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The frequencies and the lifetimes of the normal modes of vibration of potassium have been measured at
four different temperatures with neutron inelastic scattering techniques. The changes in the results with
temperature were found to be in reasonable agreement with calculations of the effect of anharmonicity on
the normal modes. Up to nine-tenths of the melting temperature, the temperature dependence of the fre-
quencies and of the thermal expansion coefficient was found to be in agreement with calculations based on
the neutral-pseudoatom model of a crystal. The agreement between experiment and calculation for the life-
time of the normal modes was less satisfactory. The discrepancy may in part be due to the difficulty in ex-
tracting the instrumental resolution function. The neutral-pseudoatom potential used in these calculations
was derived from the frequencies of the normal modes of vibration at low temperature, as described pre-
viously. It is shown that the neutral-pseudoatom model for the anharmonic effects neglects interactions
between three or more ions which are present in more exact theories. The agreement obtained between
experiment and theory therefore suggests that the many-body forces are smaller than the two-body forces.
We also describe the effect of anharmonicity on the strength of Kohn anomalies in metals; one contribution
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to their strength has the same temperature dependence as the Debye-Waller factor.

1. INTRODUCTION

N this paper we describe experimental measurements
and theoretical calculations of the effects of anhar-
monicity in potassium metal. The experimental
measurements were made by coherent one-phonon
scattering of slow neutrons from a single crystal of
potassium. Earlier measurements! of the phonons were
made at 9°K, and in this work we studied the changes
in several of these phonons when the temperature of
the crystal was raised to 92, 215, and 299°K.

The theory of simple metals has received consider-
able impetus from the introduction of the concept of a
pseudopotential? for the electron-phonon interaction.
By now a large number of authors®*® have used the
pseudopotential technique to calculate the phonon
dispersion relations of simple metals, while others have
constructed these potentials from the measured dis-
persion relations.! When an ion moves, the conduction
electrons move so as to screen the long-range electro-
static fields. The ions and their associated screening
clouds of electrons, known as neutral pseudoatoms,
may be shown to interact with one another through a
relatively short-range potential,” as is confirmed by the
experimental measurements.

A more severe test of this theory is the extent to
which it may be used to calculate anharmonic effects.
In this paper, extensive measurements of phonon fre-
quencies and lifetimes at several temperatures are
compared with calculations of the effects on the basis
of the pseudopotential theory.

IR. A. Cowley, A. D. B. Woods, and G. Dolling, Phys. Rev.
150, 487 (1966).
( 2L.) J. Sham and J. M. Ziman, Solid State Phys. 15, 221
1963).

3L. J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965).

4T, Schneider and E. Stoll, Physik Kondensierten Materie 5,
331 (1966).

& N. W. Ashcroft, J. Phys. C1, 232 (1968).

6 W. A. Harrison, Phys. Rev. 129, 2522 (1963).

7J. M. Ziman, Advan. Phys. 13, 89 (1964).

180

In Sec. 2 we describe inelastic neutron scattering
measurements of the phonons in potassium and obtain
the change in the frequency and lifetime with increasing
temperature. In Sec. 3 we describe the harmonic and
anharmonic pseudopotential theory within the neutral-
pseudoatom approximation. This is then used to calcu-
late the thermal expansion, which in Sec. 4 is shown to
be in good agreement with experiment. The phonon
self-energy is calculated in Sec. 5, and fairly good
agreement is found when experiment and theory are
compared in Sec. 6. An analysis of the pseudopotential
method is given in Sec. 7, where the detailed structure
of the ion-electron-ion interaction is shown to lead to
more complex anharmonic interactions then those we
have considered. It is shown that the neutral-pseudo-
atom approximation is equivalent to including only a
particular class of interaction. In addition, some inter-
esting effects of temperature on Kohn anomalies are
predicted. Our conclusions are summarized in Sec. 8.

2. NEUTRON SCATTERING MEASUREMENTS
A. Experiment

Measurements were made of the inelastic neutron
scattering from a single crystal of potassium with a tri-
ple-axis spectrometer at the NRU reactor, Chalk River.
The crystal was aligned so that scattering took place

TasLE I. Instrumental resolution.

Incident beam Scattered beam
Collimation: Horizontal 0.70° 0.65°
Vertical 1° 4°

Monochromating crystal: Al mosaic spread 0.48°
Analyzing crystal: Al, mosaic spread 0.63°
A: (111) Analyzer planes at 67°
(111) Monochromator planes
B: (111) Analyzer planes at 65°
(200) Monochromator planes

For modes A1, 23, and
As with £ <0.6

For modes Z1, A, and
A; with £>0.6
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TaBLE II. Measured widths and shifts in K, in units of 1012 Hz. The table shows the position in reciprocal space, (27/a)(Qz,Q4,Q-),
where the phonon was observed; its frequency v; and its full width at half-height, W, at the lowest temperature (9°K). The width is
taken as the resolution width of the spectrometer for each phonon. The changes in frequency 8A and in the natural half-width éT, that
have been derived from measurements at higher temperature 7, are shown in the final columns.

