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Theory of the g Shift of Conduction Electrons
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A simple derivation of the conduction-electron g factor in a crystal having inversion symmetry is pre-
sented. The result obtained for the g shift is unambiguous for each state (of wave vector k), and reduces
to the correct isolated-atom g shift in the tight-binding limit. Previous work has failed to satisfy these
requirements. Two formulas suitable for computation of gg(k) are derived.

I. INTRODUCTION AND CONCLUSION
' N a crystal having inversion symmetry, the (nomi-
c ~ nally) spin-up and spin-down Bloch states for each
wave vector k are degenerate, ' even though spin-orbit
coupling does not allow energy levels that are eigen-
functions of spin. A magnetic Geld splits this degeneracy
by an energy g/site. (tin—=Bohr magneton. ) A shift
bg(k) of the g factor from its free-electron value arises
from spin-orbit interaction with the periodic potential
of the crystal. The theory of this shift was developed by
Yafet, ' Roth, ' and Blount, 4 and has been applied to
several semiconductors and to the alkali metals. ' A re-
view of this work was completed by Yafet. '

The theoretical treatments of bg(k) suffer from three
deficiencies: The derivations seem (to us) extremely
complicated. Secondly, the final expression for bg(k) is
ambiguous, since it depends on the relative phase (as
a function of k) with which Bloch functions are defined.
Finally, bg does not reduce to the correct isolated-atom

g shift in the tight-binding limit.
The k dependence of g(k) can cause broadening of a

conduction-electron spin resonance. Usually the reso-
nance width is less than that caused by the spread in

g(k) because an electron scatters through many k states
at the Fermi surface during a spin-lattice relaxation
time. The observed g is then a time-averaged value,
equal to the density-of-states average of g(k) over the
Fermi surface. It has been shown that the cyclotron
orbit average of g(k) is phase-invariant, even if g(k)
itself is ont Trhis s. uggests the inference that g(k) is
not physically signiGcant, and therefore need not be
phase-invariant. We disagree. Conduction-electron spin
resonance can be observed even if the electron mean
free path is smaller than a cyclotron orbit size. A
motionally narrowed linewidth contribution would then
be 1/Ts= (boo)'r„where in this case bee is proportional
to the spread in g(k), and r, is the electron-scattering
time. Consequently, the g factors of speciGc Bloch states
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are physically relevant; and a correct theoretical treat-
ment must yield a g(k) that is phase invariant.

In the derivation that follows an additional term
appears in the expression for Sg(k) which renders it
phase-invariant. We are able to show that the Fermi-
surface average of this extra term is zero; thus calcula-
tions of the average g based on previous expressions for
g(k) need not be revised on this account. Insofar as this
last result might not have been foreseen, the demon-
stration given here is essential.

The failure of prior theory to reduce to the correct
isolated-atom g shift was noted recently. ' A relativistic
contribution to bg,

(bg)"= —(rrtsc') ' iPtP+dsr,

previously omitted, was shown to be the remedy. This
term is comparatively small in all metals except lithium.
In this case, however, it accounts for approximately
two thirds of the observed g shift.

The simplicity of the derivation presented below
depends on the fact that the splitting gp~B is linear in
B.Accordingly, Grst-order perturbation theory suQices.
We need merely evaluate the difference in expectation
value of the perturbation for (unperturbed) spin-up and
spin-down wave packets. ' Interband and intraband
mixing, caused by the magnetic Geld H, contribute only
in higher order and can be ignored. Only two critical
questions arise during the derivation: the relationship
between the spin-up and spin-down wave packets
(Sec. II), and the correct choice of gauge associated
with the magnetic field (Sec. III). The theory is valid
to all orders in spin-orbit coupling.

II. WAVE FUNCTIONS IN THE BLOCH
REPRESENTATION

The Hamiltonian of an electron in a potential energy
field V(r) is

Kp= p /2rrt+ V(r)+ (It/4rtt'c')(e)& (V'V) 1 p. (2)

The last term is the spin-orbit coupling energy. (o,}
9 A. %. Overhauser and A. M. de Graaf, Phys. Rev. Letters 22,

127 (1969).' We assume throughout this paper that we are calculating
g(k) for a Bloch state k that is not degenerate (except for spin).
Extensions of the theory to encompass added degeneracy would
follow well-known procedures, e.g., Sec. 7 of Ref. 6.
70i
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are the Pauli matrices. The spatial periodicity of V(r)
allows the eigenfunctions of Kp to have the Bloch form

An up-spin wave packet in the band Eo(k) has a
wave function, say,

v „~,=e'"'u„~, (r), (3) ft(k) = [f(k) 0 0 0 . ]. (12)

where u ~, (r) is periodic in r and is a two-component
spinor. m is the band index and s the spin direction,
1' or J,. We will define

(4)

This equation also specifies the relative phases of up-
and down-spin Bloch functions.

