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Isotope Effect in Diffusion
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Division of Pure Physics, 5'ationa/ Research Council of Canada, Ottawa 7, Canada
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A derivation of the classical jump rate I' for tracer diffusion aimed at a clear expression for the mass
dependence of the frequency factor v is presented. The derivation is effected without using the usual collective
normal coordinates which usually combine the masses in a complicated way. v depends explicitly on the mass
of the surrounding host atoms (as well as on the tracer-atom mass) if these atoms must move to new equi-
librium positions after the jump. I then has much the same form as suggested for a many-atom jump process.
The contribution of the surrounding atoms is reduced (increased) for light (heavy) tracer atoms.

I. INTRODUCTION

ECEXTLY, with the advent of accurate isotope-
effect measurements, ' ' there has been renewed

interest in the mass dependence of the atomic jump
rate F. These experiments often find that I' is not
always simply proportional to es& '~', where m& is the
tracer atom mass, for a single-atom mechanism. Mundy
et a/. ' have suggested an empirical connection between
the departure from I' ~ m~ 't" and the activation volume
d, V.

The purpose of this paper is to present a derivation
of I' aimed at clear presentation of its mass dependence
and the factors which determine it. This is done without
using the usual normal coordinates and frequencies. Al-
though these collective coordinates enable a compact
development of F, the mass dependence is contained
in a product of frequencies which is not easy to analyze.
As the mass originates in the kinetic part of F, a more
transparent expression is obtained by integrating this
part directly rather than introducing mass-weighted or
normal coordinates.

The best known of the many discussions4 ' of I' is
that due to Vineyard, 'followed by the discussion of the
isotope effect by LeClaire. ' Far continuity, we follow
as closely as possible the notation in these papers. A
classical crystal in thermal equilibrium only is con-
sidered.

IL DERIVATION OF THE JUMP RATE I'

A. Physical Description

We denote the total crystal potential by C(x). For
some conlgurations x, C(x) will have a minimum. We
denote two such minimum (wells) by A and B. Physi-
cally, if we are considering self-diffusion by the vacancy
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mechanism, these wells correspond to all atoms localized
about their respective lattice points with one site vacant
(A); and again all atoms localized but now with the
vacancy at an adjacent site (B).

In going from A to 8, the system must pass through
regions of increased C(x). Along one such path the in-
crease in C(x) required will be least. We call the point
x in configuration space along this minimum path where
C(x) has its maximum the saddle point P. For migra-
tions from A to 8 along this path, P marks a natural
boundary between 3 and B. Through P we draw a
surface S that is perpendicular to lines of constant C (x).
This means that 5 will pass through points of maximum
C(x) along all paths from A to B, and so forms a
natural boundary between A and B. If the system is
going from A to 8 we may say it is in 8 when 5 is
crossed. (In the present treatment no discussion of the
process beyond S is given. ) Finally, we define a unit
vector p that is parallel to S at P. As S is fixed by
C (x), y can depend only on 4(x).

In a classical crystal in thermal equilibrium, the prob-
ability of observing a fiuctuation such that the system
is at position x to x+dx with velocity in the range x
to x+dx is given by

I=pp
8

(x dS)&0

3N

(x dS) expL —-', P Pm (i )']e—ea'*"dx (3)
sa

is the current through 5, and

Q= po

3N

e—~e" expt —-,'P P m, (a, )']dxdx (4)

p(x,x)dxdx= pee se'*' expL —isa p m(x, ~)'] xdxd, (1)
sa

where pe is a constant, P=(AT) ', h is Boltzmann's
constant, and T is the absolute temperature. Thus, the
rate of passage from 3 to B (which we suppose is
limited by the barrier through which S passes) is given

by the probability of observing a local coordinate fluctu-
ation to a region dS of S with positive system velocity
x dS&0 so that the system passes through S to B.The
rate F is then

I'= I/(),
where
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is essentially a normalizing constant giving the number
of points originally in region A. At this point, all the
"physics" of this essentially phenomenological treat-
ment has been introduced. The situation discussed is
identical to that considered by Vineyard and the re-
mainder involves only integration.

