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A theoretical investigation has been made of the temperature dependence of the mean-square displace-
ments and velocities of surface atoms at a (110) free surface of a face-centered cubic crystal. A nearest-
neighbor central-force model which provides a reasonable representation of nickel was used in the harmonic
approximation. It was found that the mean-square displacements and velocities are essentially linear
functions of temperature down to 200'K, or about one-half the bulk Debye temperature. Below 200'K,
quantum-mechanical sects appear. Particular attention was paid to the temperature dependence of the
anisotropy of the displacements and velocities associated with the (110) surface. Changes in the surface
force constants were taken into acount.

ble fit to MacRae's nickel data' can be obtained. ' It is
found that the high-temperature approximation is valid
to well below the bulk Debye temperature and that the
anisotropies of the mean-square displacements and ve-
locities at the surface are temperature-dependent at low
temperatures.

I. INTRODUCTION

''NFORMATION about the mean-square displace-
~ - ments and velocities of surface atoms of a crystal
can be obtained from low-energy electron diGraction
(LEED) studies and Mossbauer studies, respectively.
In a previous paper' we have calculated the mean-
square displacements of atoms on the (100), (110), and
(111) surfaces of a fcc crystal in the high-temperature
limit of the harmonic approximation and compared the
results with MacRae's' LEED data on nickel. The theo-
retical calculations may be expected to be valid for tem-
peratures well above the Debye temperature of the
crystal. MacRae's data, however, extend down to tem-
perature values quite close to the Debye temperature,
so there is a question of the applicability of theoretical
results based on the high-temperature approximation.

In the present paper we report a theoretical investi-
gation of the temperature dependence of the mean-
square displacements and velocities of surface atoms
over a temperature range from O'K to well above the
Debye temperature. The calculations are ma, de for a
(110) surface of a fcc crystal using a nearest-neighbor
central-force model in the harmonic approximation. The
force-constants coupling-surface atoms to their neigh-
bors have been permitted to deviate from the value for
the coupling of wholly interior atoms, so that a reasona-

II. THEORETICAL FORMULATION

We consider a fcc lattice with a pair of free surfaces
normal to the L110]direction and with cyclic boundary
conditions in the other two directions. We assume a
nearest-neighbor central force model in which the force
constants binding the surface atoms to their neighbors
may be diferent from that characterizing the inter-
actions of two interior a.toms. The nearest-neighbor
interactions of a surface atom for a (110) free surface
can be classified into three different types. The inter-
action of type 1 couples the surface atom to an atom in
an adjacent (110) plane, the line of centers of the two
atoms making an angle of 30' with the surface. The
type-2 interaction couples the surface atom with an
atom two layers awa, y and is normal to the surface. The
type-3 interaction couples two atoms in the surface
layer and is therefore parallel to the surface.

Associated with these interactions are three force
constants n&, n2, and na, respectively, which need not
be equal nor need they be equal to the force constant n
characterizing the bulk material. A figure illustrating
this situation is given in Ref. 3.

The equations of motion in the harmonic approxima-
tion have been given in detail in Ref. 3 and will not be
repeated here. The temperature dependence of the ith

~ Preliminary accounts of portions of this work were presented
at the March 1968 meeting of the American Physical Society and
at the Fourth International Materials Symposium held in
Berkeley, Calif. , June 19-21, 1968.

'B. C. Clark, R. Herman, and R. F. %allis, Phys. Rev. 139,
A860 (1965).' A. U. MacRae, in International Conference on the Physics and
Chemistry of Solid Surfaces, Brome University, &64 (North-
Holland Publishing Co., Amsterdam, 1964); Surface Sci. 2,
(1964).

522 ~R. F. Wallis, B. C. Clark, and R. Herman, Phys. Rev. 167,
652 (1968).
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components of the mean-square displacement and ve-
locity of an atom labeled l22222 is speci&ed by the follow-

ing expressions which are derived in the Appendix:

(Ni~~cs&= (A/22222N2) Q [D,(q2, q2, +)j—'I'
ql 2 q2

A[D, (q2, q2, +)g"'
&(coth

2kT

kT 22"

2222N2 m, 22 ~-2 (222)!

ph ~2"
XI l

[D.(q„q„+)j- . (6)
E2kr)

In Eqs. (5) and (6) the quantities Bs„are the 8ernoulli
numbers as tabulated by Adams. ' In the case of Eqs. (3)
and (4) we only need the high-temperature limit expres-
sion for Eq. (3) which is