0. 0, Q. v w T Shift sA Half-width oT
2.0 2.0 0.2 0.68 =£0.025 0.130.03 299 —0.160.03 0.03-£0.03
As 215 —0.09+0.03 0.00-£0.03
2.0 2.0 0.3 0.99 =£0.02 0.100.03 299 —0.19+0.03 0.04=£0.04
As 215 —0.1240.03 0.04£0.04
2.0 2.0 0.4 1.28 +0.025 0.09-£0.03 299 —0.20%0.04 0.112£0.04
As 215 —0.12£0.03 0.07£0.03
2.0 2.0 0.5 1.56 =+0.02 0.13-£0.03 299 —0.23+0.04 0.060.05
A 215 —0.13%0.03 0.06-£0.04
2.0 2.0 0.6 1.79 =+0.025 0.13:0.03 209 —0.26+0.03 0.08£0.05
As 215 —0.15-£0.04 0.09-£0.04
92 —0.040.03 0.02£0.04
2.0 2.0 0.7 1.98 =0.02 0.14+0.03 299 —0.26£0.04 0.08=£0.05
As 215 —0.15+0.04 0.06-£0.04
92 —0.060.04 0.0420.04
2.0 2.0 0.75 2.07 +0.03 0.14-£0.03 299 —0.23+0.04 0.10+0.04
As 215 —0.16£0.04 0.06=£0.04
2.0 2.0 0.8 2.11 +0.025 0.22-£0.03 299 —0.24+0.04 0.05-0.06
As 215 —0.14+0.05 0.08£0.05
92 —0.0320.05 0.00-£0.04
2.0 2.0 0.85 2.19 0.03 0.22-£0.04 299 —0.26=£0.08 0.10-£0.09
Ay 215 —0.194+0.05 0.04-£0.05
2.0 2.0 0.9 2.20 0.03 0.21:£0.03 299 —0.24+0.04 0.06-20.05
As 215 —0.19+0.04 0.05+0.05
92 —0.07+0.05 0.040.04
2.0 2.0 1.0 2.22540.02 0.16-£0.03 299 —0.16£0.07 0.15-£0.08
His 215 —0.172£0.05 0.21+£0.05
92 —0.06-£0.04 0.03+0.04
1.0 1.0 3.0 2.22540.03 0.16£0.04 215 —0.1940.04 0.11£0.04
His 92 —0.10£0.05 0.10=0.05
12 1.2 2.8 2.16 +0.03 0.30-£0.05 215 —0.16£0.04 0.00-£0.05
F, 92 —0.06=£0.04 0.04-£0.06
1.3 1.3 2.7 2.11 +0.04 0.36:0.05 215 0.1220.06 0.05-£0.06
Fy 92 —0.04=£0.09 0.05-£0.07
14 14 2.6 1.89 +0.04 0.390.06 215 —0.022£0.06 0.00=£0.09
Fs 92 0.00=£0.08 0.08-0.10
15 15 2.5 1.75 +0.04 0.27-£0.05 215 0.02=£0.06 0.09=£0.07
Py 92 0.00+0.06 0.09-£0.07
15 15 15 1.79 +0.05 0.16=£0.05 299 —0.23-£0.06 0.21+0.05
P, 215 —0.1240.06 0.112£0.06
92 —0.06+0.05 0.00-£0.05
14 14 14 1.255:£0.03 0.180.04 299 —0.24£0.04 0.11=20.04
F 215 —0.1320.04 0.13+0.05
92 —0.04+0.04 0.04=£0.05
1.35 1.35 1.35 1.05 =+0.03 0.19-£0.04 299 —0.18+0.04 0.06£0.06
Fy 215 —0.09+0.04 0.04=£0.05
92 —0.050.03 0.03-20.04
17 17 1.7 —1.02 +0.03 0.160.03 299 —0.10-£0.04 0.112£0.04
Fy 215 —0.08-£0.04 0.10-£0.04
92 —0.030.03 0.04-£0.03
1.75 1.75 0.75 1.20 +0.03 0.120.03 299 —0.17+0.04 0.14-£0.04
Fy 215 —0.10-£0.04 0.06-20.03
18 1.8 1.8 1.4750.02 0.15:£0.03 299 —0.200.04 0.10-£0.04
F 215 —0.1240.03 0.08-£0.04
92 —0.05-£0.03 0.02+0.03
16 1.6 1.6 2.12 0.04 0.25:£0.04 299 —0.17+0.08 0.05-£0.07
A 215 —0.1040.05 0.04-£0.07
92 —0.04=£0.05 0.00-£0.05
2.3 2.3 0.3 2.13 +0.04 0.19:£0.04 299 —0.27%0.09 0.03-£0.09
A 215 —0.1240.06 0.13=£0.06
92 —0.09=£0.05 0.06=£0.05
2.2 2.2 0.2 1.68 +0.03 0.18=-0.04 299 —0.2120.04 0.08-£0.05
Ay 215 —0.1320.04 0.07-£0.05
92 —0.06£0.04 0.00-£0.04
2.1 2.1 0.1 0.94 £0.02 0.12-0.02 299 —0.19%0.03 0.06-0.04
Ay 215 —0.06-£0.03 0.04-£0.03
92 —0.05:0.03 0.02+0.03
14 14 1.0 0.81 =0.03 0.11£0.03 299 —0.090.04 0.1540.03
G 215 —0.04+0.04 0.05-£0.04
92 —0.010.03 0.02-£0.02
15 1.5 1.0 0.53 =£0.02 0.16£0.03 299 —0.01+0.03 0.05-£0.05
Ny 215 0.01%0.03 0.05-£0.05
92 —0.01%0.02 0.02-£0.03
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TasiE I1. (continued).

(oM Qy Q. v w T Shift A Half-width 6T’
2.25 2.25 0.0 1.695+0.05 0.25:+0.05 299 —0.19:40.06 0.00+0.05
Z1 215 —0.1140.06 0.00=40.06

92 —0.05+0.06 0.0040.06
2.3 2.3 0.0 1.93 +0.05 0.24:+0.09 299 —0.1940.06 0.08-+0.08
2z 215 —0.08+0.06 0.0540.09
92 —0.060.06 0.0040.05
24 2.4 0.0 2.27 +0.04 0.30£0.06 299 —0.183-0.06 0.1140.09
2 215 —0.104=0.06 0.08-£0.09
92 —0.05+0.06 0.04+40.06
%75, 2.5 0.0 2.385+0.05 0.31+0.06 92 —0.060.07 0.00+0.06
1
0.85 0.85 2.0 0.66 +0.01 0.08-0.02 299 —0.0540.02 0.06-£0.02
s 215 —0.04-£0.01 0.022:0.02
92 0.0140.01
0.75 0.75 2.0 1.10 +0.02 0.12+40.02 299 —0.06=£0.03 0.060.03
23 215 —0.1140.03 0.040.03
92 —0.02+0.02 0.0240.02
0.65 0.65 2.0 1.355+0.02 0.1040.02 299 —0.17£0.05 0.130.04
23 215 —0.120.03 0.08+0.02
92 —0.04+0.03 0.05+0.02

in the (110) plane of the crystal. All measurements were
of neutron-energy-loss processes with variable incident
energy and fixed scattered energy under conditions set
out in Table I. The constant-Q technique® was used
throughout. Results have been obtained at four tem-
peratures, 9, 92, 215, and 299°K, for about 30 phonons
having the symmetries As, =4, Z3, A1(F1), As(Fs), and
G1. The results at 9°K were already available from the
work described in part I of this series.!

Before presenting the results we shall describe our
method employed for obtaining reliable phonon self-
energies (i.e., widths and frequencies of the neutron
groups to good accuracy in this experiment) from the
total observed neutron intensity S(Q,%).