B. Integrations

To integrate Q, we expand C(x) about x~, the mini-
mum of well A, and extend the integration to eo . (This
extension should introduce little error as most of Q
comes from near x~.) Keeping terms in C(x) up to
second order only and using a standard matrix integra-
tion formula, ' we obtain

g~q 3X/2

Q
—

p g 222,
—1/2

l
e Pc txg)—

the $& system to be an orthogonal one, so that c is an
orthogonal matrix (c t=cr; lcl 1), and set &1=]~.

If we write dS=yltESl, then (x dS) and the restric-
tion x dS&0 is

(x dS) = (x y) l
dS

l

= g, l
dS l,

with the restriction $„&0 in the new coordinate system.
We may then write (6) as

I—
&De

—8@ (*I)1&18

Here I~ is the integration over the kinetic terms which,
using (7) and (8) and the matrix integration in Ap-
pendix A, is

X exp( —P/2)(x —x~) A (x—x~)dx

=poe s~t*"/212, '"l —
l lAl

—'"
)

g 222;
1"Pg 222; ' "(C;„)')1", (10)

where C= c m c. Is is the integration over 5 about I'.
Introducing the lt function b($„) so that we may inte-
grate over all coordinates, we obtainm

where 2,, s= (82C/Bx, fix,P)„„, and
l Al is the deter-

minant of A. The error introduced in keeping only
second-order terms in C (x) is numerical only. It will be
small if the anharmonic terms are small with respect
to the harmonic over regions of x where Q is significant.

Similarly, to integrate I over 5 we expand C(xz) in

the surface 5 about x~ so that

~dSlexpL —2p(x' —xp) A+ (x'—xp))

dg(~, ) exp( ——;Pg 6 Q

(2~/p) i811t'—1) /2(G aof)—1/2

p ~
—8I (.p) exp/ —-'28(x' —xp) A+ (x'—xr))

X(x dS) exp[ ——.,'-Px m x)dx, (6)

where G»"' is the cofactor of element G» in G=c
.A+ c, i.e., the determinant of G22 =p, , s c2, A;,+c;2
with the pth row and column missing.

Collecting (9)—(11) to obtain I and using (5) for Q,

where the primed (x'—x~) denotes that the displace-
ments are restricted to S, and A+@ s—= (82C/Bx; &xmas), ~.
Although, in general, all the x; are involved in a dis-

placement in 5, 5 is a surface with 3Ã—1 degrees of
freedom. There is thus one condition of constraint
f(x'1 x'2+~)=0 among the 3' x, when they are
confined to S. This constraint is most easily accounted
for by transforming to a new set of coordina, tes ft,
$» chosen so that one of them, Pt say, is constant for
motion in S. As we need only small displacements from
I', these $z can be related to the (x—x&); by a linear
transformation,

211 / lAl
[p 222.

—t(c. ~)2)t/sl

Q 22r ' k(C A+ C)

Xexp( —pLC'(xi )—C'(x~)))
= p exp{—PLC(xp) —C(xg))), (12)

III. DISCUSSION

A. Mass Dependence

where, since
l
Al and (c A c)»"' are determinants of

order 3' and 3'—1 in the force constants, respectively,
F has the dimensions of a frequency.

(7) As 2;; and c;I„. do not contain the mass,
3N 3K

(x—xr)' =p c'2 &2=+(2 k)&1 '1
where i and h are unit vectors of the original and new

coordinate systems, respectively. Clearly, we must
choose $1 parallel to y so that it is constant for a dis-

placement dS a,t I'. For convenience we also choose

~(m)" LZ m' '(c. )')"
sa. 1

(my
(1S)

~ A. C. Aitkin, in Determinants and Matrices (g iJey=-Inter-
ycience, Inc., New York, 1954), p. 138.

