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A general theory is developed for impurity diffusion in semiconductors via the vacancy mechanism, which
introduces and uni6es a number of new and existing concepts into a self-consistent phenomenological for-
malism. The thermodynamics of the vacancy-impurity-semiconductor system is first analyzed based on an
energy-band model, in which the activity coefhcients of the vacancy and of the impurity and the concentra-
tion of the vacancy-impurity pairs are obtained. The relationship between the diagonal and the off-diagonal
phenomenological coefticients is discussed. The diagonal elements are then determined from random-walk
theory, using an appropriate atomistic model. A special treatment is given to a tight-binding approximation.
It is shown that the validity of Seitz's analysis of the "chemical pump effect" depends primarily on the cor-
relation effect which he neglected. A vacancy Aux from the interior, however, will be induced in the initial
period as a consequence of the lowering of the vacancy activity coeScient in the donor-doped region. On
the assumption of a quasiequilibrium vacancy concentration and a moderately low impurity concentration,
the general theory reduces to a particularly simple form

Jz= Dz*y„r(1+—8 1nyg/8 lnNz)8Ãz/Bx,

where J@and Ez are, respectively, the Qux and the concentration of the impurity; Dz is its diffusivity under
intrinsic condition; and p, and yz are the activity coefficients of the vacancy and the impurity, respectively.

I. INTRODUCTION

LTHOUGH impurity diffusion in semiconductors
has long been practiced in the electronic device

industry, since the work of Fuller and Dunlap, ' a
general theory on this subject is still lacl-ing. Reiss'
first treated the thermodynamics of an impurity in
semiconductors using an energy-band model under non-
degeneracy conditions. Longini and Greene' extended
the thermodynamic treatments to defects, such as the
vacancy, in semiconductors. Since it has been accepted
that certain elements diffuse in semiconductors via a
vacancy mechanism, it may be expected that the
thermodynamics of the vacancy will strongly affect
diffusion in semiconductors. There is experimental
evidence4 ' that indeed the diffusivity of an impurity
as a function of doping concentration in the semi-
conductor is fairly well described by such a model.
Analyses of one- and two-impurity diffusion in semi-
conductors based on a model of the effect of enhanced
vacancy concentration and of the internal electric field
have been given by Hu and Schmidt. ' Certain assump-
tions in that work, however, have not been formally
justified. In this context, one may ask the following
questions: How is the diffusivity related to the vacancy
concentrations? How is it affected by the vacancy-

' C. S. Fuller, Phys. Rev. 86, 137 (1952); C. S. Fuller and J. A.
Ditzenberger, J. Appl. Phys. 25, 1439 (1954); 27, 544 (1956};
W. C. Dunlap, Jr., Phys. Rev. 94, 1531 (1954); W. C. Dunlap, Jr.,
H. V. Bohm, and H. P. Mahon, Jr. , ibid 96, 822 (1954)..' H. Reiss, J. Chem. Phys. 21, 1209 (1953).

3 R. L. Longini and R. F. Greene, - Phys. Rev. 102, 992 (1956).
4 M. W. Valenta and C. Ramasastry, Phys. Rev. 106, 73

(1957); J. Fairheld and B. J. Masters, J. Appl. Phys. 38, 3148
(1967).' M. F. Millea, J. Phys. Chem. Solids, 27, 315 (1966).

6 S. M. Hu, Electrochemical Society Meeting, Dallas, 1967
(unpublished); S. M. Hu and S. Schmidt, J. Appl. Phys. 39, 4272
(1968).
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impurity association? Is the vacancy concentration
maintained at its equilibrium value during the diffusion
process? How about the "chemical pump effect?" Are.
there any interferences of the various cruxes? How are
the interferences and the phenomenological coefficients
affected by the correlation effect?

The purpose of this paper is to develop a general
theory of diffusion in the ternary system vacancy-
impurity-semiconductor in the formalism of irreversible
thermodynamics, in order that the above questions may
be properly answered. The thermodynamics of the
vacancy-impurity-semiconductor system will first be
analyzed to obtain the activity coeKcients of the various
constituents and the concentration of the vacancy-
impurity pairs under fairly general conditions. Then the
fundamental relationships between the phenomenologi-
cal coeKcients are discussed. It will be shown that in
the particular ternary system considered, the off-
diagonal elements of the phenomenological coeScients
can be expressed in terms of the diagonal elements
by applying appropriate constraints. General expres-
sions for the diffusivities and the diagonal phenomeno-
logical coefFicients are then derived from a given
atomistic model, taking into account the correlation
effect. Special discussion is then given to the case
where the vacancy and the impurity are strongly associ-
ated. Furthermore, the validity of Seitz's chemical-
pump effect' will be examined in the light of the general
theory. Finally, impurity diffusion in semiconductors
will be analyzed from the simplification of the general
theory based on an assumption that a quasiequilibrium
vacancy concentration is maintained throughout.
Vacancy transients will be treated in a separate paper.

7F. Seitz, Phys. Rev. 74, 1513 (1948); Acta Cryst. 3, 355
(1950); Acta Met. 1, 355 (1953); J. Phys. Soc. Japan 10, 679
(1955).See, also, A. D. LeClaire, Phil. Mag. 3, 921 (1958).
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2. THERMODYNAMICS OF A VACANCY-
IMPURITY-SEMICONDUCTOR SYSTEM

A. Chemical Potentials in a Neutral System

are, respectively, given by

IiA (re 1/ r17V A )N p, Ng p

=kT in(1V&/Vs) kT —ln(1 —cV+/;VS) (2.5)
andWe begin by considering a simple, electrically neutral

system consisting of three constituents 3, 8, a,nd v,

denoting, respectively, the impurity, the semiconductor
(solvent), and the vacancy. Let 1V& denote the total
number of lattice sites in the ensemble, and Xg, .Vg,
and;V, denote the numbers of la, ttice sites occupied
respectively by 3, 8, a,nd z. Possible configurations of
the sp stem involving solute clustering will be assumed
to be of negligible consequence, with the exception of
vacancy-impurity pair formation. The concentration of
the pair is denoted by .V&.. We shall restrict our
discussions to a relatively dilute system, such that
E»$&)&:V,. The Gibbs free energy of the system is
given b

pp = (r7Gr/B. V,)~„,~„„=kT ln(iV„/, V„')
—kT in/1+(fV&/iVs)(a Z —1)—], (2.6)

where Ee is the equilibrium vacancy concentration at
infinite dilution of A in the neutral system, and is
given by

(2.7);V."= 'Vs exp( —I,,/kT) .
The equilibrium vacancy concentration, 1',' at a given
impurity concentration .V&, is, therefore,

iV,,
' = iV„'$1+(iV~/N s) (n —Z 1)7 . —(2.8)

One may identify the second terms in the right-hand
G& ——Gro+iV&uz+. :V.u„—.V&„E —kT inQ, (2.1) sides of Eqs. (2.5) and (2.6) as activity coefficients, i.e.,

Then, following the procedure of I idiard, ' one has

X/„=."Vp(ivy/i Vs)Q/[1+)Q (Z+1)].'V//lv—s] y (2.3)

where Z is the coordination number, and 0. is an as-
sociation factor given by

n=Z exp(E /kT) . (2.4)

The chemical potentials of the impurity and the vacancy

s A. B.Lidiard, Phil. Mag. 5, 1171 (1960).

where 6" is the free energy of the same lattice occupied
by 8 only; I& is the free energy associated with ex-
changing a solvent atom in the interior of the crystal
with an impurity atom at the surface; zs, is the free
energy of vacancy formation; E is the binding energy
of the vacancy-impurity pair, and k lnQ is the entropy
of configuration. We have neglected long-range inter-
actions between the vacancy and the impurity.