Mathematical de.culties arise when dealing with
the coordinate operator r together with wave functions
that are not square-integrable over infinite space. To
avoid these problems, we use the Bloch representation. "
If a general wave function f is

P(r) =P d'k f„,(k)e'~'u„„(r), (7)

in the coordinate representation, then 1k is

p~q(r) is the large component and X„q(r) the small,
which in the absence of spin-orbit coupling would be
zero. Throughout this paper, k is just a wave-vector
label (a c number, not an operator).

The spin-down counterpart of (4) can be obtained by
applying the operator' C to (4), where

C—=—io-yEp J.
Ep denotes complex conjugation and J is the inversion
operator (r~ —r). The center of inversion of the
crystalline unit cell must be taken to be r=0. Accord-
ingly, we have

(6)

We will assume f(k) to be nonzero only in a small
(k-space) neighborhood of ks, the point where we wish
to compute g(k). The corresponding down-spin wave
packet is not obtained merely by interchanging the two
top entries of the column vector (12).The reason is that
spin is Ripped by a physical interaction involving, say,
the operator K„ the interaction of an electron with an
x-directed magnetic field. The matrix element of 3C,„
(the periodic part of X,) will have an amplitude M and
phase e' &") defined by

3A ( )= PPkg 3C PPktd r (13)

Ke assume, of course, that +pl, t and ppkg ale the spin-
eigenstates associated with a s-directed magnetic
field, i.e.,

ypkgt3. ,&ypggd3t' =0. (14)

Each k component of a spin-down packet pi (k)
generated from Pt(k) by the action of K„will be
created with the relative phase t.' (~&. Consequently the
appropriate down-spin wave packet is the co/nmm vector,

1t & (k) = LO f(k)e' i"i 0 0 3. (15)

This conclusion, together with the evaluation of (13),
is discussed at length in Appendix C. Equations (12)
and (15) are the two wave functions whose energy
difference in a magnetic field will give the g factor
directly.

It will be of interest to know the difference BS
between the centers of mass Si and Si of (12) and (15).
The x component of Si is, for example,

in the Bloch representation. f(k) is an (infinite) column
vector. In this representation the x component of r, for
example, is"

Si,= d'knit(k)&t (k) . (16)

x=iIB/Bk, +X„,„., (k),

where I is an (infinite) unit matrix, and

(9) By employing (9) and the assumed localization of P in
k space, we obtain

X„,„,(k) —=i d'ru„g, t (r) BLu„,„,.(r) ]/Bk. . (10)

The Hamiltonian (2) is, of course, a diagonal matrix in
this representation. The diagonal elements

are just the energy bands, and are independent of s.
» This is sometimes called the crystal momentum representa-

tion; e.g., E. N. Adams, II, J. Chem. Phys. 21, 2013 (1953).
'2A. H. %ilson, The T1seory of Metals {Cambridge University

Press, London, 1953),&2nd ed., p. 48, Eq. (2.82.3).

65:(Si—Si) =Xsist (k) —Xoioi (k)
+Bn(k)/Bk (1.7).

It follows from (4), (6), (10), and the normalization
integral of (4), that the first and second terms of (17)
are equal but opposite in sign. Accordingly, each
component of DS is similar to

AS,=2(Xptpt+ ,'Bn/Bk, ). - (18)

This shift in c.m. (during a spin flip from $ to t') would
not occur in the absence of spin-orbit coupling. hS is
independent of the relative pha. se (as a function of k)
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with which Hloch functions are defined, even though
the two terms in (18) individually are not. This is
proved in Appendix A.

packet. This is just the Jones and Zener gauge"

A= )HX (r v—gt),

q = (1/2c)(HXva) r. (23)

III. ENERGY SPLITTING IN A
MAGNETIC FIELD

The energy splitting gp&H between the two opposite-
spin wave packets (12) and (15) will define g(k), except
for the small additive correction (hg)" given by Eq. (1).
However, extreme care must be exercised in the choice
of gauge describing H. The reason is that the physical
significance of a wave function depends on the par-
ticular vector potential A(r) that is used. Consider the
velocity operator v. In the absence of spin-orbit
coupling, it is just p/m. With spin-orbit coupling (and
no magnetic field) it is

v= oo/m=p/m+ (h/4m'c')eX (V V) .

