurity levels due to the random impurity
potential. This is valid only for very lightly doped
semiconductors when the rms potential of impurities
is small compared to the binding energy of the electrons
& and the thermal energy T (in units of energy).

In the present paper, we calculate the density of
states of a strongly doped semiconductor in a magnetic
field and construct the theory for freezing out. The tail
of the density of states of electrons in a magnetic field

5 R. J. Elliot and R. Loudon, J. Phys. Chem. Solids 15, 196
(1960) ; R. F. Wallis and H. J. Bowlden, zbid. 7, 78 (1958).

6 0. Beckman, E. Hanamura, and L. J. Neuringer, Phys. Rev.
Letters 18, 773 (1967).

7 L. J. Neuringer, in Proceedings of the International Conference
on the Physics of Semiconductors, Moscow, 1968 (Publishing House
Nauka, Leningrad, 1968), p. 715.
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was studied in the work of Tsitsishvilli.® However, this
work ignored the bound states and assumed that the
Fermi level was high in the conduction band.

II. PHYSICAL DESCRIPTION

We will consider the case of a strongly compensated
semiconductor so that the carrier concentration # is
much less than the charged impurity concentration V.
(We specifically choose electrons in the conduction
band but the discussion also applies to holes in the
valence band.) Following the work of Keldysh and
Proshko,” we assume some correlation between im-
purity positions. This correlation appears during the
process of sample preparation and may be taken into
account by introducing the screening radius 7o= (xT/
4wNe?)2, where « is the dielectric constant, ¢ is the
electronic charge, and T is the temperature (in units
of energy) determined by growth conditions. We
assume that the electron concentration is so small that
the electronic screening radius is large compared to 7.
Under this conditions, the impurity potential does not
change during the freeze-out process.

The random impurity potential contains fluctuations
of different ranges. The fluctuation in the concen-
tration with the range » (N"Y3<r<r,) produces a
potential of the order N(r)e/r, where N (r) is the excess
number of impurities in the volume of the fluctuation,
ie., N(r)~ (N#*)12. The largest potentials originate in
impurity fluctuations with a range of the order 7, It
is just these fluctuations which give the main contri-
bution to the rms potential (2m)Y2(Nr¢*)Y%/r. If we
study electronic states with wavelengths smaller than
the range of a given fluctuation, then this fluctuation
may be considered as a local variation of the bottom
of the conduction band. The local downward shift of
the conduction band gives rise to states in the forbidden
gap in that region of the crystal. We introduce the
average depth of the potential well given by

I'=2xY2(e*/kro) (Nr*)!2. 1)

When the energy & does not lie too deep in the for-
bidden gap (a more precise statement follows later),
then only such potential wells are important in the
density of states whose bottoms lie below & by an
amount of the order IT'. Thus, in the absence of a mag-
netic field the characteristic wavelength is #(2mI)~2,
In order to consider the fluctuation as a local variation
of the bottom of the band it is necessary for the con-
dition

i/ (2mI)<Krg 2)

to be satisfied. The potential energy of electrons in the
field of short-range fluctuations, for which such a

8 E. G. Tsitsishvilli, Fiz. Tverd. Tela 8, 1193 (1966) [ English
transl.: Soviet Phys.—Solid State 8, 950 (1966)].

9 L. V. Keldysh and G. P. Proshko, Fiz. Tverd. Tela 5, 3378
(1963) [English transl.: Soviet Phys.—Solid State 5, 2481 (1964)7].
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description is not valid, is much less than the typical
kinetic energy of an electron in a well of depth T, in
this case, and so may be ignored. The ideas, which are
the basis for the description given here, were developed
by Kane,” Bonch-Bruevich, and Keldysh and
Proshko.’

The magnetic field begins to affect the density of
states if the distance between Landau levels #2 becomes
larger than the broadening of these levels due to non-
homogeneous distribution of impurities, i.e., the mag-
netic field is important if

>, 3)

The condition given in Eq. (3) also means that the
magnetic length which characterizes the localization of
electrons in a plane perpendicular to the magnetic field
is less than the wavelength along the direction of the
magnetic field which is determined by the typical depth
of the potential well. Thus the condition given by Eq.
(2) is also sufficient to insure the smoothness of the
potential variation in the magnetic-field case. Inserting
Eq. (1) into Eq. (2) shows that this condition fails at
high impurity concentrations. For InSb the concen-
tration must be of the order or less than 10" cm—3.

