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Saxon-Hutner Theorem for One-Dimensional General Alloys
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A proof of the conjecture made in a previous paper concerning a sufhcient condition of the Saxon-Hutner
theorem for random binary alloys of symmetric potentials is given. Sufhcient conditions of the Saxon-
Hutner theorem for general alloys of arbitrary number of different constituent potentials are established
for both the symmetric and nonsymmetric cases. A numerical calculation of the central-square-well-potential
alloys is also presented.

defined in I. We characterize the given potentials by
their scattering phase shifts. This formulation gives us
a clear association between the given potentials and its
resulting electronic spectra of the alloys.

One of the main questions studied in I was the
conditions under which the Saxon-Hutner theorem is
valid. The theorem states that a level forbidden in an
infinite one-dimensional lattice formed of pure type-A
potentials and forbidden in that formed of pure type-8
potentials is also forbidden in any arbitrary alloy of A
and 8. Several sufficient conditions were found under
which the above theorem is valid. One particular
condition, which is of special interest to us here, states
that the Saxon-Hutner theorem in binary alloys of
symmetric potentials is valid for an alloy of the type
A" 8' (i.e., a -periodic alloy of r type-A potentials
followed by s type-8 potentials, where r and s are
arbitrary integers) if

I. INTRODUCTION

plays the fundamental role. It transforms the wave
function 4'=c~e '"'"+cse'"'" from one cell to the next:

For binary alloys of symmetric potentials A and 8,
the electronic structure was studied in terms of the
parameter sgn(co~toe) = sgn(he~) . (6)

(3)
From Eq. (5), we see tha, t

~IsA=st&rt& 44)
where we have defined

' "X a previous paper, hereafter referred to as I,' we
~ ~ have studied in soIne detail the electronic spectra of
binary alloys in relation to the spectra of the alloying
constituents. A phase-transfer method was used in
which the transfer matrix

z=tM +Z)

'v= v+z'f/.

cc' —1= zt' —P,
and for forbidden levels we have

I
co

I
)1, giving

I rt I )
I & I. Hence we can rewrite the equality in (6) as

For symmetric potentials, v=0 LEq. (110)$. It was
also shown that the parameter. h~~ can be expressed in

or
terms of the scattering phase shifts. Thus, for symmetric
localized potentials,

sgn(co~tots) = sgn(rt~zttt)

Gdgco~'gg'g g) 0.

(6')

cos(8++8 )

cos(5+—5 )

sin(8++8 )

cos(5+—5 )

v =0, rt = —tan(8~ —h ),
where 8+ and 8 are the even and odd phase shifts

The proof was extended to the fourth-order type (i.e.,
A"'8" A'48'4) and several other special situations.
It was conjectured that the same condition (6) is
sufficient to ensure the validity of the Saxon-Hutner
theorem for an infinitely random binary alloy of sym-
metric potentials A and 8: A"'8'0A"'8'& A" 8'
with arbitrary integer superscripts r, and s;. We have
shown that this condition includes the Luttinger'
central 8-potential substitutional alloy as a special
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case. A similar condition was observed by Dworin' in
random alloys. The condition (6) is of particular interest
because it does not refer to a specific energy value. The
energy ranges satisfying the inequality given in Eq.
(8), in general, lead to the formation of energy gaps in

the alloys.
In Sec. II we present a proof of the conjecture made in

I concerning the suQicient condition [Eq. (6)j of the
Saxon-Hutner theorem for infinitely random binary
alloys of symmetric potentials. We then extend our
consideration to include general alloys of arbitrary
numbers of different constitutent symmetric potentials.
Sufficient conditions for nonsymmetric potentials in

general alloys are also established. The Hori-Matsuda4
method of the Mobius transformation is used. Numeri-
cal calculations of the central-square-well-potential
alloys are given in Sec. III. The purpose of the latter
analysis is twofold: We want to illustrate how to handle
the phase shifts introduced in I in practical calculation,
and the result of the square-well calculations serves
to explain why Landauer and Helland' thought that the
Saxon-Hutner conjecture is not valid for such po-
tentials. Concluding remarks are given in Sec. IV.

II. HORI-MATSUDA METHOD AND
SAXON-HUTNER THEOREM

Hori and Matsuda' showed that the properties of the
transfer matrix M can be studied in terms of a Mobius
transformation (or linear fractional transformation) in

the theory of complex variables. ' Let us denote

s=ci/cs, s =ci/cs .

With this notation, Eq. (2) becomes

s'= (u*s+s)/(r/*s+u) . (10)

The determinant ~u~' —~r/~'=1. This transformation
induces a one-to-one conformal mapping of the complex
plane into itself. A point s in the complex plane mapped
into itself is called a "fixed point. " In general, the
Mobius transformation has two fixed points, s~ and s~.