This is just the commutator (rXO —3'.Or)/i7i. The
customary notation Oo=(or*ad. &p.s) is introduced for
later convenience. In a magnetic field, y is replaced by
p+ (e/c)A in (2), so the velocity operator becomes

v= oo/m+ (e/mc) A(r) . (2o)

The second term arises from the commutator of r with
A p.

Consider again the wave packet (12). If we include
its time dependence, the nonzero component is

f(k)~ sl"s (k) siO—

The group velocity vg of this packet is

Vg = V isEO (k)/Ii (22)

and is independent of time. When we turn on a mag-
netic field, we want our (approximate) wave function
to retain this physical property. Otherwise the question
we hope to answer by perturbation theory would not be
relevant to the physically characterized electron we had
in mind. " The velocity (22) will continue to be the
expectation value of the oo/m term of (20). Conse-

quently, we must demand that the A term of (20) have
zero expectation value for the wave function (21).
This means that we must pick a gauge such that the
null point of A(r) travels with the center of the wave

"This need for caution may seem unusual at first sight. But it
is demonstrated by the following simple example: Consider the
eBect of a small perturbation on the Bloch function yi„having
E=E0(k), and suppose the perturbation is just the vector poten-
tial A=@, a constant vector. This will cause corrections to the
wave function and energy to all orders. One can show that the
latter will converge to E=E0(k+ex/kc}. But curl A=O; so the
perturbation represents no physical efFect at all. Therefore, the
gauge A=@, describing zero magnetic field, has caused the func-
tion pp to represent in zeroth order the ordinary electronic state
pQ+gg/$g The fact that only a restricted class of gauges can
suitably be associated with a given zeroth-order wave function
does not mean the theory is not gauge-invariant. One can always
transform to'arbitrary gauge provided one transforms the (zeroth-
order) wave function also.

The scalar potential y is required so that the electric
field V—q c—'8A/Bt is zero. We have assumed, with-
out loss of generality, that f(k) is chosen so that the
c.m. Sq=0 at 1=0.

The Hamiltonian K with the 6eld on is explicitly
time-dependent. If we choose 8 in the s direction, then"
for t=o

X=aeO+I. II0ey(r' )—+ (eEI/2mc) (xm" y~*)—
+e'A'/2mc'. (24)

The second term is the interaction of II with the free-
electron intrinsic moment p, . The third is the scalar
potential term from (23). The fourth and fifth terms
are derived from (2) after substitution of p+eA/c for

p, and use of (19). We may neglect the fifth term be-

cause it is proportional to H'.
The energy diff erence associated with Lbg (k)

—(8g)"fiiiiH is the difference in expectation values of
the third and fourth terms of (24) for fi, Eq. (12), and

P&, Eq. (15). Employing (9) and its y counterpart, we

obtain

~c(k) = (ha) "+(~a)"'

+2& ' 2 (&oi„.~„.oi' —I'Oi .~..oi')
8, n&p

+4& 'f(XOioi+2&0i/~&*)~oioi"

—(&oioi+Oi Dos/8&„)~oi oi'], (25)

where (8g)'"—= (2ii /p&)L(0';)Otot —1). Half of the last
term comes from the scalar potential. To obtain the
form shown, we have made use of the relation

m+g=~otpt=~o4ok
&

(26)

Otns7insOt Q +OinsOrnsOi s (27)

and its Fm
' counterpart. These may be derived from the

definitions (4) and (6), and from interband orthogo-
nality relations.

The contributions to (25) have simple physicaJ.
interpretations. The first term, (8g)", is the relativistic
effect, o Eq. (1). The second, (5g)"', corresponds to the
average tilt of the intrinsic electron moment. The third

'4 H. Jones and C. Zener, Proc. Roy. Soc. (London) AI44, 101
(1934); see also Ref. 12, p. 51. It is sometimes forgotten that the
equation dk/dt = (—e/kc)vgXH, for the motion of Bloch electrons
in a magnetic field, is valid only in a Jones and Zener gauge.