"See Ref, 4, I', rt. (2.17), for integration (and references cited
[bere),
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where mr is the tracer-atom mass and d;~'=—P~ r

g(c;~~)' is the total displacement of solvent atom i
along p.

To discuss the physical implications of (13) we con-
sider the vacancy mechanism. If there were no relaxa-
tion about either the vacancy or tracer atom, then
before and after the vacancy-tracer exchange the sur-

rounding atoms would take up the same positions. They
would not need to migrate to new relaxed positions
during the jurnp. Clearly, as they need not migrate
anywhere, their velocity at E is unimportant and, on the
average, their projection along p (or any vector) will

be zero. As only the tracer atom must move in a specific
direction, d,„=Sr; and ~ccmr"/'. In this case the g
coordinates can be the original x system (all d,:s——b,s)
so that

r=(1/2~m ' ')P~ A)/(A+), -'j'/'e Pi'&*»--'&*»i. (14)

Equation (14) has been quoted previously" and we see
here that it is valid only in the limit that the surround-

ing atoms return exactly to their original positions after
the jump.

If there is relaxation about either the vacancy or the
tracer or both, this relaxation must change to a new
form after the tracer-vacancy exchange. Some surround-

ing atoms must then be travelling in a specific direction
during the jump (at I') as they move toward their new
equilibrium positions. In this case, their projection along

y will not be zero, and d, „&0. (Equivalently, we may
say they must pass through S.) From (13),v now depends
on the mass of the surrounding atoms in much the
same way as has been suggested for many-atom jump
mechanisms. The number of atoms involved and the
magnitude of d;„' we should expect to be approximately
proportional to the change in the relaxation, approxi-
mately proportional to DVf for self-diffusion.

The effect of the relaxation on v also depends on the
ratio mr/m, . For light tracers, the eGects of relaxation
are reduced. In the limit mq/m, &(1 we always expect
Fccmr r/' (aside from quantum effectss). For heavy
tracers, the effects are increased and in the limit
mr/m~&&1 we expect no mass dependence as suggested
in a model calculation by Rockmore and Turner. "

B. Expression for AX

Isotope experiments, which measure the ratio D /DP
for two isotopes n and P, are usually analyzed using

D-/DP 1=f(r-/rP 1)— —
= fhE[(esp/m )'"—1j, (15)

where f is the usual correlation factor and ddt
—= (r~/rP —1)/L(mp/m )'/' —1j. Using (12), there ap-
pears to be no universally convenient expression for
r /rP. Some forms, writing all m, =m„ the solvent

"Reference 6, Eq. (27).
"D, M. Rockmore and R. E. Turner, Physica 29, 873,(1963).

atom mass, are

gamp)" m ~ /'d )' '"
1+-

rP Em.) m. '~r kd~„)

mp ~ t'd;, sq '"
1+ Z

m, '~r Ed,„)
or, using P; P d;~'= 1,

ra -
(m ) —r/s

rp &m. )"

(16)

//m.

1+~
gamp )

1/2

~ (17)

—,'m, (m
—' —mp

—')dr, s

(mp/m )'/s —1
(19)

For the case' of Xa" and Na24 in Xa", direct sub-
stitution of the mass numbers in (19) gives

0.0435
hE= dr„s=dr„'=1 —Q d;„'.

0.0440

Mundy et uL 6nd that 6K=0.505+0.02 in Na. Using
(20), this AX suggests that the sum of the distances
that the surrounding atomsi must migrate to their new
equilibrium positions, P;» d;„, is approximately equal
to the distance that the tracer atom moves as it goes
to the adjacent site. In self-diffusion, the chief reason
the surrounding atoms must migrate with the tracer is
that the relaxation around the vacancy must move to
a new site as the vacancy goes to a new site. The
observed" activation volume is AV =hVy+hV =0.52.
Although we expect a proportional relation between
AVE and