For given concentrations of 3, v, and 8, the free
energy of a, volume element can be minimized by two
processes, i.e., the rearrangement of 3 and v in the
volume element, such as A-v pair formation, and the
exchange of lattice constituents with neighboring
volume elements. However, the latter process also
affects the free energy of neighboring volume elements
arid cannot be considered alone. It occurs at a finite
rate toward eventual heterogeneous equilibrium be-
tween the source phase and the semiconductor phase
for both the impurity and the vacancy. The formation of
vacancy-impurity pairs is a homogeneous process within
the volume element, and can be considered as instanta-
neous in comparison with the slow diRusion process.
Hence, the free energy of any volume element is always
minimized with respect to E~„ i.e.,

Jggp (rlGr/rl&VAp)xg, xp

and
(2.9)

(2.10)

In the following, we extend I.ongini and Greene's
thermodynamical treatment of a vacancy-impurity-
semiconductor system to the case in which there is
formation of vacancy-impurity pairs. The free energy
of the ensemble can be written

G=Gr+Gg, (2.»)
where 6& is the free energy of the atomic system as
given in (2.1) and G2 is the free energy of the electronic
subsystem. The number of states at the energy levels
E„Ez, E„and E„are given by E„37&,X„and 3F»
respectively, pertaining to the conduction band, the
impurity centers (donor or acceptor), the vacancies
(acceptor) and the valence band. We must, however,
take into account the change in the energy levels in the
impurity and the vacancy arising from Coulombic
interaction. The range of Coulombic interaction is
determined by the screening distance E., which has
been given by Dingle' for semiconductors and is con-
centration-dependent. For simplicity, however, we shall
consider the interaction to operate only on the nearest
neighbors, specihcally the vacancy-impurity pair. We
shall also neglect the screening eRect and regard the
energy of Coulombic interaction as a constant. For this
purpose, one only has to consider the pairs in which
both A and v are ionized. Assume that there are Pg

~ R. B. Dingle, Phil. Mag. 46, 831 (1955).

p& and p„reduce to unity for very small ~Y&.

B. Chemical Potentials in an Electrically Active System
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iVQ y Izp )

1l =+a~ —'pzp )

(2.12)

(2.13)

positive charges amongst the X& impurity centers, and
pA. of these pA charges are amongst A atoms that are
in the iV&, vacancy-impurity pairs; that there are m,
negative charges amongst the t!'„vacancies, and e~, of
these charges are amongst the vacancies that are in the
X&, vacancy-impurity pairs. The number of vacancy-
impurity pairs in each of which a positive charge stays
in A and a negative charge stays in v is denoted by ep.
From the concentrations NA„, pA» zzA„, and np, one
can obtain the concentrations of the four differently
charged vacancy-impurity pairs iVgo o, rVgo, -, i'+ 0,

and .V~+„- through the following relationships:

~ A PA ZZP (2.14)

'~ A' ' ' i'A zzA PA +zzP ~ (2.15)

By counting the numbers of ways of sequentially placing
zz„electrons in the N, conduction-band states, p~ holes
in the N„valence-band states, (PA —PA„) positive
charges in the (.VA —NA„) free-impurity atoms,
(zz„—zzA„) negative charges the (1V„—XA„) free vacan-
cies, selecting xp pairs from X~. for placing both a
positive and a negative charge in each, and then suc-
cessively placing the rest of the (zzA. —zzp) negative
charges and (pA„—zzp) positive charges in the succes-
sively remaining 3 -v pairs, and permitting combina-
tions of spin degeneracies, one obtains the entropy of
electronic configuration as

(NA —NA. )! (N„—NA„)!
k lnQ, =k ln--

zz, !(N,—zz,)!p~!(N~ —p„)! (pA —pA„)!(iVA—NA„—pA+pA„)! (n„zzA, )—!(N„—NA„—I„+yzA„)!

+k 1ngA»g "",
zzp!(zzA „zzp)!(p—A „—Ip)!(NA „zzA „—pA „+—zz p)!

(2.16)

where g& and g, are the spin degeneracy factors of the
3 and the v levels, respectively. The Gibbs free energy
of the electronic ensemble is given by

Gz =zz,E,+zz„E„PAEA P„E„—zzpEp —kT lnQ„—(2.1'I)—

where Ep is the energy of Coulornbic interaction be-
tween a vacancy and an impurity atom. The total free
energy of the system is minimized with respect to ~z„

pA, zz„, and p„under the constraint of local-charge
neutrality

zz. —pA+n „—p„=0. (2.18)

-NA n ( 1+pi q-
l1+

1+|- i

using the method of Lagrange multiplier, and with
respect to zzp, pA„, zzA„and iVA„, for which the con-
straints are implicit in the configurational entropy ex-
pressions (2.16) and (2.2)—(2.5) using simple partial
differentiations. After some lengthy algebraic manipula-
tions, one obtains

NA n$ (1+pal
zz, .=N. —---

-Xs 1+1(1+1)
NA n/ 1+pi--q

1+
I 1+—$ I

—(Z+1), (2.21)
N, 1+th 1+i. )

iVA np& p 1
zzp ——N „

-N s 1+5 ~1+i ~-

NA n ( 1+gt q1+ —
I 1+ —

& I

—(Z+1), (2.22)
N, 1+q&

NA 1+Pi'
zz. =N. 1+ — n —(Z+ 1)

1+( Ns- 1+-i

NA n ( 1+pi. )1+ — 11+ E I
—(z+1), (z.23)

Np 1+jk 1+1' j
1+Pi.)

pA =NA- 1— p
1+i Ns 1+& 1+i )

1+Pi. q1+-
I
1+ & I

—(Z+1), (2.19)
Np 1+PE 1+i' J

iVA n t' 1+ j&i. q1+-
I
1+ g I-(Z+1)

N, 1+gI
(2.24)

-NA ni. (1+p(~-
p, .=N„

N, 1+i-&1+ti

1+M q
1+ --I 1+ —

~ I

—(z+1), (2.20)
1+)k 1+i

where n has been defined in Eq. (2.4), and

~ =e"p(Eplk T)

1 =gA expL(EA —Ep)/kT),

$=g. expI (E~—E„)/kTj.