In our problem here, Eq. (10) gives the two fixed

' L. Dworin, Phys. Rev. 138, A1121 (1965). As was shown in
Ref. 13 of I, the Dworin conditions for a forbidden level in the
binary alloy are

l~~'+(~&4&sl(n /s&)3(~~' 1) I
~&2— —

and
~~B+p&A!(+BA /IBA)](~A' —t) ( ~&2,

with ~cog~ &~1 and a&s &~1. /isA and psx are defined in I.
When ~cup~ &~1 and co~ &~1 simultaneously, it is easily checked
that sgn(A~g —p,~g) =sgn(~gg+p~g) =sgn(~~g). Now when
sgn(~geog) =sgn(Agg), we see that the two terms in each of the
above conditions add, and only when the magnitudes add is it
more likely to produce a magnitude greater than 2. sgn(cozco&)
=sgn(A~~) is our sufhcient condition (6).

Jun-ichi Hori and Hirotssuju Matsuda, Progr. Theoret. Phys.
(Kyoto) 32, 183 (1964).

'R. Landauer and L. C. Hellund, J. Chem. Phys. 22, 1655
(1954).

'See, e.g., Einar Hille, Analytic Function Theory (Blaisdell
Publishing Co., Waltham, Mass. , 1959), Vol. 1, p. 53.

(s' —sp) '= (s—ss)
—'+v*, (12)

and the motion is called parabolic [Fig. 1(a)$. We see
from Eq. (11) that this corresponds to the band edge:

(b) Two distinct fixed poi/sts at si arid ss. Equation
(10) can now be put into the form

where

s sf s s]
-=G

s'-s2 s-s2
(13)

G = (i/*si+u)/(i/*ss+ u) . (14)

In a general Mobius transformation, G is complex and
the motion is called loxodromic. In particular, if 6 is
real and not equal to unity, the motion is called hyper-
bolic; and if G is complex with

~
G~ =1, the motion is

called elliptic. Using Eqs. (11) and (14), we find that

~+ (~2 1)1/2

(o/2 1)1/s

This corresponds to hyperbolic motion when ~o/~ )1
[Fig. 1(b)] and elliptic motion when (o/~(1 [Fig.
1(c)]. Here we do not need to consider the general
loxodromic motion. We notice that forbidden levels in a
pure lattice (~o/~ )1) correspond to hyperbolic motion
in which all lines never close upon themselves, Physically
this means that a wave function after transferring
through the cells can never satisfy the propagation
condition of a periodic lattice. In hyperbolic motion,
all lines start from one fixed point and end at the other.
Thus, the two fixed points have the properties of a
source s+ and a sink s . From Eq. (11),we see that the
two fixed points of the hyperbolic motion are at

[r/$& i (o/' —1)"'j+i[—$p~r/(o/' —1)"'g
S1,2 (16)

V2+$2

(17)

where
$v&rt (o/' —1)'/'

tan/i, s =
—rt)& i ((o' —1)'/'

points at

s1,2 (1/r/*){-,' (u*—u)+[(-,' (u*+u))' —1J/') (11)

Consider a chain of pure type-A potentials. In passing
from left to right, a wave function is multiplied by the
transfer matrix M once every time it passes through a
cell. In terms of the Mobius transformation, it means
that s, the ratio of c~ to c2 of a wave function, is mapped
e times when the wave function is transferred through
e cells. The problem of curves traced out by such
successive Mobius transformations having two fixed
points is one of kinematics. The motion, in general,
can be classified into two groups.

(a) Two coincide/st fixed points at ss. Equation (10)
can be put into the form
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FIG. 1. Lines of motion of the
Mobius transformation in the
complex plane for {a) the para-
bolic, {b) the elliptic, and {c) the
hyperbolic cases.

(a)

Thus, we see that the two fixed points always lie on the
unit circle for forbidden levels. When the alloying
potentials are symmetric, v=0. The two fixed points
subtend equal angles ~P~ about the real axis:

@=/] ——y, = tan —'[(1—g2)'i2/g) (19)
where

l~! = It/el & 1

Now consider an alloy formed of two different
symmetric potentials, types A and 8. I.et us look at
energy levels that are forbidden in both type-A and
type-8 potentials. There will be two sets of hyperbolic
motion curves corresponding to A and 8 in the complex
plane, each set having two fixed points lying on the
unit circle. A transfer of the wave function through a
type-A potential cell corresponds to a motion in the
complex plane following a section of the hyperbolic
motion curve of set A. When the wave function is

transferred through a type-8 potential cell, the corre-
sponding motion in the complex plane is by following
the Qow lines of set B.If the path traced out in this way
never closes upon itself we have a forbidden energy
level in the alloy. It is clear that a su%.cient condition
for this to be true is that there will be no source (or
sink) in between two sinks (or sources). In other words,
when the region occupied by the sources and that by
the sinks do not overlap, the level is forbidden in a
random alloy. This is the Hori-Matsuda theorem. '