"No loss in generality results from selecting t=O. Identical
results are obtained by taking expectation values of 3C(t} with
time-dependent wave packets, e.g., (21).

a,s well as, Xptpt= —XpJ, pJ, , employed previously in
deriving Eq. (18). In order to obtain the term involving
the summation, one must employ
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is the g shift associated with the intrinsic orbital
magnetic moment of a wave packet, " ((r—St)Xtttv),
St being the c.m. of the packet. The fourth arises from
the c.m. shift AS of the wave packet during spin flip.
With the help of (18), this term is just 25 '(hSX mvg), .
Half of this represents an additional magnetic moment
associated with the displacernent of St from the mean
position p(St+St). The other half arises from the
energy of the displaced electric charge in the scalar
potential p.

The physical interpretation of the AS term depends
on the choice of gauge. In Appendix 3 we show that if
a gauge is chosen such that the null point of A(r) is
forced to remain precisely at the c.m. of the wave
packet at all times, even as the spin is Qipped from
J. to 1', then the Lorentz-force contribution of d(DS)/dt
causes an increment hk in the wave vector. This pro-
duces a shift in band energy from Ep(k) to Ep(k+6k),
a change which is just the energy difference associated
with the last term of Eq. (25).

Prior theoretical work had failed to obtain the u(k)
contributions to Bg(k). They are necessary in order that
Bg(k) be phase-invariant, and therefore physically
meaningful. In Appendix A we show that (a) the last
term of (25) is phase-invariant, (b) the cyclotron orbit
average of the u(k) terms alone are phase-invariant,
and (c) the latter averages are identically zero.

/ BV BV)
(Bg)'=(2tttc') '

I
x +y Iqtqd'r

tt E BS By]
(31)

This contribution arises from the uX (VV) term of pt,

Eq. (19).The second and third terms of (30) are zero
because the diagonal elements of X and I"are zero, and
V'&0. =0. Consequently,

Bg= (Bg)'+ (Bg)". (32)

In the tight-binding limit (bg)"= —3(Bg)'.0 Since (bg)'
is positive, bg is negative. It was shown in a previous
paper' that Eq. (32) is the correct free-atom g shift. 't

It is sometimes useful to convert as much of (25) as
possible into surface integrals over the cellular poly-
hedron. ' The algebraic steps needed to accomplish this
have already been indicated, ' so we omit the derivation
here. The Anal result is

The m=0 terms needed to complete the sum over e, so
closure could be used, were obtained from the last term
of (25).

It is of interest to evaluate Eq. (30) in the tight-
binding limit. For the case of an S band, the periodic
part of the Bioch function in a unit cell 0 is LEq. (4)j
uk(r) = pos(r)e '"'", Xk(r) =0 (in the limit of large lattice
constant). pos(r) is a free-atom S-state wave function.
The first term of (30) reduces to

ppnspt —~kBn, pcs, t+ umks tpuoktd r
q (28)

IV. CALCULABLE FORMS FOR THE g SHIFT

Equation (25) is not suitable for numerical calcula-
tion of Bg(k) on account of the infinite sum required by
the second term. In this section, we present two alter-
native expressions for the g shift. They depend only on
wave functions in the energy band of interest. From the
definition of pp LEq. (19))

2 (Bu) (Bu
+(&g)'"+

I I
otot" —

I
otot'

EBk,J EBk„

pottr"I ge'"'- I+(tr"po)tI xe' '
I

dS
Bk„) 4 Bk„)

(Buokt (r) t)
Xpt„,= —i

I

— Iu.k, (r)d'r
Bk, )

" ' (29)

With the help of (28), (29), and the completeness of
{u„k,(r)},we 6nd that (25) can be written

where B„,p and h, , t are Kronecker B's. From (10) and
the orthogonality relations of {u„k,} we have, for
example,

+

~Ot Ot

2A (BE0/Bk,)

&Of Ot

2&(B&0/Bk„)

(-—+I-
Bk, Bk E Bk,) Bk,

-Bqot Bto t Bq )t Bqt
tr"—+I tr"

I
dS. (33)

Bkp Bkp E Bkp) Bkp

Bu)—
to tr"I yeik r I+, (tripp)t ye'k r

I
dS

Bk.) Bk.f

2
Bg(k) =-

iA

Buokt ) t'Buokt—I~ u„t —
I

—~*uokt d'r
Bk, ) k Bkp

x" is the component of ~ in the direction of the outward
normal of the surface element dS (of the cellular poly-
hedron). The subscripts Okt' have been omitted from
all g's and I's.