(2.25)

(2.26)

(2.27)
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The equilibrium vacancy concentration E,' in a semi-
conductor with an impurity concentration of S& can
be obtained by setting p, =0 in the above equation:

»'. '=& *L(1+5)/(1+8)7(1+(V /V. ) E /(1+5)7
XL1+$(1+Pl)/(1+1)7—(Z+1)j). (2.32)

One can identify the activity coefficient from the
definition cV, '=p, '&V,*. At sufficiently high E& such
that $&)1, yet not so high that the system remains non-

degenerate Q))1), the above equation reduces to

1V„~ 1V„*($/(1+j*)7(1+(iV~/iV8) (np (Z+1)7)
f'))1, $&)1. (2.33)
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FIG. 1. Donor activity coeKcient in Si calculated using
Fermi statistics, on the assumption of constant donor level and
constant energy-band structure.

The chemical potential of vacancy is given by the
sum of partial differentiations of Kq. (2.1) and (2.17)
with respect to X„holding other concentrations
constant:

(aG,/ax. ) =I„+kTin((~V. —x~.)/
(les —(Z+1)cYz„)7, (2.28)

(aG2/a1V„) =kT ln/(N„cV—g„(—m„n—g„))/
(Ã, —/VS „)7. (2.29)

Note that

u, = —kT 1nA"„o'= kT 1nLA—„*/(1+@)7, (2.30)

where E,o' is the concentration of neutral vacancy at
thermal equilibrium, E,* is the total vacancy concen-
tration at equilibrium under intrinsic conditions (i.e.,
Ã~ ——0), and P is the value of $ under intrinsic condi-
tion. Substituting u„ from (2.30), and JV~„, e„, and m~„
from Eqs. (2.19), (2.21), and (2.23), into Eqs. (2.28)
and (2.29), one obtains

p„=aGg/aA „+aGg/aX„E„1+$
=AT ln — — —kT ln

E„* 1++
1+PI"

kT 1n~ 1+ — 1+ $ —(Z+1)
~

(2 31)
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FIG. 2. Vacancy activity coe%cient in Si calculated using
Fermi statistics, on the assumption of constant donor and vacancy
levels and constant energy-band structure.

The chemical potential of A is similarly obtained:

x
p~ =kT ln——kT ln

~

—kT ln 1——
~

. (2.34)
Ãs 1+k*~ &s&

v.—-(1+8)/(1+~),
v~—=(1+1')/(1+1)

(2.35)

(2.36)

The intrinsic carrier concentration e; is estimated using
the empirical expression of Morin and Maita. " A
vacancy acceptor level of E.—0.4 eV is assumed, "with
a spin-degeneracy factor of 2. In the calculation of E„
we have assumed m, */mo ——1, since no data appear
available at diGusion temperatures. Figures 1 and 2
show the activity coefficients of donor and vacancy,
respectively, under the condition that the impurity
level remains discrete and constant.

It should be noted that at diffusion temperatures,
taking Si as an example, the intrinsic carrier concen-
tration is in the order of 10" cm ', and the system
should remain nondegenerate until the impurity con-
centration is much higher than 10"cm '. On the other

' For example, see J. S. Blakemore, Semiconductor Statistics
(Pergamon Press, Inc. , New York, 1962), p. 106ff."F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954)."G. D. Watkins and J. W. Corbett, Discussions Faraday
Soc. 31, 86 (1961).

The activity coefficient can be likewise defined by the
equation p~ kTin(y~Ã~/——Xs). The Fermi level Er
needed for the evaluation of p, „and p~ can be deter-
mined in the conventional manner" by assuming A„
to be negligible.

Without specifying the impurity species, we shall as-
sume that gg exp(Eg/kT) —1.Hence, f' =exp( Zp/kT). —
The activity coefficients of the impurity A and of the
vacancy are then evaluated numerically. The results
for silicon are shown in Figs. 1 and 2. In the calculation
of these activity coeKcients, we have, for simplicity
neglected the effect of defect association, and write
Lc.f. Kqs. (2.32) and (2.34)7
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hand, at impurity concentrations of &2)&10"cm ', the
average distance between impurity ions becomes smaller
than the diameter of the Bohr orbit of the electron in
silicon, and the electrons become completely delocalized.
This leads to the lowering of the conduction band and
the formation of an impurity band, " " and conse-
quently the lowering of the Fermi level for a given
electron concentration. One then should expect a lower
rate of variation of y, and y~ with A~ than would be
predicted from an assumption of a constant conduction
band and complete ionization using Fermi statistics.
As an example, the Fermi level versus electron con-
centration in silicon at 1000 C is calculated by adopting
Kane's model of the impurity band, "and is shown in
Fig. 3. From Fig. 3, one sees that it is not necessary to
consider the formation of impurity band at diffusion
temperatures, at least up to 3X10" cm ' in Si,
particularly when one uses the approximation of
Boltzmann statistics.
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A. Relationshiys between Phenomenological
CoefBcients

The linear phenomenological equation of an irrever-
sible process in matrix notation is conventionally
represented by"

J=Lz]X, (3.1)

where J and X are column vectors representing the
Aux and the driving force in the component space, and

t I.j is the matrix of phenomenological coefficients, with
elements defined by

I' =(ci~'/&X )x,x, ,",x, =o (3 2)

In the present treatment, the thermodynamic forces X;
will be restricted to Bp;/Bx I—rreversib. le thermo-
dynamics imposes certain restrictions on and prescribes
certain relationships among these phenomenological
coefficients. However, the determination of these
coefficients must resort to atomistic modeling. Gener-

ally, one can determine the diagonal elements I.;; in a
rather straightforward manner, for example, by

'3 F. Stern and R. M. Talley, Phys. Rev. 100, 1638 (1955).
' P. A. Wol8, Phys. Rev. 126, 405 (1962).
'5 E. 0. Kane, Phys. Rev. 131, 79 (1963)."T.N. Morgan, Phys. Rev. 139, A343 (1965).
» B. I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966); 153,

802 (1967).
'8V. L. Bonch-Bruyevich, The E/ectronic Theory of Hegez7y

Doped Semiconductors (Elsevier Publishing Co., Inc. , New- York,
1966).' S. R. -deGroot and P. Mazur, Eon-Eguilibr jure Thermo-
dynureics (North-Holland Publishing Co., Amsterdam, 1962),
pp. 64-69.

3. PHENOMENOLOGICAL EQUATIONS
OF DIFFUSION

Analyses in this section will be quite general, and
should be applicable to diffusions in elemental crystal-
line solids including, but not limited to, semiconductors.