B. Contributions to Observed Scattering

The total scattering cross section contains coherent
and incoherent scattering from both one- and multi-
phonon processes. Typical results at one wave vector
are shown in Fig. 1. The one-phonon coherent cross
section [see Eq. (10)] is strongly peaked in frequency,
whereas the other contributions are expected to vary
comparatively slowly with frequency. A flat background
was therefore drawn under the one-phonon peak so that
the width and center of gravity of the latter may be
estimated. This simple procedure becomes less reliable
at higher temperatures. At room temperature the multi-
phonon scattering was often greater than the one-
phonon scattering, as shown in Fig. 1, where the multi-
phonon intensity in the experiment at 299°K was about
twice the one-phonon peak intensity. It is clear never-
theless from Fig. 1 that despite the large multiphonon
scattering it is still possible to estimate a one-phonon
width and frequency from the results. The integrated

8 B. N. Brockhouse, in Inelastic Scattering of Slow Neutrons
from Solids and Liquids (International Atomic Energy Agency,
Vienna, 1961), p. 113.

intensities shown in Fig. 1, which depend on the popu-
lation factor and the Debye-Waller factor, are consistent
with a Debye temperature of 70°K.

C. Instrumental Resolution

The finite instrumental resolution influences the
measured position and width of the neutron groups.
The observed intensity is the convolution of the instru-
mental resolution function as a function of Q and Q
with the response of the crystal. Thus the observed
width of a one-phonon group depends on where it is
observed in (Q,Q) space. Each neutron group was
therefore measured as a function of temperature at the
same position in reciprocal space and at the same
resolution. The widths and shifts with temperature ob-
tained by comparing the groups at high temperature
with the groups at the lowest temperature should
therefore be largely independent of instrumental reso-
lution. Resolution elements are given in Table I.

D. Method of Extracting Phonon Widths and Shifts

For each momentum transfer, the frequency »(7)
and the full width at half-height, W(T), were obtained
at four temperatures. The derived widths and changes
in the frequencies of the phonons are shown in Table II.

T T T T
| Q=%1(20,20,07)

o
o
o

92°K

F16. 1. Behavior of a neutron
group in K as the tempera-
ture is raised. The figures in
brackets below the tempera-
tures are the peak intensities
relative to that at 90°K and
show how the Debye-Waller
factor dominates the cross
section for this phonon.

I
o
o

s}
o

COUNT RATE (ARBITRARY UNITS)

1 1 1 I 1
1.4 .8 2.2
FREQUENCY (10'2 Hz)

o
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B CUTOFF  VALUES
4 A —— 1.60
B esessesnnnces 2'00
C ———— 2.40

<

—9.

TOTAL POTENTIAL FUNCTION G(Q) FOR POTASSIUM
3
I

0.’4 018 le I.‘G 2.’0 2’.4
WAVE VECTOR a Q/2r

O,

F16. 2. The total potential in K derived from the low-tempera-
ture phonon frequencies and the elastic constants. The dimension-
less function G(Q) = (Q?/e?)¢(Q) is plotted for various cutoff points
in the fitting procedure to demonstrate that the potential derived
is essentially independent of the range.

The change in the phonon frequency from its value at
the lowest temperature (9°K) is given by the quantity

SA(T) =v(T)—»(9),

which may then be compared with the 6A(7) predicted
by theory. The error in §A(7) is computed from the
independent random errors in the two frequencies.

The change in the half-width, 6T'(7), is not so easy
to obtain because it is convoluted with the instrumental
resolution. For each momentum transfer we assume that
there is some instrumental function, Gaussian as a
function of frequency, and independent of temperature,
that will reproduce the observed one-phonon-neutron
group when convoluted with the crystal response. As
the form of the one-phonon cross section is approxi-
mately a Lorentzian (Sec. 5), the observed neutron
group is a convolution of a Gaussian and a Lorentzian.
The width of the instrumental resolution function is
just that of the neutron group at 9°K, since the natural
width at that temperature is negligible. For other
temperatures, the natural width of the phonon was
obtained by finding the width of the Lorentzian curve
that must be convoluted with the resolution function so
as to give the observed width. The error in the natural
width was obtained by changing the observed width by
its error and repeating the deconvolution procedure. In
the few cases where the natural width at 9°K is not
negligible, the phonon width obtained by the deconvolu-
ting procedure is an approximate measure of 6T, the
change in width as the temperature is raised, and it is
this quantity that is chosen for comparison of the theory
and experiment. Little difference in the estimated
phonon width is made by assuming that it has a Gauss-
ian line shape provided its width is significantly larger
than the resolution width. When the widths are com-
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parable, however, the forms taken for the line shape and
for the resolution function make a considerable differ-
ence to the results.

E. Results

With the above method, the phonon widths and shifts
shown in Table IT have been obtained. Both quantities
increase in magnitude markedly with increasing temper-
ature and are wave-vector-dependent. Typical phonon
frequencies are reduced by 169, at room temperature
and have lifetimes of the order of 10 periods of vibration.
In a case where, because of the errors present, the width
observed was less than that at 9°K, the tabulated change
in width oI is always set to zero.

From Table IT it may be seen that the changes in the
frequencies with temperature have at best been
measured to an accuracy of 209,. The accuracy in the
half-widths is considerably worse. These errors arise
largely from the errors introduced in the deconvoluting
process, for the errors in the widths of the neutron
groups are comparable to the errors of their frequencies.
Although many of the widths are not significant by
themselves, it is nevertheless the case that the over-all
trend of any group of results is likely significant.

3. PSEUDOATOM THEORY
A. Harmonic Approximation

In simple metals, such as potassium, the interionic
forces arise from the direct Coulomb forces and from
the ion-electron-ion forces and may be combined to
give an effective short-range potential ¢(R), between
neutral pseudoatoms’ distance R apart. It is convenient
to evaluate the expression for the frequencies of the
normal modes of vibration in terms of the Fourier
transform of the potential ¢(():

d3
o= 60 ?3.

M

The phonon frequency w(qj) of a normal mode of
wave vector q and eigenvector #.(qj) is then given by!

1
w*(a7) ~ i Z;s 2 [@+=)algt=)so(|a+=])
—7ap(|%]) Jua(af)us(—qj5), (2)

where M is the mass of the atom, v is the volume of the
unit cell, and = is a reciprocal lattice vector.

The function ¢(Q) for sodium and potassium were
obtained earlier! from the experimental measurements
of the phonon frequencies at 9°K. These results were
improved for the present calculations by fitting the
functions not only to the observed phonon frequencies
but also to the measured elastic constants. Figure 2
shows that, in contrast to the results obtained earlier,
these did not show any appreciable dependence on the
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cutoff chosen for the function ¢(Q), and are correspond-
ingly considerably more satisfactory. Some of the
calculations reported below were made using functions
with different cutoffs, but the results were not much
altered by the cutoff as discussed later in Sec. 4. Most
of the calculations were therefore performed with a
cutoff of 1.6.