(~~-"&= Z LD (q2, qs, +)j'"
2mplP qi, q2

h[D, (qr, q2, +)$12
Xcoth'

2kT
(2)

kT
(~i-"&= E [f.i'(q2 q2 P +)j'

mph' q1, q2, p

x[~.(q&, q2, p, +)] '. (7)

In Eqs. (1) and (2), 2222 is the atomic mass, N is the
number of atomic layers intercepting each edge of the
parallelepiped, T is the absolute temperature, q& and q2

are the components of the wave vector parallel to the
surface, D, (q&, q2, +) is the reduced dynamical matrix
dered in the Appendix, and the angular brackets
denote an average over a canonical ensemble. For all
sets of q&, q2 except (2rp.) and (22r, 22r), Eqs. (1) and (2)
were used in the calculations. For the sets (2rp.) and
(22r, 22r), which produce a zero eigenvalue of the reduced
dynamical matrix, it was necessary to utilize the follow-

ing alternative expressions, also derived in the Ap-
pendix, for the mean-square displacement and velocity
components:

(Ni &=(222oN') ' Z B.i'(qx, q2, p, +)3'
ql2 q22 P

ec(q4 qs& P& +)
X (3)

[&c(qry qsy Py +)j
&, .;&=( ~)-' 2 [~. '(q, q., p, +)j'

q12 q2c P

Xe.(qi, q2, p, +) (4)

Here, &oc(q2, q2, p, +) is the frequency of normal mode

P, ec (q&, q2, P, +) is the mean energy of the normal mode

p, and &c2;(qi, q2, p, +) is a component of the eigen-
vector of the reduced dynamical matrix.

In order to use Eqs. (1) and (2) in practical calcula-
tions, it is necessary to expand them in either the high-
temperature or the low-temperature regime. The high-
temperature expansions for the mean-square displace-
ment and velocity components are

kT
[D.(qi, q2, +)) '

mph' q1, q2

22' ( $ q2n

xp I!2-I
I

[D (q~ q2 +)j"
~-2 (2N)! (2kTj

At low temperatures the expansion of the hyperbolic
cotangent in Eqs. (1) and (2) leads to a series of expo-
nentials of matrices which are awkward for calculation.
The O'K terms, however, do not involve an exponential
and have the form given as follows:

(Ni .,2&= p ([D.(qi, q2, +)j '")i'.~', (ga)
2m'

(u( . &= P {[D.(q2, q2, +)J")i;,~'
22222N' ci, 22

The equations for T=O'K derived from Eqs. (3) and
(4) are given by

—, Z B.'(q, q, p +»'
2222SN2 ci, cc, n

x[-.(q„q„p, +»-, (9 )

(ur . &= E [(.~'(q2 qs p +)j'
2mpÃ2 q1, q2, y

X~.(q2, q2, p, +) (9b)

III. RESULTS FOR NICKEL

%e have carried out explicit calculations of the mean-
square displacement and velocity components at a (110)
surface using values of the force constants which give a
reasonable fit to MacRae's I-EED data for nickel, ''
namely, n&=-,'n, n2 ———,'n, and n&=n. The value of the
bulk force constant n was determined by fitting the
maximum frequency of the phonon dispersion curves'
and is equal to 3.79X:10' dyn/cm. It should be noted
that this value of n gives a very good 6t to the entire
set of phonon dispersion curves. '

The calculations were carried out for 6nite crystals
with one pair of free parallel surfaces and up to 20 atom

4K. P. Adams, Smithsonian 3IIathematica/ Formulas (Smith-
sonian Institution, Washington, D. C., 1947).

~ R. J. Birgeneau, J. Cordes, G. Dolling, and A. D. B. Woods,
Phys. Rev. 136, A1359 (1964).
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Fzo. 1. The mean-square displacement components in units of
10 "cm' plotted as a function of crystal thickness in atomic layers
for 2ng=2n2=ng =n. The solid curves are visual fits to the calcu-
lated points.

layers thick. Up to 20 terms were taken in the high-
temperature expansions, although 10 terms were found
to be sufFicient in all the cases reported. The converg-
ence of the series was quite good down to 90'K, about
~ the bulk Debye temperature of nickel. We have found
that at temperatures below 90 K, the inclusion of terms
between the 10th and 20th did not yield satisfactorily
convergent results.