Fro. 3. Fermi level in heavily doped Si at 1000'C (~=12,
m&„&~/ma=1. 08). 1: Constant conduction band and complete
ionization, Fermi statistics; 2: Kane s model of the impurity band;
3: Constant conduction band and Soltzrnann statistics.

studying the random walk of a representative particle
of the interested species, with an appropriate atomistic
mechanism. It appears, however, that the evaluation of
the oG-diagonal elements 1.;; (iW j) has not been dis-

cussed properly in literature. Bardeen and Herring"
first pointed out that the oR-diagonal elements may not
be negligible even in a vacancy mechanism of diffusion,
and suggested the determination of the cross-coefficients
from the consideration of correlation effect. Their
treatment, which rests on the assumption of local
equilibrium of vacancy concentration, is appropriate
only for tracer diffusion in its isotope host lattice, In
this section, it is shown that the cross-coe%cients in the
particular system A-8-v are actually determined by the
diagonal elements. This is strictly a consequence of
certain constraints (thermodynamic as well as atomistic)
imposed on the coupled system. Thus, if one considers
a representative particle of a certain species executing
random walk in a fixed spatial frame, one has the Aux

of that species determined by its own driving force,
and its associated diagonal coefficient alone. But,
although the Quxes are here defined with respect to a
fixed spatial frame, the trajectory of the random walk
of the particle is imbedded in a nonstationary lattice
as a result of the occurrence of the cruxes of various
lattice . constituents under certain constraints. Thus,
the particle displacement in the lattice at the end of its
random walk differs from its displacement in a. fixed
spatial frame. Hence, the off-diagonal elements of the
phenomenological coefficients arise strictly as a con-
sequence of the interaction of cruxes under these restric-

~0 J. Bardeen and C. Herring, in Atomic 3IIovenzents (American
Society for Metals, Cleveland, 1951), p. 51.
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8p g'

P!V, =0,
8$

(3.3)

(3.4)

tions, while the eRect of the presence of various com-
ponents j on the thermodynamic force of component ~

is properly taken care of in the function X; (A';, cilV~/Bx,

.V, , &.'V,/tlx, . ) or p; (1V;,!V,, ). There are two
restrictions that are appropriate to the system under
present consideration, i.e., the Gibbs-Duhem relation
regarding the linear dependency of thermodynamic
forces, and the conservation of lattice sites in any
spatial element regarding the material fluxes. (There
would be additional restrictions, such as the energy
balance if floret effect and Dufour eRect are included in

the analysis. ) These are expressed as

vanish according to (3.4). Thus, (n —1) equations of
the following"

L,, L—;„~=0, j=1,2, , ti 1—, (3.8)

must be independently fulfilled. The n-fold arbitrari-
ness and the (e—1) relations represented by Eq. (3.8)
reduce the n' coe%cients in the L;, scheme also to
(tt —1)' sensible coefficients.

We now consider the present case of a three-
component system. We assume that the diagonal ele-
ments L~~, L~~, and L„are obtainable from an ap-
propriate atomistic model as to be discussed later. We
can choose to eliminate JB and BIBB/Bx in the f;; scheme.
A symmetrical L;; scheme can then be obtained by
adopting the following set of solutions (for a fuller dis-
cussion see de Groot and Mazur "):

o-=P J,X;=Q J,(X,—X.). (3 3)

Because of the linear relationships (3.3) and (3.4),
Eq. (3.1) in its full form is superfiuous. One can elimi-

na, te one flux and one thermodynamic force (say of the
nth component) from the expression, so that in the
reduced form all the (it —1) fluxes and the (n —1) forces
become independent. If one first eliminates the eth
flux by using (3.4), the rate of entropy production of
the diffusion process becomes"

n—1

JAA ~AA)

Lvv ~vv )

LVA ~VA LAV )

LAB (4A+/Aw) (LAA+LAv) q

L„B———(l„g+f,„).= (I~„+L„),—

LBA LAB )

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

For the above entropy rate expression, one can define

a new set of phenomenological coefficients 1;,) such that
the Aux expression becomes

J;= Q l,,(X,—X„)., i =1,2, , ts —1. (3.6)

After replacing X, with —cl1i;/clx, and the elimination of
—t)1i„/cix by the use of (3.3), one obtains

(3 7)

It has been shown that" elements l;; in the 1;; scheme

obey Onsager reciprocal relation. On the other hand, in

the I;; scheme Li.e., Eq. (3.1) unreduced with respect
to relationships (3.3) and (3.4)], there will be e-fold
arbitrariness in the coeKcients L;;, so that L,,'s do not
necessarily obey the Onsager relation. However, sym-
metrical L;, values can be obtained by disposing of the
n-fold arbitrariness in an elegant way suggested by
deGroot and Mazur (Ref. 19). In the f;; scheme, there
are only (e—1)' nonarbitrary coef5cients, of which
—',n(N —1) are distinct because of Onsager relation in the

f;, scheme. If one eliminates t)p, /clx from Eq. (3.1) by
means of (3.3), one obtains a set of flux expressions,
ea,ch being a function of 81i,/Bx, j=1, 2, (e—1).
These driving forces are now all independent, so that
the sum of the coefficients of Bp,/clx for all fluxes must

Ia, =L.a. (3.16)

The five equations (3.12)—(3.16) relate coefficient in
the L;; scheme, and imply the use of one Onsager rela-
tion, one relation from (3.8), and the disposition of
threefold arbitrariness. Together with the three diagonal
elements, one still needs a ninth relation. This is pro-
vided by the following, also from (3.8):

(L~~ (.'V ~/!VB)L~B)—+(L„~ ()V~/NB) L„B)—
+(IBA (A A/!l B)LBB)=0. (3.17)

Substituting (3.13) and (3.14) into (3.17), one obtains

LAv s (IBB I AA Lvv) =LvA ~ (3.18)

L~B = s (I„„Z~~ LBB)=LBg )——

I.„B= s (I.gg I.BB L„„)=LB„. — —
(3.19)

(3.20)

There is a customary argument that P; L,,=0 is a necessary
condition for the constraint P; J;=0 to be fulfilled whatever the
driving forces. P'or example, see P. Shewmon, Dignsjol in Solids
(McGraw-Hill Book Co., New York, 1963),p. 123. Also, Ref. 20.$
This is incorrect because the driving forces are linearly dependent
from the Gibbs-Duhem relation. However, it is a sufficient condi-
tion, and it can be a solution by suitable disposition because of
the n-fold arbitrariness in the coeKcients L;;. In fact, in the set
of L;, coefficients to be selected subsequently, in Eqs. (3.18)-(3.20),
one can see that Q; I:,=0 is satisfied.

With Lz„given above, one can rewrite Eqs. (3.13) and

(3.14) in terms of diagonal elements
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LBB Lv e LBv LvB ~ (3.22)

Thus, the determination of I„leaves the other coef-
ficients completely defined. By eliminating either one
driving force using the Gibbs-Duhem relation, one
obtains

J,= —J.„,(1+»'./, Ve)(Bp./Bx),

Ja = I-ee(1+ ~'e—/»'. ) (BI e-/») .
(3.23)

(3.24)

The above equations will, of course, ensure conserva-
tion of lattice sites. One can see from (3.24) that it is the
cross term (i.e., I.e„BIJ,„/Bx = I—ee(.Ve/»'. )Bye—/Bx),
and not the diagonal term, that actually dominates J&.
This important fact is seldom recognized. If one ex-

presses the above equations in terms of diffusivity and
concentrations (let us temporarily regard y. and y&
as unity, and L,;=D,."i;/kT)

t' N, BX, BlV.J.=-DJ 1+—
»re Bx

"
Bx

(3.25)

cVe B&Ve B»t'e
Ja= Dpi 1+ —D. — .

, 1Va))1V.—, —(3.26)
»r„Bx Bx

where De =D,.V,/1Ve Drom (3.22)]. Since B»'e/Bx
= —BiV./Bx in this system, J& would be a negligible
fraction of J„ if the cross term Lrepresented by Ãe/»'.
in the parentheses in Eq. (3.26)] is neglected.