B. Anharmonic Potential

The calculation of the temperature dependence of the
properties of a crystal is performed by expanding the
potential in a power series of the phonon coordinates,®

Vanh= 12 V(q171,9272,9353) 4 (4171) A (q272) A (43 73)
2.3

+ 2 V(a171,9272,9373,9474)

1,2,3,4

X A(q171)A4(q272)A(q273)A(qej)+--+, (3)

where A(q7) is the sum of phonon creation and destruc-
tion operators. The coefficients in this expansion are
given in terms of the real space derivatives of the inter-
atomic potential by Born and Huang.'® In terms of

¢(Q), they are

V(q171,9272,9375)
_Alatartas)/ # >”2
N3 \Solar (g e (s )
X2 {Hs(q1)+Hs(q2)+Hs(as)} asy

afy

X ta(q1j1)us(@ej2)uy(qss), (4)
where

(H:@)etr === £ (arkelalartohla+) | a+-5])

and

V(4171,9272,93 73,94 71)
_Algtetatad/ 7t >”2
O ONMAL \6e(q)e(@e)e(gsi)e (@)
X 3 {Hu(q)+Ha(qz)+H(qs)+Hi(qa)

afys
—H4(CI1+(I2) —H4((I1+(I3) —H4(Q1+(I4) —H4(O) } aBys
Xtta(q1 j1)2s(q272)1t, (G 73)5(qa]s)

where )
{H(q)}asvs= - 2 (g+7)a(q+)s
X (q+7),(q+=)s0(|a+=]). (5)

Similar expressions may be derived for anharmonic
coefficients of any order. The expressions have an

9R. A. Cowley, Advan. Phys. 12, 421 (1963).
10 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London, 1954), p. 304.
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analogous form to Eq. (2) for the frequencies, which
can be considered as the equation for the coefficient
quadratic in the phonon coordinates.

As yet we have neglected the thermal expansion of
the crystal. This arises from terms in the potential
energy Eq. (3), of the form®

Z Z Vaa(qj: "qj’)uaaA (q7)A(—'q]/),

a 755’

where %, is the thermal strain in the « direction. In a
similar way to that described above, these coefficients
can be written in terms of the potential ¢(Q) as

h / 1 >1u
Mo\o(qj)e(as’)

Xﬁz {K(q)—K(0)}syus(as)u,(—a5"), (6)

2 Vaalaj, —qj) =

where
{K(@)}s,=2 (a+7)s(q+7),
X[56(lq+r])+(g+7) - vo(lq+7])].

It is of interest to note that whereas Egs. (4) and (5)
depend only on ¢(Q), Eq. (6) depends on the derivative
with respect to (Q). If this derivative term is neglected
in Eq. (6), the results are equivalent to the familiar
Gruneisen approximation.!® In practice, however, the
two terms are very similar in magnitude and we have
considered both in the calculations.

4. THERMAL EXPANSION

The thermal strain may be calculated from the con-
dition that the free energy is a minimum. The free energy
is expanded about the position of static equilibrium as a
power series in the strain parameters #qg

F—F, =Z F(xﬁuaﬁ—}_% Z F(“B) (r&)Uaplhys . <7>
aB

afys

For an isotropic expansion, #.s=nd.s, the condition
that the free energy is a minimum leads to

> Faatn Z;? F (aa) (88 =0. 8)

The free-energy coefficients are sums of various an-
harmonic terms, and to lowest order?

Fap=3 Vas(aj, —a)[2n(q/)+1],
q7

and #(qj) is the phonon occupation number of the nor-
mal mode (q7). The second-order coefficients are given
by the elastic constants as

F (aay 88y =N0Caaps -

Summing Eq. (8) over e and 3 gives the strain in terms
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F16. 3. Linear thermal expansion coefficient of K. The experi-
mental results are those of Montfort and Swenson (Ref. 11)
and R. H. Stokes (Ref. 12). The theoretical calculations employed
the three potentials with different cutoff points shown in Fig. 1.

of the compressibility, K, since

2 C ’
aaff="".
af K

The final result for the thermal strain is

K
n=———2 3% Vaulaj, —a/)[2n(as)+1]. (9)
9N qj «

The thermal expansion was calculated from Egs.
(6) and (9) as a function of temperature and is shown in
Fig. 3, together with the experimental measurements of
Montfort and Swenson'! and of Stokes.!? In all of the
calculations, the frequencies, eigenvectors, compressi-
bility, and lattice constant were held constant at the
values appropriate to 9°K. Some improvement in the
agreement with experiment might be expected if they
were allowed to vary with temperature, but in view of
the uncertainties in the potential, this was not thought
to be worthwhile. The calculations and experiment
agree to well within the accuracy of the calculations,
209, as judged by the results obtained with different
cutoffs. The agreement between the results with poten-
tials having cutoffs at 1.6 and 2.4 is not surprising
because the potentials themselves are very similar, as

af
g ()

: (b)

11 C. E. Montfort and C. A. Swenson, J. Phys. Chem. Solids
26, 291 (1965).
12 R. H. Stokes, J. Phys. Chem. Solids 27, 51 (1966).

F1c. 4. The diagrams con-
tributing to the phonon self-
energy. The shift due to a
strain #qg is represented in part
(a), that due to the mean-
square displacement in part (b),
and part (c) represents phonon-
phonon scattering and con-
tributes to both the shift and
the lifetime.
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shown in Fig. 2. The remainder of the calculations in this
paper were therefore performed with the cutoff of 1.6
for which the agreement with experiment is quite satis-
factory. The slow rise in the experimental thermal
expansion above 250°K is not reproduced by the calcu-
lations. This rise shows that higher-order anharmonic
effects occur above this temperature, while the sharp
rise in the measurements at 290°K probably indicates
vacancy formation. Similarly, these processes have not
been included in our calculations of other properties
and so the calculations are expected to be in error at
the highest temperatures.