N

1—Qd. s

jul

there is no reason why they should be equal.
Equation (20),

N

t) K= 1—Q d. '
i&i

should hold well for most self-diffusion cases and
Eq. (19) in impurity cases, provided 0.5(m, /m (1.5.
"N. H. Nachtrieb, J.A. Weil, E. CataIano, and A. W. Lawson,

J. Chem. Phys. 20, 1185 (1952).

Expression (1/) clearly shows the dependence of the
ratio r /rP on d; ' and the ratio m /m, . It is also con-
venient for isotope effects in self-diffusion, as the second
term in each square bracket is small so that both the
numerator and denominator may be expanded. This
gives

r-/rP=1+-', m (m
-'—m;r)d, s
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3N 3N—1

gn);= ill'" and g co~+=[(c A+ c) "']'/'.

LeClaire' has already clearly recognized the connec-
tion between relaxation and hE. It was necessary there,
however, to assume that the kinetic energy of each
atom in the "decomposition mode" was proportional
to the distance it must migrate to its new equilibrium
position. Ordinarily, as the equilibrium correlation func-
tion (xx)=0, no correlation between kinetic energy and
position in any real mode is expected. The connection
between ~ and relaxation is obtained more directly
here but is no different from that stated by LeCIarie. '
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To integrate

APPENDIX

k. exp( sp( C Qd—4" RsN (»)

(where $„—=$i) we break up the matrix C into parts

"Recently, C. P. Flynn (Phys. Rev. 171,691 (1968)7, using a
"dynamical" approach, has obtained an isotope eftect displaying
the same dependence on the ratio of the tracer to solvent atom
mass as noted here in Sec. III A. However, his result is expressed
in terms of fractional kinetic energies and is not directly related
to the displacements required of the surrounding atoms. Also, its
validity relies upon the harmonic approximation, whereas the
present result is independent of any potential approximation.

C. Comparison with Previous Treatments

The above differs from Vineyard's treatment in two
respects. First, Vineyard uses the coordinates y, =x;/
gm; and appears to de6ne the velocity in I asy rather
than i. Secondly, normal coordinates are used to do
the coordinate integrations and v™is expressed in terms
of frequencies. This has the advantage of getting the
mass terms out of the kinetic integrations, where they
originate, but introduces them into the con6guration
integrations in a way which is not easily analyzable
and in a way which changes when the tracer mass is
changed. LThe d;& here are defined solely in terms of
C (x) and are unaffected by mass changes. ]The present
s can be expressed in terms of frequenciesor;, which are
independent of mass, dined by

involving g„only:

i c.i=(gi.)l (22)

Using this definition directly, we have"

r„;i=C.,—C,„C„„-'C„„ (25)

where I'» ' is defined by F»1'» '=1.
Since r» is a single element (i.e., just a number)

(I'» ') '= r». Also, by definition of an inverse,

r„=lc.,l/lcl (26)

so that
F= C—'= (c m c)-'=c m—'c,

3N

I'„„=(c m-'c)„„=g(c;„)'m;—'.
ia

(2&)

Thus, using (25)—(27), I» becomes

)g~y (s/v —1)/2

Ix=l —
l l

C„„l-'»
0

&&expL —xp$„r„„-'f,jv),
(2~~ (»-'»s

lc l-»s(pr -i)-i

1 (g~) (sN+t)/2

l

—i/2 r i /sr i/2

2s P

1 (2~~ (s/v+'»s

2~& P )
-1/2 ~. a 2~.-1 1/2

and
l
c

l
'/'=g; m; '" since c is unitary.

"T.R. Koehler, Phys. Rev. 141, 282 (1966), Kqs. (6)-(9).

where g„ includes all components Ps& P„.
Integrating over all components except $s, we have's

(2s.~
(s/v —i) /s

l c„„l'/'
0

XexpL ——',Pg (C„—C „C„„C„)gjdg„. (23)

We now define a matrix F inverse to C such that
C I'=I' C=l; i.e.,

(24)
pc„, c,„y/r„r, „y pl oy

&C„, C„„)Er„, r„„i Eo I)