B. Determination of Phenomenological Coei%cients

Next we seek to determine the phenomenological
coeKcients from random-walk theory, by adopting a
suitable atomistic model. One may identify the relation-
ship between the diagonal elements of the phenomenolo-
gical coeQicients and the diffusivities by writing Fick's
6rst law in a noninterfering system in the following

Thus, in the particular ternary system vacancy-
inspurity-'solvent lattice, the off-diagonal elements are
all fixed once the diagonal elements are determined.

It is interesting to consider the special case of a
binary system, specifically the diffusion of vacancy in a
lattice of pure element B. Since in such a system the
concentration gradients of the vacancy and of the
solvent 8 are equal and opposite in sign, while the
diffusivity of the vacancy is orders of magnitude higher
than that of 8, a conservation of lattice sites would not
be possible were it not for the cross term in the phe-
nomenological formulation. The relations (3.3) and
(3.4) reduce the i;; scheme of such a system to only one
sensible coefficient, i.e.,

J„= /„,[(Bp—./Bx) —(Bye/Bx) j
l„„(1—+IV./cVe)(Bp„/Bx) . (3.21)

In the L;, scheme, therefore, the diagonal elements L„
and L~~ cannot assume independent values. For a
symmetrical L;; scheme, it is easily shown that

modified form:

Then,
J,= —D;(1+Bin';/B lniV;) B.V,/Bx. (3.27)

I.,;= (D;X;/k T) . (3.28)

One notes tha, t D; as defined in Eq. (3.27) will be
identical with that obtained from random-walk theory
which ignores the interference between atomic jumping
processes in neighboring microscopic regions, which
collectively constitute a volume element in the con-
tinuum phenomenological formulation. The interference
is taken care of by the interference coefficients (i.e.,
the off-diagonal elements) in accordance with appro-
priate constraints, as discussed in the preceding section.
This diffusivity, however, may in general be different
from the experimental diffusivity in an interfering
system, where the interference has not been separated
out by independent measurements (such as the Kir-
kendall effect, etc.).

From the theory of random walk, the diffusivity of
a linear process is given by"

(R')
D= -0,

6r
(3.29)

where (R') is the mean-square displacement of the col-
lection of particles of the species concerned in time 7.,
and 8 is the fraction of these particles that are simul-
taneously and independently executing random walk.
For vacancy, one can express quite generally that

ny n. 1
6 Z —,

GO'

(3.30)

where r; is the ith vacancy jump vector, and 1/&u; is
the time between the (i—1)th and the ith vacancy
jumps, i.e., cu; is the "frequency" of the ith vacancy
jump. In a vacancy mechanism of diffusion, it is
postulated that either an impurity atom or a solvent
atom can move only by exchanging sites with a neigh-
boring vacancy. Ke may elect to study the random
walks of various species in the system by focussing our
attention on the trajectories of vacancies. The suc-
cession of vacancy jumps is composed of two inter-
dispersed series of impurity jumps r, and solvent atom
jumps rl, . Clearly,

P r, = —( P r+P r&) = —(R~+R&), (3.31)

where n„e&, and m are the number of vacancy jumps,
the number of impurity jumps, and the number of
solvent atom jumps, respectively, and R& and R& are
the respective impurity and solvent displacement vec-
tors associated with the trajectory of the particular
vacancy under consideration. Ke Inay adopt a physical

"For example, see the review article by S. Chandrasekhar,
Rev. Mod. Phys. 15, 1 (1943).
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~21 i B i B
2 3 AND OVER

D iSTANCE p,/p2= (Ns —Ng ZilV—g Z2IV—~)/Z21V . (3.33)

can relate the probability of vacancy occupancy at the
site of type s to the number of sites belonging to type s
and to the potential energy at the site of type s. Let pi
and P2 represent the probabilities of vacancy occupancy
at sites 1 and sites 2, and p„ the total probability of
vacancy occupancy at sites 3 and beyond. Then, if Z1
and Z2 are the numbers of the first and of the second
coordination sites, respectively, one has

FIG. 4. Schematic diagram of vacancy potential as a function
of distance from the impurity atom at the origin, and the four
distinguishable vacancy jump frequencies; j, 2, and 3 denote the
coordination order of the sites.

picture as given in Fig. 4, in which the vacancy poten-
tial energy is shown to vary with the distance from an
impurity at 0. 1, 2, and 3 denote, respectively, the
first, second, and third coordination of the impurity
atom; E& denotes the vacancy-impurity binding energy
(Eb E+Es). P——our jump frequencies, ~g 'M12 G021,

and ~B can be distinguished, " the meaning of which
can be read from Fig. 4. Two approximations are made,
that the perturbation of the vacancy potential by the
presence of the impurity atom terminates at site 2, and
that the lowering of the saddle point energy is equal to
—,'Eg, so that

P /P =l 1/(z —1)]exp(Eb/kT).
Then,

(3.37)

'f821 %21 P2

(vs (Z —1)P2+ZP,

(Z —1)lVg
exp(Eb/2kT), (3.38)

Es—2ZÃ
rb12 (Z 1)pl~d12

=1 )

P2~21'PE21

(3.39)

In particular, we shall restrict our discussion to diamond
lattice where Z2=Z1(Z1 —1). Hence,

p,/p, =LNs —(Z12+1)N~]/Z, (Z, —1)N~ . (3.36)

AVe may drop the subscript 1 from Z1. Similarly,

~21/~s —coii/c012 —exp(Eb/2kT) .

From Fig. 4, one also sees that

(3.32) G0A 1 coA—exp(Eb/2kT),
rb12 (Z —1)~12 Z —1 &s

(3.40)

&12+2221+rblf (3.33) or

where e», ~.», and eB are the numbers of vacancy
jumps of the types associated with frequencies ~», ~»,
and ~B, respectively, since there are iV, random-walk
trajectories for 'V~ of impurity atoms e~ =N, /Na,
and one has

E, RA N12 Ã21 SB
D~=(l Zr;l') 6 —+ + +— . (3.34)

lVA A 12 +21 B

The relationships between the numbers of various
types of vacancy jumps can be deduced with reference
to the model given in Fig. 4. It is logical to assume that
the number of vacancies jumping from site s to site t
is directly proportional to the probability of vacancy
occupancy at site s and to the jump frequency cv, &. One

2' Strictly speaking, there are, as mentioned earlier, two types
of vacancies, v and v, and there are four types of vacancy-
impurity pairs, A'v', A'v, A+v', and A+v . Hence, there will be
four di6'erent frequencies for each of types arA, ~12, and co21, and
two different frequencies for type co~. Therefore the average of
random walk squared displacements will be dependent on the
relative concentrations of these vacancies and vacancy-impurity
pairs. Noting that the vacancy level is relatively deep, and as-
suming that either under conditions of nondegeneracy or of the
formation of impurity band, the impurity is completely ionized,
we may consider only one type of vacancy, v, and one type of
vacancy-impurity pair, A+v . Furthermore, such a simpli6ed
treatment is entirely adequate for the present purpose of the
determination of the di8usivities, the phenomenological coef-
ficients and their interrelations, -inasmuch as it is self-consistent.