5. PHONON SELF-ENERGY
A. Calculations

It has already been shown® that for a weakly anhar-
monic crystal the self-energy of a phonon divides into a
Hermitian and an anti-Hermitian part, as follows:

2 (47759 =A@j7,9) —il(a75,9) .-

In the simple case, where there is no mixing of modes,
the self-energy is diagonal in j and, provided they are
small, A and I' may be interpreted as the shift and width
of the phonon, both of which depend on temperature
and applied frequency Q. The neutron scattering cross
section is given in terms of these functions as propor-
tional to®

1 1
2 efP—1
« 40(q7)T(q77,92)
[eo(@)*4200(q7) A (05 7,2) — P +4eo(a)*T (0 7,2

(10)

If T and A are assumed small we may assume their
© dependence is unimportant, in which case the peak
of the neutron response is given by

Q==+[w(qs)+Agj7,»@))], (11)

and the full width at half-height of the peaks, W, is
iven b .. .

sy W =21 (qjj.0(a7)- (12)

The real and imaginary parts of the self-energies were
calculated including the lowest terms in perturbation
theory, which involved up to the fourth-order anhar-
monic coefficients. The self-energy is then the sum of
the three contributions® shown diagrammatically in
Fig. 4, with the following result:

2
A(‘l]];ﬂ):%z Vaa(qjy "‘(I])ﬂ

12
+;2; V(aj, =44, Qij1, —q1j)(2m+1)

18
"—Z IV(q]: '_qul: _q2]2>|2R(9)
%2 1.2
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I‘(qjjg):?lz IV(Q’j, i —(I2]'2)|?S(9) , z o 3 V= 1.45x102 e ]
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& 4r 1
where the functions R(2) and S(Q) are given by Zo & 1
o]

R(Q2)—irS(Q) =li_{%{ (nytns+1)

X[(Q4witwetie) ' — (—wy —wotie)~ ]+ (n2—n1)
X[(Q—witwstie) 1 —(Q+wi—wrtie)~ 1]}, (13)

and where the labels 1, 2 represent (qij1), (qz72),
respectively. The off-diagonal elements of the self-
energy are identically zero in the present case because
each mode belongs to one irreducible representation for
the symmetric directions we have considered.

The summations over q were performed on a finite
mesh of different points within the Brillouin zone. The
size of e was chosen to be 0.1X10'? Hz in the final
calculations, which seemed to give sufficient sampling
of the frequencies by the points of the mesh. Indepen-
dent calculations, performed on meshes with 1000 and
2000 points within the Brillouin zone, gave essentially
the same results.

In calculations of the phonon self-energies, as in those
of the thermal strain, no account was taken of renormal-
ization of the frequencies appearing in the above
formulas. The frequencies, lattice constant, and elastic
constants were those appropriate to 9°K. These quanti-
ties are practically the same as those of the position of
static equilibrium as shown in Table III, where the
thermal strain and the anharmonic self-energy of a
typical phonon is shown to be negligible at 9°K.

The real and imaginary parts of the self-energies
were calculated for several values of frequencies €
around the anharmonic frequencies w(qs). In Fig. 5,
we show the resulting shape of two of the most heavily
attenuated modes. The results have close to a Lorentzian
shape and so it is a reasonable approximation to con-
sider the frequency as given by Eq. (11) and the width
by Eq. (12). Likewise, no evidence was found experi-
mentally for any neutron group having a shape in-
consistent with this approximation.

The calculated widths and shifts at 9, 92, 215, and
299°K are shown in Table IV. The contributions to the
shift in frequency (A) from thermal expansion (Ar),
the fourth-order coefficient (A,), and the third-order
coefficient (A3) are individually given. For most modes,
the largest contribution to the shift is from the thermal
strain. For some modes the third- and fourth-order
contributions are of opposite sign and partially cancel,
as was found in alkali halides.’® There are many
branches, however, where all three contributions are of
the same sign, for example, His, 23, and N3'. For other
branches, Ay is positive but sufficiently small so that no

13 E. R. Cowley and R. A. Cowley, Proc. Roy. Soc. (London)
A287, 259 (1965).
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F16. 5. Computed shapes of two neutron groups
in K at room temperature.

appreciable cancellation takes place, for example, Aj,
Fi, F3, 2, and N¢'. For all these branches the numerical
accuracy of the calculations is probably of the same
order (209,) as the calculation of thermal expansion.
For a few modes where the contributions to the shift
largely cancel, for example, G1, N4, As, the accuracy
will be less and may be estimated by assigning a 209
error to the individual contributions.

The small oscillations observed, for example, in the
calculations for modes Aj;, are probably not significant
and are the result of using a cutoff potential. On the
other hand, the large oscillation for the shift of the
A1(F:) modes is significant. Its shape is clearly related
to that of the harmonic frequency in this direction,?
and the experimental results are also consistent with an
oscillation in the shift for A1(#1) modes.

6. COMPARISON OF THEORY AND
EXPERIMENT

In Fig. 6, the measured changes in the frequency and
the half-widths of the neutron groups are compared
with the theoretical calculations described in Sec. 5.
The agreement between the calculations and experiment
is quite satisfactory for the frequency changes but less
so for the widths. In particular, the results for the
changes in the Z;, Z; and A3 branches given are in
excellent agreement. Those for the Ay and A; branches
agree at 90 and 215°K but the calculations are somewhat
too small at 299°K. This may indicate that the scatter-
ing by vacancies has an appreciable effect on these
frequencies at high temperatures.

It is clear from the scatter in the measurements of
the width that a comparison of individual results with

TasLE III. Anharmonic effects at 9°K.

Thermal strain »

Mode q=2#/2(0,0,1.0)
Frequency w(qj)
Shift Aajje(as)
Half-width T(qjj«(a5))

0.22%

2.21 X102 Hz
—0.036X10'2 Hz
0.005 1012 Hz
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TasLE IV. Calculated widths and shifts in potassium in units 102 Hz. The four rows of data following each mode refer successively
to temperatures 299, 215, 92, and 9°K. The individual contributions to the shift from the strain and from the third- and fourth-order
coefficients are also tabulated. The change in the shift and width from their 9°K values is shown in the last two columns.