Next, we discuss the electronic states localized on
individual impurity centers. In the vicinity of each
positively charged impurity the potential energy of
electrons approaches minus infinity. However, in
strongly doped semiconductors the bound states are
absent if Na®*>1. It is well known® that bound states
appear in a magnetic field and if the condition

Nmta<1 4)

is satisfied the neighboring states do not overlap. It is
important to emphasize that the position of the im-
purity level is strongly dependent on the configuration
of neighboring impurities since these states are greatly
elongated along the direction of the magnetic field and
they are in close proximity. If the length of the state a
is small compared to 7y then, in the field of the most
important long-range fluctuations, the impurity level
will rise or fall with the motion of the bottom of the
conduction band. The energy broadening of the levels
over the volume of the crystal may be larger than the
binding energy of the electron.

The fluctuations of the potential with a range less
than a cannot be considered in such a manner. However,
these are not important because (a) their magnitude
is less and (b) the position of the energy level is less
sensitive to them. As discussed later, the impurity levels
are important only in the case 7¢>>a.

1 E. Q. Kane, Phys. Rev. 131, 79 (1963).

11V, L. Bonch-Bruevich, Fiz. Tverd. Tela 4, 2660 (1962); 5,
1852 (1963) [English transls.: Soviet Phys.—Solid State 4, 1953
(1963); 5, 1353 (1964)].

2Y. M. Demkov and G. F. Drukarev, Zh. Eksperim. i Teor.
Tiz. 49, 257 (1965) [English transl.: Soviet Phys—JETP 22, 182
(1966)]; M. I. Dyakonov, D. L. Mitchell, and A. L. Efros, Fiz.

Tverd. Tela 10, 2561 (1968) [English transl.: Soviet Phys.—Solid
State 10, 2021 (1969)].
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Thus, if Eq. (2) is satisfied, then the bottom of each
Landau sub-band as well as the shallow impurity levels
are shifted by an amount V(r) equal to the potential
energy of an electron at the point r. This fact is very
important for the calculation of the electron concen-
tration in a magnetic field.

III. DENSITY OF STATES

We begin by calculating the density of impurity
states. For simplicity we assume that only the ground
state located below the bottom of the lowest Landau
sub-band is important. Then, according to the foregoing,
if the length of this state ¢ in the direction of the
magnetic field is small compared to 7o, the density of
impurity states per unit volume at point r has the form

ps(8,1)=Npd(E—8E,—V (1)), (5)

where &, is the field-dependent energy of the bound
level and Np is the concentration of positively charged
centers.

9/2 9N
V(i)=2 ¢(t—r)— 2 oé(r—1) (6)
j=1 F=gu/2+1

is the potential energy of an electron in the field of
positively and negatively charged impurities. (We
assume that the number of donors equals the number
of acceptors and we ignore the electron potential.) In

Eq. (6),
o (x)= (e/kr)e=I™.

To obtain the full density of states, we should integrate
Eq. (5) over the volume of the entire crystal. Instead
we fix r and average Eq. (5) over all impurity con-
figurations and thus obtain the average density of
states per unit volume py(8)= (ps(8,1)).

We introduce the probability P(U)dU that the
potential energy V(r) lies in the interval from U to
U+dU.

i3r1 dPryy ' -
rw- [ [ Ssw-vey. o
Vo
Then
pb(é’)=ND/ dUP(U)s(8— &,—1). (8)
Let us transform Eq. (7) as follows:
d3r1 droy 1
Pu)= / / dl e U=t
V() 27['

1 C]
= / di eUR (). (9)
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With the aid of Eq. (6) we obtain

a’r /2 & n/2
F(¢)=[/ _e—iqb(r)t] [ __eid>(r)t]
VO Vo
< f+(t)>9”2< f—(t))f>“’2
Vo Vo

0= [ er(eriocr—).