coA 1
eA=

+B g8 —2ZSA
exp(Eb/kT) . (3.41)

From Eqs. (3.38)—(3.41), one obtains

+A A +12 12 +21 21 +B B
= (rbs/~s) [1+(N~ /N s) l

Z exp(Eb jkT) —(Z+1)]]

&LNs/(Ns —2ZN~)) . (3.42)

Hence, Eq. (3.34) becomes

D~ = 6r2b1a fa(N„/Ns) exp(Eb /k T)/
[1+(Na/lVs) tZ exp(Eb jk T) —(Z+1)]], (3.43)

where the correlation factor f~ has the usual definition

f~ =&
I & r I')/~~". (3.44)

Equation (3.43) can be written

D~ 6r'~~ f~(lV~„/——ZN~), (3.45)

in which one has made the substitution of FATA„. From
Eq. (2.19) it is seen that if E~)E&)E„and hence

l&)1 and $&)1, one has

Ng „——(N „N~jlVs) 12p/

[1+(Na/Ns)l 12P (x+1)]] (3 46)
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where one can identify that [q.v. Eq. (2.4) and Eq.
(2.25)j

nP=Z exp[(E +Es)/kTj. (3.47)

Actually, Eq. (3.45) is more general, and not restricted
to the condition of E~)Er) E„(see Appendix for an
alternative method of derivation), while Eq. (3.43)
is restricted, since in its derivation, Boltzmann statistics
is employed to calculate the probability of site
occupancy.

The derivation of the diffusivity of the solvent D&
can be similarly obtained. Following the present ap-
proach, however, it is necessary to introduce a correla-
tion factor fs for solvent diffusion which we define as

(3.48)

where m has been defined in Eq. (3.33), which is a sum
of all types of vacancy jumps involving exchanges with
8 atoms. The Anal result is

DB sr &BfB-
E~

1+(&a/Es)[2(Z —1) exp(Eb/2kT) —2Zj
X (3.49)

1+(Eg/Xs) [Z exp(E b/k T)—(Z+ 1)7

A "vacancy-solvent complex" has not been defined so
that the above expression shall be left as it is, which is
subjected to the restriction of the validity of Boltzmann
statistics. It is noted that one can distinguish three dif-
ferent types of vacancy-solvent pairs, i.e., the pair in
which both the vacancy and the interested 8 atom are
surrounded by other 8 atoms, the pair in which the
interested 8 atom is neighboring to an impurity atom,
and the pair in which the vacancy is neighboring to an
impurity atom. The diffusivity of vacancy is similarly
given by

+a (~z
D„=6r~or ref, 1+

l

—(Z —1) exp(Eb/kT)
Ns k(ua

Sg
1+- —[Z exp(Eb/kT) —(Z+1)$ . (3.50)

Eg

The determination of correlation factor fz for impurity
diffusion has been discussed in the literature. '4" In

"A. D. LeClaire and A. B. Lidiard, Phil. Mag. 1, 518 (1956)."J.R. Manning, Phys. Rev. 116, 819 (1959).It is noted that
Manning's treatment of the correlation factor of impurity diffusion
by means of the concept of equivalent fraction of returning
vacancy becomes incorrect when applied to diamond lattice under
the general condition that the jump frequencies of a vacancy at
the second coordination sites are anisotropic. For a detailed
analysis of this subject, see Ref. 26.

particular, the correlation factor of impurity diffusion
in diamond lattice is discussed in detail by Hu. "
However, the correlation factors f~ and f„are not as
easily determined. The only work known in literature
on f„"is based on the assumption that the vacancy
concentration is maintained at local equilibrium. Un-
fortunately, the validity of this assumption must be
seriously questioned even in the presence of internal
vacancy sources and sinks (such as dislocations), since
the calculation of correlation factor in a random walk
is dominated by traj ectories in the immediate neighbor-
hood of the originating site, and hence will not be
significantly affected by dislocations of typical density
in semiconductors. Moreover, the presumption of a
local vacancy equilibrium automatically defeats the
purpose of the phenomenological formulation which is
here to 6nd the diffusion-induced vacancy transients.
The association of the vacancy with the solute atom
also must not be neglected.

C. Tight-Binding Apyroxinmtion

Consider a system in which the vacancy-impurity
binding energy is high. Ke shall see that in this system
the diffusivities D~ and D, can be determined quite
simply without requiring the evaluation of f& and f„.
Of course, fz can be evaluated easily using the con-
ventional methods, '4 " but it is unnecessary for this
special case. All we need is a self-consistent relationship
between D~, Ds, and D„(or L~~, LIiii, and L„„)for a
given atomistic model, from which one can obtain the
cross coefficients I.g„J-~„and J-gg, so that one can
investigate, for example, the important question of
vacancy transient behavior, the so-called "chemical
pump" effect, which is to be discussed in Sec. 3 D.

One imagines the system to consist of two subsystems,
each of which being a collection of microscopic regions.
System I is a collection of microscopic regions, in each
of which there is an isolated vacancy. In a microscopic
region of system II, there is a vacancy strongly bound to
an impurity atom. One need not consider regions having
no vacancy, for no event of random walk will take place
there. In a region of type II, one imagines the vacancy
to move around the impurity atom by traversing the
6rst coordination sites without dissociating from the
impurity atom. At times the vacancy also exchanges
sites with the impurity atom, thus effecting the dis-
placement of the impurity atom. It should be noted
that, strictly speaking, such a process, i.e., the diffusion
of an impurity atom and a vacancy as a paired complex,
cannot occur in a diamond lattice, ""although it
could be a likely mechanism in close-packed lattices.
Without going into detail, let us assume however, that

"S.M. Hu, Phys. Rev. 177, 1334 (1969).
2 J. R. Manning, in Lattice Defects and Their Interactions,

edited by R. R. Hasiguti (Gordon and Breach, Science Publishers,
Inc. , New York, 1967),p. 267 G.



782 S. M.

this is a fairly close approximation. '" It. is apparent that
in region II, during the same time r, the vacancy
traverses a random path which is given by a Quctuation
of one-jump displacement r superimposed on the path
of the impurity atom. The displacements in unit time
are related by

R, =R~+ (r) =Rg, (3.51)

Lao =L~~+L",
I~s (r'~~ f~/6k T) (X——~,y—'Z) = —L~g,

J~,=0,

(3.56)

(3.57)

(3.58)

LI,„(r'.Y/ 6k T) )co~ (A='—g,/ZE,)—
X (ZMB MAfz)] = „L( .3—&5)

since the average of Quctuations r is zero. The diffusivity
of vacancy in region II is hence

D„(II)= (R,')zy/6r =D~(X~/ V~, )
6r'~~ f~(-1(Z) . (3.52)

In region I, the vacancy motion is completely random.
Hence,

D„(I)= 6r'a&g = (R„2)r/6r . (3.53)

The vacancy diffusivity in the ensemble is then

D„=(R )r+rr/6r =[(N„1V~„)/N„]—D,(I)
+(,V~, /N„)D„(II) (3.54)

