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A model for the interatomic potential bebyeen alkali ions and rare-gas atoms accounting
for repulsive and attractive exchange forces has been calculated. The attractive exchange
contribution is estimated using Mulliken's charge-transfer theory. The repulsive potential
is calculated using Firsov's theory of interacting Thomas-Fermi-Dirac atoms. Two models,
p(R) =A/Re-8/R -C/R (12-4-6 model), and p(R) =A/Re-8/R —C/R +DE (exchange
model), were used to calculate the interatomic potential for all the alkali-ion-rare-gas-
atom combinations. A comparison shows that the charge-exchange contribution-

ECT [2$/(1+S)) (E +) /(I +E/R +C/R -E ),A 8 A+'

where E~+ is the electron affinity of the ion, I& is the ionization potential of the atom, B
and C are the coefficients of the polarization interaction terms, and S is the two-center
overlap integral between the outer orbitals, enhances the long-range attraction and in-
creases the well depth by about a factor of 5 over the 12-4»6 model. The predictions of the
classical rainbow scattering angle for the Cs+/Ar case are compared for the two
models. The difference in the two calculated rainbow angles strongly suggests that
low-energy elastic-scattering angular distributions would be a valid test of the
assumptions used in the charge-exchange model.

INTRODUCTION

A detailed knowledge of atomic- collision phe-
nomena is essential to several areas of current
scientific endeavor, for example, the many-body
problem of plasma physics, stellar structure,
upper atmospheric phenomena, molecular struc-
ture, and molecular biology. The details of col-
lisional phenomena are embedded in the potential
energy of interaction and become calculationally
manifest by the application of an appropriate scat-
tering theory.

In this paper we develop a model for the inter-
action potential between an ion and an atom which
includes an estimate of attractive and repulsive
charge-exchange forces. The rainbow scattering
phenomenon is calculated for this model and com-
pared to the more conventional 12-4-6 model. '

I. THE PHYSICAL FORCES IN ION-ATOM SYSTEMS

derivable from classical electrodynamics, ' are
applicable to atomic interactions provided account
is taken of the quantum nature of the atom. It is
in accounting for the quantum properties that un-
certainty is introduced into the classical expres-
sions, nevertheless, they are usually adequate for
a first approximation. Of the many electrostatic
interactions that compose the total interaction only
a few are sufficiently large to merit inclusion in
an approximate expression for the potential energy
of interaction. The important interactions be-
tween an ion and an atom are conveniently ex-
pressed in terms of the potential energy of inter-
action; they are

(1) the charge-induced dipole (cid) interaction

4 .d-——o,'e/2R4,
Cld

The expressions for the fundamental electro-
static forces bebveen two charge distributions,

(2) the charge-induced quadrupole (ciq) inter-
action

180 69



70 MENENDE Z, REDMQN, AND AE BISC H ER 180

(3) the induced dipole-induced dipole interaction
or dispersion (dis) interaction

where z is the static polarizability, I is the ion-
ization potential, f is the oscillator strength, R
is the internuclear separation, and 1 and 2 refer
to the ion and atom, respectively. The expres-
sion for the dispersion interaction' is the least
exact, since it is a second-order perturbation
term involving averages over all of the magnetic
quantum numbers for the two atoms. The fact
that static polarizabilities are used in all the
above expressions leads to inaccuracies, since
dynamical distortion effects are neglected. There
are other higher-multipole terms which are or-
ders of magnitude smaller, and we shall neglect
them. The uncertainties in the above expres-
sions are minimized when applied to the case
where both atomic centers are in singlet states.
We will have frequent occasion to utilize the
closed-shell configuration condition to advantage.