We shall now prove that the sufficient condition we

gave in Eq. (8) [or in Eq. (6)) does satisfy the Hori-
Matsuda requirement that the sources and sinks do not
mix in the case of an infinitely random binary alloy of

symmetric potentials: A "08'0A"'8'& A" 8'".We shall

then modify our condition given in Eq. (8) so that it
becomes a sufficient condition under which the Saxon-
Hutner theorem is valid for a general alloy of arbitrary
numbers of di6erent constituent symmetric potentials.
Finally, we shall establish a sufficient condition for
general alloys in the case of nonsymmetric potentials.

A. In6nitely Random Binary Alloys of
Symmetric Potentials

For a binary alloy of symmetric potentials there are
four fixed points, all of which lie on the unit circle.
Sources and sinks are symmetric about the real axis.
The positions of the fixed points are given in Eq. (11).
(We are concerned here only with the forbidden levels

and hence the hyperbolic case.) A simple way to flnd
out whether a fixed point is a source or a sink is to
consider the direction of Qow at an arbitrary point in
the z plane. The simplest point to consider is at a=0.
At this point, the Mobius transformation in Eq. (10)
gives

s'= ($n+~~n)/(~'+ 8) (2o)

B.Alloys of Arbitrary Number of Symmetric Potentials

It is now trivial to extend the condition to alloys of

any number of different symmetric potentials A, 8,
C, . In general, for e different constituents, there are
2e number of fixed points. Since we are always con-
cerned with levels that are forbidden in each of the
pure lattices, these fixed points all lie on the unit circle
and each pair is symmetric about the real axis. The e
sets of Qow-line curves are all hyperbolic. As long as
all the sources lie on one side of the real axis and all the
sinks on the other side, no path can close upon itself.
The corresponding level in the alloy is forbidden. Thus,
the modified sufhcient condition for the validity of the
Saxon-Hutner theorem in arbitrary alloys of symmetric
potentials A, B, C, . -, is

sgn(~gag) =sgn(&viigii) = sgn(~ego) = . (22)

In terms of phase shifts [see Eq. (5)), this condition
takes the form

sgn[cos(n++n ) sin(n~ —n ))
=sgn[cos(p++p ) sin(p+ —p ))
=sgn[cos(y++y ) sin(y+ —y )]

(23)

where n~, p~, y~, , are the even (odd) phase shifts
of the symmetric potentials A, 8, C, ~ ., respectively.

The direction of flow is upwards (i.e., s above the real
axis) or downwards (i.e., s below the real axis) accord-
ing to whether cog) 0 or ~g&0. Equation (20) shows that
both sources will be on one side of the real axis and the
sinks on the other side if

sgn((egg~) = sgn((oi pic). (21)

This is exactly the condition given in Eq. (8). Thus,
this condition is sufficient for the validity of the Saxon-
Hutner theorem in an infinitely random binary alloy
of symmetric potentials.
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FIG. 2. (a) Energy spectrum of the alloy XI. and those of its constituents; (b) energy spectrum of the alloy ABCDEFG IISIJEL
and those of its constituents. The specification of the constituent symmetric square-well potentials is listed in Table I. Regions in which
the condition of Eq. (23) is satisfied are marked by I'.

C. A11oys of Genera1 Nonsymmetric Potentials

When the potentials of the constituents are non-
symmetric, v is nonzero. In order to impose sufFicient
conditions for the Saxon-Hutner theorem, a single
parameter is no longer suQicient to characterize the
situation. We need two parameters.

Using the Hori-Matsuda theorem, it is not dificult
to write down the required sufFicient condition. For
example, as long as the sources and sinks of the con-
stituent potentials lie on diferent sides of the real axis,
the level is forbidden. From Eq. (17), we see that if we

require each of the potential A, 8, C, , to satisfy the
relation

ing the Row direction at s=O. All sources are on one
side and the sinks on the other side of the real axis if

Sgn('flAMA )AVA)

= sgn (gs(u~ bv~)—
=sgn(qc~c kcvc}—

~ ~ ~ (25)

Note that for symmetric potentials v, =O, and this
reduces to Eq. (22). Together, Eqs. (24) and (25)
form a sufhcient condition for the validity of the Saxon-
Hutner theorem in alloys with random nonsymmetric
constituent potentials.