=6r')or~ (A ~„/ZN—„)(Zcu~ (og f~)7. —

It is clear that if the tightly bound vacancy-impurity
pair can be regarded as a single particle, the successive
unit displacements of the center of the pair will be un-
correlated, just like a divacancy. Therefore in region II,
there will be two 8 atoms each making a displacement
equal to —R&, from the conservation of lattice sites.
One obtains

Ds ',r'(.V,/3' p—)—f(-us (Ãg „/ZrV „)—
X(Zcoa —2m xfx)]. (3.55)

With the above results and the relationships given in
Eqs. (3.18)—(3.20), one can show that for tight-binding
approximation,

fusion of impurity proceeds) Barring an excessively
high density of dislocations, it is logical to suggest that
vacancies will Qow to the location having a higher rate
of Fermi level variation from neighboring regions. If
there exists a disparity between the rates of exchange
of the vacancy with the impurity atom and with the
solvent atom, one may expect an "extraction effect, "
which will affect the impurity distribution. In other
words, the vacancy Qux due to a nonvanishing vacancy
chemical potential gradient will induce an impurity
flux relative to the solvent flux (or any reference frame).
Conversely, the diffusion of impurity due to an im-

purity chemical potential gradient may also induce a
vacancy Qux, thus causing a departure of local vacancy
concentration from its equilibrium value and affecting
the local impurity diffusivity. It is clear that this
problem should be approached by formulating a com-
plete set of phenomenological equations.

Using a kinetic approach, Seitz showed that' if the
diffusivity of the impurity is higher than the self-
diffusivity of the solvent, a chemical pump effect will
occur such that a vacancy Qux will be induced in the
opposite direction of the impurity Qux. His results may
be expressed as follows:

J.= (D~ Ds) (8;VA/—Bx) D„(BV.(—Bx) . (3.60)

The equation above says that even if there is initially
no vacancy concentration gradient, there nevertheless
will be a vacancy Qux due to the presence of an impurity
concentration gradient as long as D~4D~. Unfor-
tunately, his analysis did not take into account the
correlation effect, which concept was introduced two
years later after his work. " In this section, we show
that the correlation factor has an important consequence
on the validity of Seitz's analysis.

We first consider the case of tight-binding approxima-
tion (which can exist at least in close-packed lattices).
YVe set up a complete set of phenomenological equations
for the three species 3, 8, and v. Using the results of
Eqs. (3.56)—(3.59), together with the Gibbs-Duhem re-
lation to eliminate Bp~/Bx, one obtains, after appro-
priate manipulations, the following Qux expressions:

JA LAA[1+('3 A/NB)](8+A/BX) ) (3.61)
D. Chemical Pump EBect

A knowledge of vacancy transient behavior is im-
portant to the understanding of diffusion via vacancy
mechanism. We have seen earlier [Eq. (2.32)j that the
equilibrium vacancy concentration is a function of the
Fermi level, and hence is a function of impurity con-
centration which varies with space and time. The ques-
tion, then, is how does the vacancy concentration
respond to the new equilibrium condition as the dif-

~8 For example, the presence of Coulombic interaction between
a negative vacancy and a positive-impurity ion may tend to keep
the vacancy in the neighborhood of the impurity, although this is
not in the same sense as the tight binding one would define for a
close-packed lattice.

Js = [L~~+(N~/Na) (L~~+L")](~p~/~~)
+L..(BIJ,./Bx), (3.62)

L„„[(iYg/lV~—)(Bpg/Bx)+'Bp„/Bxj. (3.63)

Equation (3.63) suggests that even if the vacancy
chemical potential gradient is initially zero, there can be
a vacancy flux, which is given by L„(.'Vz/'VQ) Bp+/—Bx
=D~B.'V~/Bx, and is hence in the same direction as J~.
Moreover, D~ is not involved at all. These are in appar-
ent disagreement with Seitz's results as given in Eq. (3.60) .
An examination of Eqs. (3.43) and (3.55) shows that
D~ can be considerably larger than D~, which relation
is most easily seen at very small iV&. This is primarily
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LBv JJ3B ~ (3.65)

J„remains defined by itself. Substituting J&, and
L~, from above into the phenomenological equation for
J„,one obtains

J.= Lg

„(Bing—

/Bx) Lii „(8!i'—/Bx) —L„„(8p „/ax)
= (D~ Da)(8!V~/B—x) D„(KY„/Bx—), (3.66)

where we have let y~ =y~ =y„=1, since this assumption
is implied in Seitz's analysis, and we have also utilized
the Gibbs-Duhem relation. It can be seen that Eq.
(3.66) is the same as Eq. (3.60).

Consider the paradox of the diffusion of a tracer in its
isotope lattice. If the tracer concentration is low and
each tracer atom can be regarded as isolated, the tracer
diffusivity will be only an fz fraction of the lattice self-
diffusivity. "Then, according to Eq. (3.60), one would
expect a vacancy lux. On the other hand, we see that
the vacancy movements must be completely random
since the vacancy does not distinguish a tracer atom
from its neighboring isotope atoms. Thus, one expects
no net vacancy flux under a uniform vacancy
concentration.

We thus conclude that the chemical pump effect,
which may or may not exist for a certain system, does
not arise simply because of the disparity between D&
and D~ but depends on the correlated random walk.

4. DIFFUSION IN SEMICONDUCTORS

Having determined the phenomenological coefficients
and the chemical potentials, we should now be able to
solve the problem of diffusion in semiconductors based
on the phenomenological equations, from. which con-
tinuity equations are easily obtainable. Because both
L,, and p, are complicated functions of .Y s, one must
anticipate solutions of the continuity equations by

a consequence of the strong vacancy-impurity associa-
tion, such that E~„)ZÃ~.V./cVB. On the other hand,
the effect of the ratio co&/cvz, which may be greater than
unity, will be partially compensated by the fact that
f~ steadily decreases with the increase of the ratio
GOg GO~.

Next we can show that if there were no correlation
effect, our general expressions for D~, D~, and D„as
given in Eqs. (3.45), (3.49), and (3.50) would reduce the
phenomenological equations to the results of Seitz's,
even in the presence of vacancy-impurity association
which was neglected in his analysis. Consider the

phenomenological equationfor/„. We let fg =fa =f~ =1
in the expressions (3.45), (3.49), and (3.50). Then L; s
are obtained from the D,'s using Eq. (3.28). These are
then substituted into Eqs. (3.18) to (3.20) to obtain
the cross coefficients L~, and J~,. After appropriate
manipulations, one obtains

I~„——( r'cog/—6k T) (!Yg„/Z) = Lag, —(3.64)

and similarly

nuxnerical method. In the present paper, however, we
confine our discussion to the case of strong vacancy-
impurity association under the condition that E&&Ep
&E,. We also assume that the system is moderately
dilute (i.e., nP.Y~/.VB—,'Vg. /!V„&&1).We introduce the
intrinsic diffusivities D~*, D~*, and D„*. These are
defined as the diffusivities at infinite dilution of lV~,
with vacancy at its thermal equilibrium concentration.
From Eqs. (3.43), (3.54), and (3.55), one has

I

D~*——6r'~g fg(aP"V.*/Z~Y8), (4.1)

(4 2)