In order to complete the expression for the
interatomic potential, we must allow for the re-
pulsion of the overlapping electron cloud. It has
been customary to follow the lead of earlier work-
ers and to choose a repulsive term having the
form

e =X/R .
rep

We shall content ourselves here with the above
empirical form for the repulsive potential, defer-
ring further analysis until later.

where 6 is the value of C(R) at the equilibrium
internuclear separation, Bm and 'Y measures the
relative strength of the 8 ' attractive term. By
comparing calculated ionic mobilities with ex-
perimental results Mason was able to determine
the parameters of the 12-4-6 model.

A problem that often arises in the use of para-
metric models is that parameters obtained from
one type of experiment do not consistently pre-
dict the results of other types of experiments.
Menendez and Datz4 found that the 12-4-6 model
did not satisfactorily predict the angular distri-
bution of elastically scattered Cs+ from Ar and
Kr at low energies, where the scattering is dom-
inated by the attractive portion of 4(R). The min-
imum values of 4(R), the binding energy of the
corresponding molecular ions, predicted by the
12-4-6 model are typically on the order of a few
tenths of an eV. One would not expect that this
binding energy is sufficient to produce "stable"
molecular ions; that is, with a long enough life-
time to be observable under typical experimental
conditions. Herman and Cermak' have observed
CsAr+ and CsKr+ formed by Penning ionization
in a mass spectrometer. This observation in-
dicates that the binding energy may be greater
than that predicted by the 12-4-6 model. One is
tempted to conjecture, and we do so here, that
the 12-4-6 model is perhaps incomplete in that it
does not include a consideration of charge-ex-
change forces which could be of importance in ion-
atom systems. In the next section we present a
method for treating charge-exchange forces.

The total potential energy of interaction is given
by

C(R)=C' +@.d+C . +4d.rep cid ciq dis

=A/R —B/R —C/R

where B and C are the coefficients of the attrac-
tive terms. Let us consider this form of the in-
teratomic potential as a model and, since n is
usually taken to be 12, we call it the 12-4-6 mod-
el. For all practical purposes it accounts for
what may be called the "normal physical forces, "
albeit some quantum-mechanical effects are in-
cluded in the dispersion term.

This model has been used by Mason and Vander-
slice to analyze the scattering of slow ions in
gases and to calculate ionic mobilities. ' Mason
and Vanderslice recast this model into the para-
metric form

II. A;4 APPROXIMATE TREATMENT OF CHARGE-
EXCHANGE PHENOMENON

It is reasonable to expect that long-range ex-
change forces are important in the interaction be-
tween a heavy ion and an atom. The effect of ex-
change forces can be estimated by utilizing the
concept of charge transfer. We follow, and out-
line below, R. 8. Mulliken's quantum-mechan-
ical formulation of a charge-transfer theory. '
This theory has been used to explain the forma-
tion of relatively stable charge-transfer com-
plexes among large molecules. '

Consider an ion and an atom each in a singlet
ground state separated by an internuclear dis-
tance R. In particular, we wish to confine our
attention to any alkali-ion —rare-gas-atom pair.
The ground-state wave function for the two-par-
ticle system, 4&, can be represented as a linear
combination of two wave functions each repre-
senting a "limiting" configuration of the system:
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=a e (A +, 8)+a 4 (A, B ),

wher'e

4' (A, 8) = 84 +4 + small modifying effects, (8)

and

4 (A, B ) = 84' 4' + small modifying effects, (9)

and I is an operator that properly symmetizes
the product wave function in accordance with the
necessary symmetry requirements. ' %hen both
particles are in singlet states they possess the
proper symmetry. Clearly, the difference be-
tween 4, and 42 is the transfer of an electron.

In the interaction between A+ and B we seek the
stabilization energy due to the mixing of the bvo
states 0, and 42. This is accomplished by.the
methods of second-order perturbation theory.
The eigenvalue equation is

to be the configuration where the two ions and the
electron are infinitely separated. Then,

H22(R = ~) =E +,

H„(R =~) =I

where EA+ is the electron affinity of the ion A+
(the ionization potential of A) and IB is the ion-
ization potential of B. The difference in energy
between states 4, (A+, 8) and 4', (A, B+) becomes

(H„-H„) I +8/R +C/R' —E +,

where we account for the R-dependence of H» by

H„(R)- IB +8/R4+ C/R',

but neglect the B-dependent polarization inter-
action of the state %,(A, 8+) saying that

H4 =E% (1O) H„(R)=E + . (2o)

11 11 +12 12

I

H2» —S2 E H22 —S E
=0.