Wave vector Mode Frequency Ap Ay Az A T 8A éT
(0.0,0.0,0.2) As 0.69 —0.029 —0.044 —0.037 —0.110 0.020 —0.100 0.020
—0.021 —0.032 —0.027 —0.080 0.015 —0.070 0.015
—0.009 —0.014 —0.012 —0.035 0.006 —0.025 0.006
—0.004 —0.003 —0.003 —0.010 0.000
(0.0,0.0,0.4) As 1.29 —0.049 —0.062 —0.046 —0.157 0.046 —0.139 0.045
—0.036 —0.045 —0.033 —0.114 0.033 —0.096 0.032
—0.016 —0.020 —0.016 —0.052 0.014 —0.034 0.013
—0.000 —0.005 —0.007 0.018 0.001
(0.0,0.0,0.6) Aj 1.79 —0.080 —0.071 —0.074 —0.225 0.041 —0.199 0.039
—0.058 —0.051 —0.049 —0.158 0.030 —0.132 0.028
—0.026 -0.022 —0.023 —0.071 0.013 —0.045 0.011
—0.010 —0.005 —0.011 —0.026 0.002
(0.0,0.0,0.8) A 2.11 —0.099 —0.068 —0.119 —0.256 0.061 —0.223 0.056
—0.072 —0.049 —0.086 —0.207 0.044 —0.174 0.039
—0.033 —0.021 —0.039 —0.093 0.019 —0.060 0.014
—0.013 —0.005 —0.015 —0.033 0.005
(0.0,0.0,1.0) His 2.21 —0.112 —0.062 —0.155 —0.329 0.061 —0.293 0.056
—0.081 —0.045 —0.112 —0.238 0.044 —0.202 0.039
—0.037 —0.019 —0.050 —0.106 0.019 —0.070 0.014
—0.014 —0.004 —0.018 —0.036 0.005
(0.2,0.2,0.0) Z 1.43 —0.088 0.003 —0.044 —0.129 0.025 —0.113 0.024
—0.064 0.002 —0.032 —0.094 0.018 —0.078 0.017
—0.029 0.001 —0.014 —0.042 0.008 —0.026 0.001
—0.011 0.002 —0.007 —0.016 0.001
Z; 0.93 —0.035 —0.064 —0.044 —0.143 0.028 —0.130 0.028
—0.026 —0.046 —0.032 —0.104 0.020 —0.091 0.020
—0.012 —0.020 —0.014 —0.046 0.008 —0.035 0.008
—0.004 —0.005 —0.004 —0.013 0.000
(0.3,0.3,0.0) Z 1.98 —0.133 0.021 —0.066 —0.178 0.034 —0.155 0.031
—0.096 0.015 —0.048 —0.129 0.025 —0.106 0.022
—0.044 0.007 —0.022 —0.059 0.011 —0.036 0.008
—0.017 0.004 —0.010 —0.023 0.003
pop 1.24 —0.043 —0.076 —0.054 —0.173 0.041 —0.156 0.040
—0.031 —0.055 —0.039 —0.125 0.029 —0.108 0.028
—0.014 —0.024 —0.018 —0.056 0.012 —0.039 0.011
—0.005 —0.006 —0.006 —0.017 0.001
(0.4,0.4,0.0) Z 2.28 —0.171 0.041 —0.097 —0.227 0.062 —0.198 0.057
—0.124 0.030 —0.070 —0.164 0.045 —0.135 0.040
—0.056 0.014 —0.032 —0.074 0.020 —0.045 0.015
—0.022 0.006 —0.013 —0.029 0.005
Z; 1.45 —0.057 —0.085 —0.056 —0.198 0.050 —0.178 0.049
—0.041 —0.061 —0.041 —0.143 0.036 —0.123 0.035
—0.019 —0.027 —0.018 —0.064 0.015 —0.044 0.014
—0.007 —0.006 —0.007 —0.020 0.001
(0.5,0.5,0.0) Ny 2.40 —0.176 0.045 —0.098 —0.229 0.066 —-0.200 0.060
—0.128 0.032 —0.071 —0.167 0.047 —0.138 0.041
—0.058 0.015 —0.032 —-0.075 0.021 —0.046 0.015
—0.022 0.006 —0.013 —0.029 0.006
Ny 1.52 —0.055 —0.089 —0.053 —0.197 0.048 —0.176 0.047
—0.040 —0.064 —0.039 —0.143 0.034 —0.122 0.033
—0.018 —0.028 —0.018 —0.064 0.015 —0.043 0.014
—0.007 —0.007 —0.007 —0.021 0.001
NS 0.53 —0.062 0.301 —0.127 +0.112 0.081 +0.112 0.080
—0.045 0.216 —0.092 +0.079 0.057 +0.079 0.056
—0.020 0.093 —0.040 +0.033 0.022 0.033 0.021
—0.008 0.016 —0.008 0.000 0.001
(0.4,0.6,0.0) Gy 0.79 —0.056 0.189 —0.120 +0.013 0.056 +0.019 0.055
—0.040 0.136 —0.086 +0.010 0.041 0.016 0.040
—0.018 0.058 —0.037 +0.003 0.016 0.009 0.013
—0.007 0.010 —0.009 —0.006 0.001
(0.2,0.2,0.8) Fy 1.45 —0.066 —0.005 —0.100 —0.171 0.062 —0.150 0.061
—0.048 —0.004 —0.072 —0.124 0.045 —0.103 0.044
—0.022 —0.002 —0.032 —0.056 0.019 —0.035 0.018
—0.008 —0.002 —0.011 —0.021 0.001
F; 2.15 —0.128 —0.019 —0.111 —0.258 0.076 —0.217 0.070
—0.093 —0.014 —0.080 —0.187 0.055 —0.156 0.049
—0.042 —0.006 —0.036 —0.084 0.024 —0.053 0.018
—0.016 —0.000 —0.015 —0.031 0.006
(0.4,0.4,0.6) I 1.28 —0.090 0.078 —0.130 —0.142 0.090 —0.124 0.086
—0.065 0.056 —0.093 —0.102 0.065 —0.084 0.061
—0.029 0.024 —0.041 —0.046 0.028 —0.028 0.024