( Bu1 f' B
+—

I Xotot+ Itrotot" —
I Votot+ Itrotot'

tie 4 Bk / E Bkj

+2(Xototk Vototk )+(&g)"+(&g)"'. (30)

' C. Herring, Ref. 6, Appendix B.

ACKNOWLEDGMENT

It is a pleasure to thank A. D. Brailsford for helpful
comments on the presentation of this material.

'7 The only prior discussion of this point is Ref. 2, p. 683, where
it is alleged that (bg)' alone is the correct free-atom g shift.



180 g SHIFT OF COND UCTION ELECTRONS 705

sto (k)poea =&' pox~ & (A1)

APPENDIX A: PROPERTIES OF e(k)

The phase invariance of DS is established from the
definitions of the two terms appearing in (18). Suppose
we replace our original set of 8loch functions (rppq, )
by the set

c.rn. shift AS=—St—Si. It is of interest to reinterpret
the energy difference associated with this shift by
considering a gauge A(r, t), q (r, t) that has its null point
always at the c.m. of the wave packet, even as the spin
is being Qipped. There will be an additional contribution
to dk/dt, from the Jones-Zener equation, '4 caused by
the extra velocity d(DS)/dt. Accordingly,

where w(k) is any real, continuous function of k. It
follows from Eq. (10) that

Xptpt'=Xpt pt —Bw/cjk, .

' —e(d(AS))—~XHdt,
p Ac 4 dt ) (81)

Consequently, the diagonal elements of X are phase-
dependent. Now, from Eqs. (13) and (A1),

where 7 is the time during which the spin is Qipped
from $ to t, i.e., DS= Jp' d(DS). It follows that

Therefore,

ps'' (&) —gs~ (&)+2stt (&)

et+'/Bk, = Bn/Bk, +28m/N, .

(A3)

(A4)

ok= (—e/bc)aSX H. (32)

The energy difference AEp associated with hk is just
Ep(k+ 6k) —Ep (k),

AEp VgEp'Ak= —kvg 5k.
Eqs. (A2) and (A4) imply the invariance of DS,
Eq. (18).

%e also wish to prove that the cyclotron orbit average
of the n terms in (25) are phase invariant. If we define
a two-dimensional vector F

P,= Ba/—Bk„, &„=Bn/Bk. ,

and use (26), we must show that the cyclotron orbit
average of F,vo, +F„v0„ is phase-invariant. The
cyclotron orbit average is not the integral with respect
to Jl around the orbit, but the integral with respect to
dl/(vg '+vg„')"'. The reason is that the line element
dl (in k space) must receive a weight proportional to
the amount of time an orbiting electron spends in that
line element. Consequently, from the Jones-Zener
equation'4 for dk/dt, we must divide dl by the magnitude
of vt. in the xy plane. Accordingly, the appropriate
average is

F.ndl = divFdk dky, (A6)

APPENDIX B: ck8 CONTRIBUTIONS TO Sg(k)

In Sec. III, Bg(k) was derived by calculating the
energy difference between ft and Pq with the Hamil-
tonian (24). The last term of Eq. (25) arose from the

where n is the unit vector (nc„pg„)/(pg, '+pc„')'I'
Gauss' theorem applies since, from Eq. (22), n is
perpendicular to the orbit. But divF—=0, from (AS).
Therefore, the cyclotron orbit average of the n terms in

Eq. (25) is not only phase-invariant, but identically
zero.

The density-of-states average over the Fermi surface
of the n terms is also zero. This follows as a corollary
of the foregoing result, since the operator J'dS/~vg~
over Fermi-surface area elements dS is equivalent to
the operator fdk,fdl/(pc '+ig ')'I'

On combining (82) and (83), we obtain

AEp ——(e/c) (DS&&vg) H. (34)

This equals the energy difference that led to the last
term of Eq. (25). In this gauge it is a change in band
energy, whereas in the former gauge it was a change in
(vector and scalar) potential energy.