(10)

(11)

In Eq. (10) take the limit 91— © and Vo— « so
that 91/Ve= N, where N is the concentration of charged
impurities. We find that

F(t)=exp[3N (f++1-)]- (12)

If we assume that for important r and ¢, ¢(r)i1
then we may expand the exponent in Eq. (11) to the
quadratic term. Then

F ()= g 14 1(13)

and

I?=2N / dr $2(r). (14)

The integral in Eq. (14) brings us to Eq. (1). Inserting
Eq. (13) into Eq. (9), we have

P(u)=n""2T"1 exp(— U?/T?). (15)
Then Eq. (8) takes the form
pb((‘o’) Npr2r—! exp 1(x+xb)2, (16)

where x=(8—3#02-43gBH)I' ! is the energy measured
from the bottom of the lowest Landau sub-band in units
of T, and %= 8,/T, where & is the binding energy mea-
sured downwards from the bottom of the Landau sub-
band (8,>0). Thus it happens that the impurity level
is broadened by an amount on the order of T.

We point out that in the integral of Eq. (14), large r
of the order of 7, are important. This is the justification
of the derivation under the condition 7o>>a.

It may be seen that the expansion of the exponential
in Eq. (11) is justified if |x4xs|<<(Nre®)¥2 In the
following, we assume that the condition N7¢@>1 is
fulfilled, so that this limitation only holds in the region
where the density of states is exponentially small.

Now we consider the density of states of electrons
which are not localized in the vicinity of impurities. If
the condition of Eq. (2) is satisfied, then

1
p0(57r)=_~ Z

0 8Py P2 M

S[E— (M+3)nQ—ps*/2m
—3g8H—V (0], (17)

where p,, p., and M are the quantum numbers of
electrons in a magnetic field in the Landau repre-
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T16. 1. Dependence of the density of states on energy (in units
of ') near the bottom of the lowest Landau sub-band when #>>T
[Eq. (23)].

sentation, g is the gyromagnetic ratio, and s==£1.
Performing the summation on p, and p, in Eq. (17),
we obtain

pc(é,r)=—\/nj—— 2 [éu—=V (@O,

18
IV2THNE M, s 18)

where Eys=8— (M+1)HQ2—3g8H. In Eq. (18), each
term of the sum should be considered nonzero only for
such values of energy & for which the square root is
real.

Averaging Eq. (18) according to the prescription

3 P( )
(8= V)= / dUZE—_%E’

and using Eq. (15), we find that

pc(8)=4 Y G(xu,), (19)
M,s
where %3, = 8ar,/T', A=m'2(2V2x2hN2/T)1, and
= [y (20)
G)=— [ dy—.
VL /w (x—y)12

For <0 the function G(x) may be expressed through
the MacDonald function Ky;4:

G(x)=n"12(—Lx) 22K, (3a2) (x<0). (21)

Equations (19)-(21) coincide with the results of
Tsitsishvilli® obtained by another approach for non-
compensated semiconductors.

In this case the expansion of the exponent in Eq.
(11) is good for all x>0 if N7>>1. For x<0 it is true if

|| < (Nre?)Hr2. (22)

We begin the study of Eq. (19) for the case #>T.
Near the bottom of the lowest Landau sub-band, only
the term with M =0 and s= —1 is important. Then

Pc(8)=‘1G(x) ) (23)

where x is the same as in Eq. (16). The function G(x)
is shown in Fig. 1. For «>>1, G(x) — (x)~'? and Eq.
(23) goes into the density of states for a free electron
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in a magnetic field. For x <0 there is a tail of the density
of states in the forbidden gap. The asymptotic expres-
sion has the form

G(x)=e""/y/2]z| '

Equation (24) is valid if the condition of Eq. (22) is
satisfied. There is another limitation. Values of y that
are close to « are important in Eq. (20) for x<0 and
||>>1: |x—y|~]|x|!. Physically, this means that
electron states with energies near the bottom of the
wells are important at large negative energies. How-
ever, our description fails if the distance to the bottom
of the well becomes less than 7#2(mr@?)~'. Thus, Eqgs.
(21), (23), and (24) are valid for x<0 only if

(x<0, |x|>1).  (24)

|%| <Tmreh2. (25)

Under the condition of Eq. (2) the right-hand side of
Eq. (25) is much larger than 1. Thus, once again the
limitation on Eqgs. (22) and (25) apply only where the
density of states is exponentially small.

In the case when #Q<T the magnetic field is un-
important. Changing from sum to integral in Eq. (20),

we obtain
V2m3li\/T 78
(&)= G =), (26)
w2he
where
Golwym— [ ey 21)
x)=—ov eV (x— . 2
’ VT /;w S

These results are the same as those obtained previ-
ously®! for strongly doped semiconductors but without
magnetic field. The function Go(x) is shown in Fig. 2.