—0.011 0.005 —0.012 —0.018 0.004
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TaBLE IV. (continued).
Wave vector Mode Frequency Ap Ay Ag A T 8A T
(0.4,0.4,0.6) Fs 1.99 —0.142 0.041 —0.079 —0.180 0.051 —0.155 0.047
—0.103 0.029 —0.057 —0.131 0.037 —0.006 0.033
—0.047 0.013 —0.026 —0.060 0.016 —0.035 0.012
—0.018 0.005 —0.012 —0.025 0.004
(0.4,0.4,0.4) Ay 2.14 —0.154 0.032 —0.095 —0.217 0.061 —-0.190 0.056
—0.112 0.023 —0.069 —0.158 0.044 —0.131 0.039
—0.051 0.011 —0.030 —0.070 0.019 —0.043 0.014
—0.019 0.005 —0.013 —0.027 0.005
Az 1.54 —0.110 0.061 —0.087 —0.136 0.059 —0.115 0.056
—0.080 0.044 —0.063 —0.099 0.042 —0.078 0.039
—0.036 0.019 —0.029 —0.046 0.018 —0.025 0.015
—0.014 0.004 —0.011 —0.021 0.003
(0.2,0.2,0.2) A 1.71 —0.103 —0.010 —0.046 —0.159 0.041 —0.139 0.039
—0.075 —0.007 —0.034 —0.116 0.030 —0.096 0.028
—0.034 —0.003 —0.015 —0.052 0.013 —0.032 0.011
—0.013 +0.001 —0.008 —0.020 0.002
Az 0.79 —0.038 0.041
—0.028 0.030
—0.013 0.013
—0.005 0.002
(0.1,0.1,0.9) Iy 1.99 —0.123 0.054 0.050
—0.089 0.039 0.035
—0.040 0.017 0.103
—0.015 0.004
Fy 2.19 —0.133 0.072 0.066
—0.096 0.053 0.047
—0.043 0.023 0.017
—0.016 0.006
(0.3,0.3,0.7) Fy 1.01 —0.127 0.075 0.073
—0.092 0.054 0.052
—0.040 0.023 0.021
—0.010 0.002
F 2.10 —0.086 0.066 0.060
—0.063 0.047 0.041
—0.028 0.021 0.015
—0.013 0.006
(0.5,0.5,0.5) F,Fs 1.80 —0.087 0.050 0.047
—0.063 0.036 0.033
—0.029 0.016 0.013
—0.012 0.003
(0.3,0.3,0.3) Ay 2.11 —0.079 0.049 0.045
—0.057 0.036 0.032
—0.026 0.016 0.012
—0.011 0.004
Az 2.11 —0.088 0.053 0.051
—0.064 0.038 0.036
—0.028 0.016 0.014
—0.010 0.002

the theory is not meaningful (see Table II for the errors).
However, Fig. 6 shows that the over-all trend of both
theory and experiment are similar, although the calcu-
lated half-widths are about half the measured ones for
most branches. This discrepancy in the widths may
indicate that there are processes which scatter the
phonons which we have not taken into account. These
might include the effects of vacancies and higher-order
anharmonicities, which, as can be seen from the thermal
expansion (Fig. 3), are important at the highest temper-
atures. Further possibilities are discussed in Sec. 7, in
which the validity of the neutral-pseudoatom approach
is considered. However, we cannot rule out the possi-
bility that a large part of the discrepancy arises because
we have not extracted the experimental resolution
function adequately. If the one-phonon cross sections
are not Lorentzian in shape or if the resolution function
is not Gaussian, then considerable changes occur in our

results. Furthermore, the change in the frequencies
with temperature alters the resolution function and we
have neglected these changes in our analysis.

The agreement between theory and experiment is
therefore satisfactory for the frequency shifts but is
less so for the widths. Before drawing any conclusions as
to whether the disagreement for the widths is significant,
we shall examine the pseudopotential theory in greater
detail with particular attention to contributions to the
phonon lifetimes.

7. PSEUDOPOTENTIAL ANALYSIS
A. Ion-Electron-Ion Interaction

In the foregoing sections we have used the neutral-
pseudoatom model to discuss anharmonic effects in
potassium. In this section we discuss the validity of this
approximation. The forces between the ions in a metal
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Fi1c. 6. Shifts and half-widths in K at three temperatures. The
points are neutron scattering measurements and the lines are
theoretical calculations made with the potential between neutral
pseudoatoms derived from 90°K data. Squares and solid lines
are for 299°K, circles and dashed lines for 215°K, and triangles
and dotted lines for 92°K.

arise partly from the direct ion-ion interaction. In the
alkali metals this is well approximated by the electro-
static interactions ¢.(Q) between the ion charges. In
addition, there is the interaction through the conduction
electrons. This interaction is shown diagrammatically
in Fig. 7, and the total ion-ion potential is given by2~7

#(Q) =4.(Q) —7(Q)[V(Q)|*/Q), (14)

where V(Q) is the electron-ion pseudo-potential, ¢(Q)
the electron dielectric constant which in the Hartree
self-consistent field approximation is

«(Q) =1+(4re*/Q*)r(Q), (15)
and 7(Q) is the electron polarization operator,
1 _ n(k)—n(k+Q)
m(Q)=—2 (16)

N¥ Ek)—Ek+Q)

The electron of state k has occupation number #(k) and
energy E(k).

One difference between this potential'* and the
neutral-pseudoatom potential assumed in Sec. 3 is

F1c. 7. Phonon self-energy
caused by the ion-electron-ion
interaction. The heavy lines
are phonons, the light lines
electrons, and the dotted lines
the photons involved in the
screening of the electron-ion
interaction. The same conven-
tion is followed in subsequent
figures.

147, J. J. Kokkedee, Physica_28, 983 (1962).
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F16. 8. The phonon width in the [1007] direction in K arising from
the imaginary part of the dielectric polarization.

that the ion-electron-ion interaction gives some scat-
tering of the phonons.!*** This depends on the imagin-
ary part of w(Q) of Eq. (14). However, since few
electrons lie within a typical phonon energy of the Fermi
surface, the resulting width of the phonon groups is
comparatively small. Figure 8 shows the width calcu-
lated for the [100] direction in potassium. Also shown
in Fig. 8 is the temperature dependence of this width
which, because the Fermi temperature is large compared
with the temperatures of the experiment, is quite
negligible. Consequently, since we have only measured
the increase in the width of the neutron groups with
temperature, the scattering of the phonons by the
electrons does not significantly alter our results.

B. Anharmonic Interactions

In Fig. 9, we show the two different types of diagram
which make up the ion-electron-ion contribution to the
cubic anharmonic interactions of Eq. (3). Diagram (a)
has two pseudopotential interactions and corresponds to
a two-body interaction. Its contribution is very similar
to that of the electronic part of Eq. (14), and together
with the Coulomb interaction it is treated exactly by
the pseudoatom approximation of Sec. 3.