I~ (~'—1)'"I&
I &'v'I (24)

where i=A, 8, C, , the sink and the source of
each potential lie on diferent sides of the real axis
although they are no longer symmetric about it. Again
the identity of sources or sinks can be found by examin-

IIL CALCULATIONS FOR THE SYMMETRIC
SQUARE-WELL POTENTIALS

Here we shall illustrate, by direct computation, the
statements made concerning Eqs. (22) and (23).
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Symmetric square-well potentials are chosen for this
purpose.

Let us consider a pure lattice of symmetric square
wells having width u and depth V in a cell of dimension
b. The definitions of r and t in Eqs. (II5)—(I56) differ
from those of Kahn~ by a phase change across the cell,
namely,

r=e '&rK, i,a ——se '&/exp(2'+) —exp(2ib )$,
t=e '&1K,i,„=2e '&Lexp(29+)+exp(2' )$, (26)

y —gl/sb

Our phase shift b+ and 8 are related to the usual
definition of scattering phase shifts by b+=b+
b =b —s~P. For square-well potentials, b~ are given by'

Type

A
8
C
D

p
G
HIJ
E
I.

Depth (Vl
{erg)

20.0
19.8
20.0
19.8
19.8
20.0
20.2
20.0
19.8
20.2
20.0

100.0

Square-well
width (al
(10 8 cm)

0.200
0.200
0.202
0.202
0.200
0.202
0.200
0.199
0.198
0.198
0.200
4.00

Cell size (b)
(10 ' cm)

1.00
1.00
1.00
1.00
0.99
0.99
0.99
0.99
1.00
0.99
0.99

10.00

TABLE I. Speci6cation of the symmetric square-well cell potentials.

b+= tan 'L(k'/k) tan-,'k'aj —-', ka,

b = tan 'P(k/k') tan-', k'a] —-', ka,
(27)

satisled we can be sure of the validity of the Saxon-
Hutner theorem.

IV. REMARKS

where k =E'~' and k'= (E+V)M' Substituting the
values of b+ and b for n+ and n in Eq. (23) and doing
the same for the other constituents, we can immediately
see what energy ranges satisfy the condition given in
Eq. (23).

In Fig. 2(a), the energy spectrum of a type-EI.
binary alloy is plotted together with the spectra of its
two constituents. Similarly, in Fig. 2(b) the spectrum
of an example alloy formed from i2 different symmetric
square wells arranged periodically in the type
ABCDEIiG'IJ'IJEI is presented alongside with the
spectra of the individual constituents. The specifications
of the cell potentials are listed in Table I. Note that
in the energy regions marked b and e )Fig 2(a)j.and

f, g, and k LFig. 2(b)), where the condition LEq. (23)]
is satisfied, the alloys AB and ABCDEFG'H'IJEJ
have energy gaps. This verides that the condition
LEq. (23)j is indeed sufficient to guarantee the validity
of the Saxon-Hutner theorem.

That the condition LEq. (23)j is sufficient but not
necessary can be seen from region e /Fig. 2(a)j and i
fFig. 2(b)j. In regions a and d LFig. 2(a) j, the in-
dividual constituents have forbidden energy gaps but
the resulting alloy AB does not have such gaps. In
these regions the condition (Eq. (23)j is not satisfied.
This illustrates that the Saxon-Hutner conjecture in its
original form is not valid in general for square-well
potentials, as observed by I andauer and Hellund. '
Only in regions where the condition $Eq. (23)j is

~ A. H. Kahn, Am. J. Phys. 29, 77 (1961}.

From our one-dimensional alloy studies in I and here,
we can make the following remarks about real alloys
and amorphous material.

(a) In alloying different constituents, we do not
expect that all the characteristic electronic spectrum
structures of the individuals are retained in the spec-
trum of the alloy. %e do not expect every energy gap
or level common to all the individual constituents
to remain in the spectrum of the alloy.

(b) On the other hand, we do expect that some of the
individual characteristics are left in the alloy. Some
of these retained characteristics may depend on the
particular order in which the constituent atoms are
arranged. These structure-dependent gaps or levels are
more pronounced if the alloying atoms are arranged
periodically to form a superlattice.

(c) In addition to these structure-dependent gaps
and levels, there exists structure-independent charac-
teristics which remain in the process of alloying. These
gaps or levels will not be washed out even in the in-
finitely random arrangement of the constituents, and
will keep the memory of the characteristics of each
individual constituent. It is probably safe to say that
the forbidden gaps are remembered better than the
allowed levels.
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