1IV. ELECTRON CONCENTRATION

To find the concentration of electrons not localized
on impurities it is necessary, as usual, to solve the
equation for the chemical potential u.

netnp=n=Np—N4, (28)

where Np and N 4 are the donor and acceptor concen-

[¢) x,Q

Fi16. 2. Dependence of the density of states on energy (units of
T) when #Q<TI [Egs. (26) and (27)]. The same plot gives the
dependence of n=#,(24AT)™ on {=p/T" when the electrons are
degenerate in the lowest Landau sub-band and #Z2>T.
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trations, and

o= / 0<(8)1(8)d8,
- (29)

o= / os(8)/(8)d8,

where

1(8)= (eI 1),

The density of states p»(8) and p.(8) are given by
Egs. (16) and (19). Equation (25) cannot be solved
analytically. We note some of its properties which are
of the most interest from our point of view. We consider
the case Z>>T and we suppose that all electrons are in
the lowest Landau sub-band. It is seen from Eq. (19)
that the density of states p.(8) is proportional to the
magnetic field. The number of states in the tail (x<0)
is of the order of AT, so that in sufficiently strong
magnetic fields when AT'>#, all electrons may be in the
tail. On the other hand, the binding energy &; increases
with magnetic field.#% If &, becomes larger than T,
then all electrons will go to impurity levels if the tem-
perature is low enough. This is just the freeze-out
process. The specific feature of freeze-out in strongly
doped semiconductors is that the concentration #. does
not tend to zero as the temperature goes to zero and if
T'> &3, then %, is comparable with #.

The dependence of the concentration on magnetic
field and temperature can have very different characters
when the relationships among the parameters I', &, #,
and Np are varied. We consider certain limiting cases.

Let I be larger than &, (in sufficiently large magnetic
fields this condition will necessarily fail). Then, if one
compares Egs. (16) and (19) and if Eq. (4) is satisfied,
then p.(8)>p»(8) and the bound states are not im-
portant. If Eq. (4) is not satisfied then the bound states
are absent so that, instead of Eq. (28), one can take
n,=n.If T=0, then the chemical potential is defined by

¢
m:AI‘/ G(x)dx=2ATGo(¢),

—o0

where the function G, is defined by Eq. (27), ¢t=u/T,
and the Fermi level is measured from the bottom of the

(30)

Fi16. 3. Results of a numerical
calculation of the dependence
#c/n on temperature for #-InSb
with concentration n=10%
cm™3, Np=5X10% cm™3, and
the magnetic field H=30 kOe.
(1) Without impurity potential
I'=0); (2) T'/&*=2.5; and
(3) T'/&=4, where &9 is the
binding energy at H=0. At 30
kQOe, according to Ref. 14,
& =4.28).
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Fi16. 4. Results of a numerical !
calculation of the dependence
of n,/n on magnetic field at 0lo— 2 (/2)

T=4.1°K. The concentractions <€
n. and Np and the relations <
between I' and & are the same oosk-
as in Fig. 3. The values for
& (H) were taken from Ref. 14.
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lowest Landau sub-band. The plot of n=%,(24T)! as
a function of { is shown in Fig. 2. This dependence can
be studied experimentally by optical experiments.!?

The condition of degeneracy in the electron tails is
not the usual one. If I>>T), then Eq. (30) is valid for
all positive u and for negative u such that |u|
<I2(27)7. If I'KT, then the degeneracy condition is
the usual one, x>T. For Boltzmann statistics the con-
dition —u—T2(27)~S>T is necessary if I>>T, and the
usual condition —u>>T applies if I'K7. In the case of
Boltzmann statistics, the integral in Eq. (29) for 7,
can be calculated exactly and

ne=n.9 exp(u/T+12/4T?),

o 1 /mT2 (31)
DY) A

If I'KT, then Eq. (31) gives the usual equation for
electrons in a magnetic field.