Diagram (b) of Fig. 9 is considerably more complex
and to our knowledge has not been discussed in the
literature. It contains three pseudopotential interactions
and consequently corresponds to a three-body potential.
Although its contribution can be evaluated by the use of

(a)
F16. 9. Cubic anharmonic
interaction between phonons
via the electrons. Diagram (a)
is a two-body interaction and
(b) is a three-body interaction.
(b)

15 J. Bjorkman, B. I. Lundqvist, and A. Sjolander, Phys. Rev.
159, 551 (1967).
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the familiar rules for diagrams,'® at least formally, we
have been unable to perform the resulting integrals
over the electron momentum analytically. This makes
calculations of this term extremely lengthy and so we
have not attempted any numerical computation of its
magnitude. Since the term involves three pseudo-
potentials, whereas diagram (a) contributes only two,
it is tempting to suggest it will therefore be smaller,
but we have been unable to justify this argument.The
only suggestion we can put forward is that it seems
likely that three-body forces will be less important than
two-body ones. Furthermore, this term also contributes
to the thermal expansion and our pseudoatom approxi-
mation, for it gave quite satisfactory agreement with
experiment.

In Fig. 10 we show the different contributions to the
quartic anharmonicity. As with the cubic terms, the
two-body terms, diagrams (a) and (b), are treated
exactly by the pseudoatom approximation but the
three-body interactions, diagram (c), and the four-body
ones, diagram (d), are neglected. As with the cubic
anharmonicity, we have no real justification for this
other than the practical difficulty of including them.

There are other diagrams which contribute to the
phonon self-energy. Some of these involve the simul-
taneous excitation of both electrons and phonons. Their
contributions are, however, smaller than those of the

F1c6. 10. Quartic anharmonic
interaction between phonons.
Diagrams (a) and (b) are two-
body interactions, while (c) and
(d) are three- and four-body
interactions.

(c)
(d)

13

(a)

O
F

F16. 11. Diagrams contribut-
ing to the Kohn anomaly in
metals.

(c)

(d)

16 A. A. Abrikosov, L. P. Gorkov, and J. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1963).
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F1c. 12. Interplanar force constants in lead as a
function of temperature (Ref. 18).

diagrams we have discussed because they may be shown
to belong to higher terms in the phonon expansion.

C. Kohn Anomalies

Although the Kohn anomalies!? in potassium are too
small to be detected experimentally, it is of some interest
to discuss, in general, the way in which anharmonic
effects modify Kohn anomalies with temperature.
Since the expressions for the anharmonic coefficients
[Egs. (4) and (S)] involving a particular wave vector
q include contributions from ¢(|q+=]|), these anhar-
monic coefficients will also exhibit Kohn anomalies.
The widths and changes of frequency considered as func-
tions of q will therefore exhibit Kohn anomalies when-
ever |q+=| =2kp, and these will modify the size of the
anomalies.

This behavior is illustrated by the diagrams shown in
Fig. 11. The structure of the diagrams is very similar
to those describing the inelastic scattering of radiation
by harmonic crystal.? Diagrams (a) and (b) correspond
to the Debye-Waller factor while (c) is a one-phonon
diagram and (d) a two-phonon diagram. The important
feature for the present purposes is the set of diagrams
which contribute to the Kohn anomaly. These are the
no-phonon scattering diagrams such as (a) and (b);
we clearly incorporate all the multiphonon effects of
these diagrams by multiplying the size of the Kohn

— < >}Tp——(a)
>

—@———(d)

17 W. Kohn, Phys. Rev. Letters 2, 393 (1959).

F16. 13. Cubic anharmonic
diagrams showing the different
ways in which the electron-hole
pairs enter.
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anomaly by the Debye-Waller factor. The anomalies
for the one-and two-phonon diagrams, (c) and (d),
occur at different wave vectors depending on the wave
vectors of both the incident and scattered phonons.
When averaged over all possible processes they do not
give anomalies at particular wave vectors. For the class
of diagrams shown in Fig. 11, therefore, we expect the
Kohn anomalies to have a temperature dependence
given by the well-known Debye-Waller factor. Conse-
quently, they will decrease in size with increasing
temperature. This may be the explanation of the result
found in lead,’® Fig. 12, which shows the range of the
interatomic forces decreasing rapidly with increasing
temperature.

It is more difficult to assess the effect of more com-
plex diagrams on the Kohn anomalies. The cubic
anharmonic diagrams are shown in Fig. 13. Diagrams
(a) and (b) contribute to the Kohn anomaly while
diagrams (c) and (d) do not. The sign of the contribution
may be either positive or negative in the same way that
the cubic anharmonic shift may be positive or negative.
However, since this term also contributes to the width
of the group, it seems unlikely that in practice it will
give rise to large anomalies because the width will tend
to blur out any sharp features.

8. DISCUSSION AND CONCLUSIONS

A study has been made of anharmonicity in potassium
metal. We have measured the temperature dependence
of many phonons, and have found that the frequency
shifts and widths and also the thermal expansion can be
reasonably explained by calculations based on the
neutral pseudoatom approximation, when only the
lowest terms in an anharmonic expansion are included.
The pseudoatom potential was obtained from the
measured phonon frequencies at 9°K.

The most difficult part of the experimental work is.

the extraction of the experimental resolution function
from the measurements. This was done by comparing

18 B. N. Brockhouse, T. Arase, G. Gaglioti, M. Sakamoto,
R. N. Sinclair, and A. D. B. Woods, in Inelastic Scattering of Slow
Neutrons from Solids and Liquids (International Atomic Energy
Agency, Vienna, 1961).
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the high-temperature results with the results at 9°K.
However, there is still some uncertainty in the resulting
width because the shape of both the one-phonon cross
section and the resolution function are somewhat un-
certain. Although we have verified that the observed
neutron groups have the expected shapes, a large part
of the error in our measured widths comes from this
source. A problem that always exists is that anharmonic
effects mix the one-phonon peak with the background
so as to alter both the peak shape!? and its intensity.2
Our results for the widths at the highest temperatures
may be in error from this cause.

On the theoretical side we have developed a method
for calculating anharmonic effects which uses the same
potential that enters into the calculation of harmonic
phonon frequencies. The electronic band structure may
also be calculated from this potential if the dielectric
constant is known. The method is applicable to all
simple metals. We have neglected, however, the three-
and four-body forces which occur explicitly in the
pseudopotential formalism for the anharmonic coeffi-
cients. Their inclusion would be very difficult in practice
at the present time. Nevertheless, the fact that we obtain
reasonable agreement between experiment and theory
for both the shifts in frequency and the thermal expan-
sion does suggest that the many-body forces are much
smaller than the two-body forces. We hope this result
will stimulate further theoretical work to demonstrate
this more satisfactorily.

In conclusion, therefore, we have shown that a
neutral-pseudoatom potential, which gives an excellent
account of the harmonic lattice dynamics of potassium,
also gives a reasonable description of the anharmonic
effects.
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