The inverse matrices required in Eq. (5) were found
numerically using the Gauss elimination method which
yielded values of the diagonal elements accurate to six
significant figures. The square roots of the matrices re-
quired in Eq. (8) were found using the Newton-
Raphson method. For the sets of values of qi, q2 which
yield zero eigenvalues of the dynamical matrix, Eqs. (7)
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Fzo. 3.The ratios of the parallel mean-square displacement com-
ponents to the perpendicular component plotted as a function of
absolute temperature for 2ni=2n~ ——n3=n. The solid curves are
visual fits to the calculated points.
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and (9) were used with the eigenvalues and eigenvectors
calculated by the method of Jacobi. ' For all other sets
of q),q2, Eqs. (5), (6), and (8) were used.

Calculations were carried out to investigate the de-
pendence of the surface mean-square displacement com-
ponents on crystal thickness. The results for T=O'K
are shown in Fig. 1. Calculations were made for crystals
having the numbers of atomic layers as indicated by the
points shown. One notes for crystals twelve layers or
more in thickness, that the surface mean-square dis-
placement components remain essentially constant for
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FIG. 2. The mean-square displacement components in units of
10 " cm' plotted as a function of absolute temperature for
2n~=2n~=n~ ——n. The solid lines are visual fits to the high-tempera-
ture points,

Fn. 4. The mean-square velocity components in units of 10'
cm' sec ' plotted as a function of absolute temperature for
2ni= 2n2=—n3=n. The solid line is a visual fit to the high-tempera-
ture points.

6 J. H. Wilkinson, T/ze 3/gebraic Ejgenvalle Proble7jz (Clarendon
Press, Oxford, 1965).



180 D ISPLACEM E NTS OF SU RFACE ATOMS IN fcc CRYSTALS

O
~~ I.4

~ I.5
O
LJJ
& 1.2

g I. I

NICKEL, ( IIO) SURFACE, 20 LAYERS

I3 ([u (IIO)] )/([u(IIO)j )
OOI)] )/([U(IIO)] )

~+ I.O(~—

0.9—

0.8
0

I

200
I

400
I

600 800 f000

Fre. 5. The ratios of the parallel mean-square velocity compo-
nents to the perpendicular component plotted is a function of
absolute temperature for 2a&=2n2=n3=0, . The solid curves are
visual its to the calculated points.

each of the three directions. For the (110) free surface,
the perpendicular and two parallel directions are all
nonequivalent. For an atom well in the interior, how-
ever, the three directions are equivalent because of the
cubic symmetry. The results given in Fig. 1 clearly show
the anticipated anisotropy of the mean-square displace-
ments at the surface. The qualitative behavior shown
in Fig. 1 for the three components is also found at tem-
peratures up to the high-temperature limit. When each
of the surface force constants has the bulk value, it is
interesting to note that the (110)mean-square displace-
ment component increases with increasing crystal thick-
ness, unlike the situation discussed above for o,3=2o, i

=2o.e=o.. The qualitative behavior T=O'K presented
here is also found at high temperatures. '

The temperature dependence of the mean-square dis-
placement components for the case of 20 layers with
tx3 2QQ —2Q2 —Q is presented in Fig. 2. The points are
computed values and the straight lines have been drawn
through the high-temperature portions. One sees that
the high-temperature linear behavior persists down
below 200'K or ~~ the bulk Debye temperature,

400'K. This result justifies the use of the high-
temperature approximation in analyzing experimental
data at room temperature and above.

In order to exhibit the behavior of the anisotropy in
a clearer fashion we plot in Fig. 3, for the same case, the
ratios of the parallel mean-square displacement compo-
nents to the perpendicular component versus absolute
temperature. The anisotropy is essentially constant
down to temperatures of about 200'K and then de-
creases as the temperature decreases to O'K.