Now let the magnetic field be strong enough that
&y>T. Then at low temperatures the electrons will
mainly be on the impurities. In this case one may obtain
the analytical dependence of the electron concentration
n, on 8y and H. The Fermi level is defined by the
equation #n=mn; or

n 1 e *dx
Np ~/« f_w e(T/T) (x4+x)+1"

where X=—u/I'— &y/T. Thus X does not depend oa
the magnetic field. If |x|<T/T, then Eq. (32) can be
transformed into )

&(—X)=—1+42n/Np,

(32)

(33)
where

& (2)=2(x)12 / R

0

is the probability integral. Under these conditions, X is
also independent of temperature. Under conditions
where Boltzmann statistics apply, Eq. (31) is valid for
#, where the chemical potential is defined by Eq. (32).
Then
&y T I
Ne=n exp(—————-x——l——) . (34)
T T 4T

o oz
I/T CK™)

B R. Kaplan, J. Phys. Soc. Japan, Suppl. 21, 249 (1967).
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The magnetic-field dependence in this case is the same
as for the pure crystal but the magnitude and the
temperature dependence of 7, are quite different. It is
worth noting that in sufficiently strong magnetic fields
Eq. (34) is necessarily valid since it is only necessary
to satisfy the condition &,>T2(27)

If the Fermi level given by Eq. (32) is such that the
nonlocalized electrons are degenerate, then Eq. (30)
or the plot in Fig. 2 may be used to find the concen-
tration #.. These values for #, are the limiting values as
T — 0 and they are strongly dependent on the magnetic
field.

The most interesting region is when &z~T. Un-
fortunately, in this region it is necessary to obtain
n.(H,T) by numerical calculation. This calculation was
performed for #-InSb for two values of I'/ &, where
&y’ is the binding energy in zero magnetic field. The
results are shown in Figs. 3 and 4. For comparison the
curve without impurity potential (I'=0) is also shown.

The magnetic-field dependence of #, arises from two
competing processes: the linear increase in the density
of states p.(8) with magnetic field and the increase in
binding energy & with magnetic field. The maximum
in curve 3 of Fig. 4 reflects this competition. The
calculated values of #, are very sensitive to the mag-
netic-field dependence of ;. In these calculations we
used the experimental values determined by Kaplan.’®

V. CONCLUSION

There are several possible ways to compare this
theory with experiment. The most direct method for
the determination of T' is by optical experiments. This
question is discussed in an accompanying paper.!* Here
we discuss the magnetic-field and temperature depen-
dences of the Hall constant. There are two character-
istic regions in the temperature dependence of the
concentration #.: the high-temperature region 7>>T
where 7, does not depend on I' and the saturation region
where 7, depends strongly on I'. Unfortunately, the
freeze-out in magnetic field has not been extensively

4 M. I. Dyakonov, A. L. Efros, and D. L. Mitchell, following
paper, Phys. Rev. 180, 819 (1969).
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studied experimentally. The temperature dependence
of the Hall constant in #-InSb was studied by Sladek?
in fields to 28 kQOe. It is difficult to compare our theory
with his experiments because of the conditions of the
experiment. In his experiment the electron mobility in
the impurity band was important and the compensation
of his samples was small. Under these conditions I' will
depend on temperature and magnetic field. This was
not taken into account in our theory. The experiments
of Beckman ef al.% and Neuringer” were done in magnetic
fields to 200 kOe. The observed magnetic field depen-
dence was exp~1(85/T) and under their conditions this
term should be vanishingly small since the ratio /T
is of the order of 20 at 100 kOe. However, the Hall
constant was only changed by two or three orders of
magnitude at this field. This difference is explained by
Eq. (34), which contains the large term exp(I'?/47%) as
well as the factor exp=(8s/T). This first term does not
depend on magnetic field. Experimental measurements
of the temperature dependence of the Hall constant are
necessary to verify this conclusion.

Qualitatively our results are valid for noncom-
pensated semiconductors. In this case the Fermi level
will also fall into the tail with increasing magnetic
field. Quantitative considerations are complicated by
the fact that the electron concentration becomes in-
homogeneous and the electronic potential must be
taken into account.

It is also necessary to mention that if the conduction
electrons are in the far tail they are indeed localized in
regions of the order of 7o. In this situation the crystal is
very inhomogeneous and questions about kinetic effects,
in particular, the question of the Hall constant, must
be studied separately.’® An experimental method free
from these objections would be the measurement of the
Faraday effect under the condition 4mo,,/kx<&w<k8s/%.
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