K,=p, ,o,+ (e/2mc)c y(pp+mvg), —s(pp+mvg)„g. (C1)

In the Bloch representation the coordinates y and s are
operators analogous to (9). Since pppgpt=0, the iIB/Bk
terms of (C1) cannot fhp spin. (They affect only the
cyclotron motion of the wave packet. ) The remaining
terms are

%~@=PRO~

+ (e/2mc) LF (pp+mvg), —Z(pp+mvg) „g, (C2)

where F(k) and Z(k) are matrices like X in (9). The
operator K „has the periodicity of the crystal. Con-
sequently, the envelope function f'(k) for Pi will
satisfy I

f'(k) (
=

~
f(k) (. (Each wave-vector component

is conserved. ) There are, however, an infinite variety of
wave packets satisfying this relation. For example, if
we wish to translate a given wave packet a distance R,
we merely multiply its envelope function by the phase

APPENDIX C' PHASE RELATIONS
BETWEEN Qt AND it, i

In Sec. II, we chose an arbitrary envelope function
f(k) for P&, subject only to the requirement that it be
nonzero in a small k-space neighborhood. In order to
determine the appropriate envelope function f'(k) for
P&, we must examine the perturbation pK„caused by
a small x-directed magnetic Geld of magnitude e, which
can fhp a spin from t' to 1,. As in Sec. III, we must
employ a Jones-Zener gauge (23). Accordingly, if the
&2 term is neglected,
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function e *" . Since the Hamiltonian (with H&0)
has an x-dependent vector potential, the energy of a
wave packet depends on its location. Clearly, the phase
variation of f'(k) is critical. We must choose for fg the
envelope function obtained from Pt by an operation
that corresponds to spin rotation in a real experiment,
e.g., X „.

An intuitive way to correctly specify f& (k), Eq. (15),
is to recall the time-dependent Schrodinger equation
i7ia =Q„BC' a„e'"""', for a perturbation K'. The
phase with which an amplitude a develops includes
multiplicatively the phase factor of the matrix element
fR'6 ~

Bate' =p, Nogg~o Noqtd f

ie

28$C

ie

2mc

f l9Qpgi
(isk, + rlsg, +~,)gpstd'r

r)k„

~NOl t—(Ak„+mug„+or„)upgtd'r. (C3)
Bk,

Evaluation of the phase rr(k), defined by Eq. (13),
requires several steps similar to those used in obtaining
(30) from (25). The object is to obtain an expression
for 0. involving only the Bloch functions pol„. We find
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Quantum Oscillations in the Peltier Effect of Zinc*t'

H. J. TRODAHLf AND P. J. BLATT
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(Received 15 November 1968)

Peltier measurements have been employed to study quantum oscillations in the thermoelectric power of
zinc single crystals. The three lowest frequencies, due to the o., p, and p orbits, were observed at temperatures
ranging from 1.2 to 4.5'K and in fields to 22 kG. The amplitudes found were between 0.01 and 1pV/K'.
An attempt has been made to correlate these measurements with an expression derived by Horton. As his
calculation is valid only for the case of a free-electron sphere, his results have been heuristically extended to
include metals with complex Fermi surfaces. The theory and measurements agree onlyin the form of the
temperature dependence; neither the absolute amplitudes nor the field dependence is correctly predicted by
the theory. It is suggested that the disagreement may arise from the assumption of independent bands in the
extension of Horton s single-band calculation. In particular, the oscillating density of states gives rise to a
strongly energy-dependent relaxation time, which may significantly affect the thermoelectric power. An
approximate calculation of the oscillation amplitude to be expected from this mechanism is presented.
Although the agreement with the data is again not perfect, there are some qualitative indications that favor
this model. Experiments in a longitudinal configuration should shed further light on the problem, and such
experiments are now in progress.

I. IHTRODUGTIOH

I~QUANTUM oscillations in zinc were 6rst observed~ by Marcus in the diamagnetic susceptibility'
Lde Haas —van Alphen (dHvA) effectj. Subsequent
work has revealed the Fermi surface of zinc in great
detail2 —' and contributed substantially to our present
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understanding of quantum oscillations in general and
magnetic breakdown in particular. In view of this
extensive and intensive study one may well question the
value of yet further measurements of quantum oscilla-
tions in this particular metal.

Whereas the theory of the dHvA effect is now firmly
established and understood, the theory of quantum
oscillations of the transport coefficients is still in a very
imperfect state. The principal difference between these
two is that the susceptibility is an equilibrium property
of the electron gas and can therefore be deduced from
the free energy, while transport properties cannot, of
course, be treated correctly from a thermodynamic
approach; indeed, a satisfactory quantum theory of
transport which leads to explicit results in a form
permitting comparison with experiment is not as yet at
hand. It is of interest, therefore, to study transport
phenomena in some detail, with particular attention to
their temperature and Geld dependences, so that the
successes as well as the limitations of existing theories