The temperature dependence of the mean-square
velocity components for the case of 20 layers with
o.3=2n~=2n2=o, is shown in Fig. 4. Above room tem-
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Fn. 6. The ratios of the parallel mean-square displacement
components to the perpendicular component plotted as a function
of absolute temperature for n1 ——e2=o.3=m. The solid curves are
visual fits to the calculated points.

perature all the mean-square velocity components, both
surface and bulk, have essentially the classical value
kT/m. Below room temperature the bulk value becomes
larger than the surface values, all of which are decreas-
ing less rapidly with temperature than the classical
values. Furthermore, an anisotropy of the surface mean-
square velocities appears at the lower temperatures.
This anisotropy is exhibited more clearly in Fig. 5
where the ratios of the two parallel mean-square ve-
locity components to the perpendicular component are
plotted versus absolute temperature. The ratio
([u(001)]')/([u(110)]') is almost constant with tem-
perature showing only a very slight decrease near O'K,
whereas the ratio ([u(110)]')/([u(110)]') rises very
rapidly below 200'K and reaches a value 50%%uo

larger than the former ratio at O'K.
In addition to the calculations for the surface force

constants chosen to give reasonably good agreement
with the LKKD experiments for nickd, ' we have per-
formed calculations with each of the surface force con-
stants equal to the bulk value n. The results for the tem-
perature dependence of the mean-square displacement
component ratios are shown in Fig. 6. Comparing
Figs. 3 and 6 one sees that the ratio ([N(001)]')/
([u(110)]') has nearly the same temperature depend-
ence in both cases. The qualitative behavior of the
temperature dependence for the ratio ([u(110)]')/
([u(110)]') is similar in the two cases, but the curve for
the unchanged force constant case is shifted to values
about 25% higher than those for the changed force
constant case.

The results for the temperature dependence of the
mean-square velocity component ratios are shown in
Fig. 7. As with the case of the changed force constants
the ratio ([u(001)]')/([u(110)]') is essentially unity at
all temperatures, and the ratio ([u(110)]')/([u(110)]')
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LEED measurements both at liquid-helium tempera-
ture and at higher temperatures. For mean-square ve-
locities the corresponding experimental measurement
would be that of second-order Doppler shifts of the
Mossbauer effect.

Anharmonic effects have been completely neglected
in the present paper. At temperatures well above the
Debye temperature, one would expect anharmonic
effects to become appreciable. Such effects would tend
to increase the mean square displacements and decrease
the mean square velocities, particularly at the surface.
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shows a rapid increase for temperatures below 200'K.
The magnitude of the latter ratio, however, is signifi-
cantly less at the lower temperatures than for the case
of changed force constants.

IV. DISCUSSION

The results obtained in this paper indicate that the
high-temperature approximation for the mean-square
displacements can be applied for temperatures down to
about —,

' the bulk Debye temperature of nickel. For
surface atoms this approximation is quite good some-
what below the surface Debye temperatures determined
by MacRae in Ref. 2, namely, 220'K for the L110) and
L001) directions and 310'K for the t 110) direction.

It should be emphasized that we find the anisotropy
of the mean-square displacements and velocities at a
(110) free surface to be a consequence of the funda-
mental lack of symmetry at such a surface, and not to
be intrinsically dependent upon changes in the surface
force constants from their bulk value. Thus, all of the
qualitative anisotropies are exhibited by our results for
the case of unchanged surface force constants. How-
ever, the changes in the surface force constants do pro-
duce a significant effect on the magnitude of certain of
the mean-square displacement and velocity ratios.

At all temperatures, the mean-square displacements
and velocities reach very nearly their bulk values. within
five atomic layers of the surface. For the cases con-
sidered, the ratios of surface-to-bulk mean-square dis-
placements are higher at high temperatures than at
O'K. The surface-to-bulk mean-square velocity ratios
are significantly less than unity at O'K. and approach
unity at high temperatures.

The changes in anisotropy at zero degrees compared
to high temperatures appear to be sufficiently large to
be experimentally observable. For mean-square dis-
placements this could be accomplished by carrying out

It is a pleasure to acknowledge helpful discussions
with Michael Marcotty, General Motors Research
Laboratories, on certain aspects of the numerical
calculations.

APPENDIX

Let N~ „;be the ith Cartesia~ component of displace-
ment of an atom at the lattice site specified' by the
integers l, m, and e. The crystal is taken to have the
form of a rectangular parallelepiped with N atomic
layers intercepting each of the three principal edges.
The two free (110) surfaces correspond to 1,=0 and
/=N —i. From the symmetry of the equations of
motion' one is led to introduce the transformation

Slmai(&) = 2V2 (Nimai+NK-1 —i,m, a, i) 1 (A1)

ui, (a)=(mplP) "' Q P T.(qg, q2)
0'=&i& Qlu Q2)9

&&1.i'(q~, q2, p, ~)~.(q~, q2, p, ~), (A2)
where

(A3a)