(4.3)

Ds* ——-', r '(ui~ (Y.*/~Vs),

D *=-'r'o)g.6

Then, it follows that the extrinsic diffusivities are
given by

D~ =D~*(Y./'-&'. *), (4 4)

D~ =Dg*(.V./X„*)
XL1—(-& ./Z.&.)(Z —2j / )] (4.5)

—Dg*(.V./!V„*),

D.=D.*[1—(.~ ~./Z Y.) (Z —f~~~/~~)3=D. * (4 6)

Under typical conditions, 3, is very small in comparison
with!Y~, so that Y„and y~ as given in Eqs. (2.35) and
(2.36) are in effect functions of 1Y& only. Then Jz and
J.as given by Eqs. (3.61) and (3.63) can be expressed as

J~ = Dg*(!Y„/;Y—„*)(1+;Yg/.Yg) (1+8 lny~/8 ln.'Y~)

X (r'j Y~/Bx)
D&*(A'„/!Y—„*)(1+8 in'&/8 ln l'~)

X (&Ãx/&x), (4.7)

I„=—D„*(Y„/iYs) L1+8 1nyg/8 lnÃg

+(Xs/Ãg) (8 lny„/8 ln''Vg)](8. 'Y~/Bx)

D„*(B.Y./ax)—
D„*(!Y„/—Ã~—) (8 le./8 ln!Vg) (8!Vg/Bx)

D,~(B!V./Bx)— Ã,/A'g))1. (4.8)

Equation (4.8) shows that even when B.V„/Bx is initially
zero, a vacancy Aux will occur because of the lowering of
the vacancy potential energy (and hence vacancy
activity coefficient p„) in the region doped with A.
From Fig. 2, one sees that 8 in'„/8 ln!l'~ (represented
by the slopes of these curves) is always negative, im-

plying that its contribution to the vacancy flux is

always opposite to the Aux of 3, as indicated by Eq.
(4.8). Note that this statement is in disagreement with
the discussions following Eq. (3.63) in Sec. 3 D, in
which it is suggested that a vacancy flux will be in-

duced in the same direction as J~ for the tight-binding
case. The reason is that in Sec. 3 D in which Seitz s
analysis of chemical pump is examined, we have as-
sumed an electrically neutral system, such that y, =1
and y~ ——1. This is to say that we were considering in
that ca,se only the first term (which is unity) in the
parentheses of Eq. (4.8). Since, in the semiconductor
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system considered in the present section, 8 in'„/cj 1nÃA

is of the order of —1, and 8 ISA/8 in%A is also of the
order of 1, the third term in the brackets of Eq.
(4.8) dominates, and the first two terms become
negligible in comparison. Physically, one imagines this
eRect as charged vacancies being driven out by the
internal electric field created by virtue of AA(x). In a
normal diffusion process in which 83 „/Bx is initially
zero, the term involving 8 lny„/8 1ncVA dominates at
the beginning period of the process, causing a net
vacancy efaux (an influx, on the other hand, will be
observed in the diffusion of an acceptor). Steadily, as
BX,/cjx continues to build up, BSA/Bx continues to
decrease, and, at least in the region of small x, one may
expect a reversal of the vacancy Qux. The reverse Qux

should be in general extremely small, such that a quasi-
equilibrium condition will be reached for the vacancy
in the region of small x fairly quickly.

The subject of vacancy transients and its eRect on
diRusion will be treated in detail in a subsequent paper.
Herein we limit our discussions to the case in which a
quasiequilibriurn condition for the vacancy concentra-
tion can be assumed. Under such a condition, the
vacancy concentration is given by Eq. (2.33) or Eq.
(2.32) (or 1V„=V„'=lV„*y„'),which is to a good ap-
proximation a function of 1VA only. Then, Eq. (4.7)
reduces to a very simple form:

JA = DA*y. '(1+8 —inyA/8 1niVA) (c7cVA/r7x) . (4.9)

Equation (4.9) does not explicitly contain variables or
functions of 1V„. Hence, Eq. (4.9), and the continuity
equation derived from it, can be solved alone irrespec-
tive of the vacancy Qux.

When the Fermi level is evaluated under the condi-
tions of nondegeneracy and local charge neutrality, one
has, from (2.26), (2.27), (2.35), and (2.36),

v.-'=~/(1+8) =(8/1+8)
&&$$A/222~+((EA/222 )'+1)"'$ (4.10)

and

8 1nyA/8 1niVA —(8/8 lniVA) in(f*/f')
=PcVA/(iVA +4n ') '~'$. (4.11)

If we substitute (4.10) and (4.11) into (4.9), and
define DA' ——DA*p/(1+@), we obtain the same result
as given earlier by Hu and Schmidt. ' These authors
showed through numerical computations how impurity
pro6les in Si through diffusion are affected by the
variation of equilibrium vacancy concentrations.

It should be noted that under the assumption of
quasiequilibrium vacancy concentration, Eq. (4.9) is no
longer restricted to tight-binding systems, and is of
general validity provided S& is relatively dilute.

A firial remark is in order. In typical semiconductor
devices, the junction depth is often of the order of
(10 4 cm, and the dislocation density is often of the
order of (10' cm '. It can be shown that under such
conditions, the dislocations are not effective vacancy

source, and a general vacancy undersaturation will

occur. However, the magnitude of undersaturation is

very small, and its effect on the impurity diRusion is
similarly small.
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TA „=SA/MA+ @12/M 12

Tg =fL2]. %21 PSB MB ~

(A1)

(A2)

A fundamental postulate in statistical thermo-

dynamics states that the time average of a state variable

of a subsystem is equal to the ensemble average of that
variable. Thus, one has

TA /TA = (22A/MA+2212/M12)/( P221/M21+S'B/MB)

=X„„/(X —X „). (A3)

Since 2212/22A ——(Z —1)M12/MA from Eq. (3.41), it follows

that

Therefore,

TA „—ZSA/MA

TA =Z12A(1VA/1VA„—1)/MA.

T =TA„+TA =ZNA ~ A/iV A~MA ~

(A4)

(AS)

(A6)

One thus obtains

DA ——(~ g r, ~')/6T= ', r2MA jA(XA„/Z-1VA), (A7)

which is Eq. (3.45), and in which fA is the same as

defined in Eq. (3.46). Note that in this method, it is

not necessary to weigh the diffusivity with the ratio of

the number of vacancy trajectories to the number of

impy. I jty g,toms present.

APPENDIX: ALTERNATIVE DERIVATION OF
IMPURITY DIFFUSIVITY

To avoid the restriction of Boltzmann statistics, as
discussed in Sec. 3 8, the impurity diffusivity may be
derived alternatively using the following argument.

One may assume that the vacancy spends an over-
whelming portion of the time period 1/M, staying at the
site before surmounting the activation energy barrier.
One can then identify the portion of time ~&, in which,
during its journey of random walk, a vacancy stays as
a nearest neighbor to a specified impurity atom, and
the portion of time 7& in which the vacancy stays away
from this impurity atom. (The vacancy may stay as a
nearest neighbor to some other impurity atoms, not-
withstanding. ) By an inspection of Fig. 4, one sees that