(A3b)

2 (ql, qp) = cos(7Ãql+sq2)

T, (q~, q2) = sin(mq~+nq2)

and the A, (q~, q2, p, &) are the normal coordinates for
mode p. The quantities $,&;(qb q2, p, &), briefly, $;(&),
are the components of the orthonormal eigenvectors of
the dynamical matrix and can be grouped into the
following sets of interacting variables: LP, ~(+),
$.. (—), $.,.(—)), L4, (+) f.. (—) h. (—)), L5.. (—),
&, , (+), &., (+)), -d L&., (—), &.,.(+), S., (+)).
These sets each contain ~N components and can be de-
noted by column vectors 4u(q&, q2, p, +),%,(q&, q, , p, +),
+, (q&, q2, p, —), and 4', (q&, q2, p, —), respectively,
which satisfy the equations

'(q q p, ~)+(q q, p, ~)
=D, (q„q,, &)@u(q„q2, p, &), (A4a)

i.'(q~ qp p, ~)+.(q~ q2 p ~)
=D (q~ qa ~)+ (q~ q2 p ~) (A4b)

where now l is restricted to the range u&l& (-,'E)—1,
and N is taken to be an even integer.

Introducing the wave-vector components q~ and q2

corresponding to cyclic boundary conditions in the y
and 2' directions, we write the transformation to normal
coordinates in the form
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where D.(q&, q2, +), D, (q&, q2, +) are reduced dynami-
cal matrices, and co, (qt, qs, p, &), co, (qt, qs, p, +) are
the normal mode frequencies.

It will be seen below that only D, (q&, q&, &) is needed;
explicit expressions for the model under consideration
are given in the Appendix of Ref. 3.

From Eq. (A1) and the use of symmetry, one can
write for the mean-square displacement components

( -")=l((l: -'(+)1'&+&i -'(—)j')), (AS)

From the forms of the reduced dynamical matrices it is
clear that

D, (~+qI, s.+q2, +)=D, (m
—

q&, m —qs, a). (A11)

Using Eq. (A11) and the properties of the trigonometric
functions we obtain

k
&LN~-'(+)js)=, E LD.(qt, qs, ~)j "'

25$pg ql y qm

where the angular brackets denote an average over a
canonical ensemble. For &LN~ „;(&)j') we can write

~LD (qt, q, ~)j'"
Xcoth

2kT
(A12)

(E -'(+)j')=( o&') ' Z 2 P'.(q,q)j' For all cases of interest, one Gnds that the contributions
of + and —in Eq. (A12) are equal; hence, using

Xt k.l'(ql q2 P ~)j'&P.(qx, qs, P, ~)]'), (A6) Eq. (AS), we get

where we have used Eq. (A2) and the relation

&A. (q&, q, , p, ~)A, (q, ', q, ', p', ~))
= &(A.(qr, qs, p, +)js)8„,„8„,„'b„,„'8.... (A&)

In terms of the mean energy e (q&, q&, p, &) we have

~D.(q., q, +)j "'
2mpg

I'ED. (q~, q2, +)j'"
Xcoth'

2kT
(A13)

&L~ (q~ qs p, +)3')="(qr qs p, ~)l
E~.(qr qs p ~)7

where
e= (hem j2) coth(ko/2kT),

Again using the theorem of matrices referred to above,
we transform Eq. (A13) to the form

(A9) &"~~»') =(~~') ' + L&«'(qt~ qs~ pi +)j'
and the indices have been dropped from e and co in
Eq. (A9). Utilizing Eq. (A8) and a theorem of matricesr
we can carry out the sum over p in Eq. (A6) to yield

&L~~-'(~)j'&= Z 2 LT'. (qt, q2) j'
2m' tr q1, qs

AjD, (qt, qs, a)j"'
X CD. (qt, qs, a)j-icoth

2kT Zi, ls

(A10)
r M. Born, Rept. Progr. Phys. 9, 294 (1942).

"(qt, q2, p, +)
X (A14)

E~.(q~, qs, p, +)j'
For the mean-square velocity components, the essen-

tial point to note is that the time derivative of the
normal coordinate A is proportional to the correspond-
ing normal mode frequency times A. The expression for
the mean square velocity component analogous to
Eq. (A6) then contains an. extra factor of the normal
mode frequency squared. The remainder of the deriva-
tion follows the lines already indicated.