The second-order energy correction is obtained
by letting E =H» in every term except the first,
and since S»=S»=1, H»=H», and S»=S„, we
obtain from Eq. (11)

where H is the exact Hamiltonian for the entire
system. Applying the method of linear variation
function to the eigenvalue equation, we obtain the
secular equation

This results in a conservative estimate of the
stabilization energy due to the mixing of the two
states which is approximately given by

„CT 2S ('A"
1+S' (I +8/R4+ C/R' —EA+)

In a sense, 4E is a measure of the tendency for
the system to share an electron, i. e. , form a
one- electron bond.

A model for the interaction potential accounting
for exchange forces between an ion and an atom,
both in singlet states, may be written as

(12)
C (R) A/R -8/R4- C/R4+ AE (22)

Equation (12) can be recast in a more useable
form by employing the following approximations
based on the one-electron approximation and use
of the Mulliken magic formula; ' they are

H„=S,2(H„+H„),

S„'—2$2/(1 +S'),

(13)

(14)

where S is now the two-center overlap integral
between the two outer atomic orbitals only. Using
(13) and (14) in (12) and defining ~=-(H„—E) as
the stabilization energy due to charge transfer
leads to

= —[2S'/(1 +S')]H22'/(H„—H,2) . (15)

%e can easily approximate the matrix elements
H» and H» at R=~ by choosing the zero of energy

A few comments regarding the two-center over-
lap integral S are in order. The overlap, in the
case of an alkali-ion-rare-gas-atom pair, is be-
tween aP orbital of the atom and the unfilled s
orbital of the ion. The greater the overlap, at
large distances between these two orbitals, the
greater is the tendency of forming a one-electron
bond. For heavy ions Slater atomic orbitals are
not suitable wave functions. A program devel-
oped at the Oak Ridge National Laboratory" was
used to calculate the two-center overlap integral
using Herman- Skillman wave functions.

III. THE REPULSIVE POTENTIAL

The use of the repulsive term given by Eg. (4)
introduces the two parameters A and n. It is de-
sirable, in the interest of developing a model
based as much as possible on physical principles,
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to eliminate the use of this parametric term.
The repulsive potential between two interacting

atoms can be calculated by the application of a
variational minimization and maximization prin-
ciple" to the Fermi- Thomas-Dirac (FTD) statis-
tical model of the atom. " We briefly present the
final theoretical expressions as developed by
Abrahamson" for the repulsive potential. This
theory is most suitable for interacting atoms of
closed-shell configurations and was used by
Abrahamson to calculate the repulsive potential
between rare-gas atoms.

The interaction potential (at close distances) of
two ground-state atoms is approximately given by"

U (R) = —,
'

(Z,Z,e'/R) [X (Z, '~'R/a)

+q (Z, '"R/a)] + X, (23)

where e is the magnitude of the electronic charge;
Z„Z, are the respective atomic numbers of the
interacting atoms; X is the (FTD) screening func-
tion"; a = 0. 8853a„and

12

—2K [(p„+p„)"'-(p„"'+p„4")]}dv. (24)

lim 4 (R) = U (R),
R 0

(25)

because in models of the type we are considering
A/R" accounts for not only UFTD(R) but must be
large enough to cancel the attractive terms at
close distances as well. We will return to this

Here K&
—2. 871e'/a0, Ka = 0. 7386e', p0 (x ) is the

exact undistorted FTD electron density distribution
due to the ith atom as a function of the radial dis-
tance rz of the volume element dv from the center
of the ith atom; D» denotes the overlap region
shared by the two electron clouds. This equation,
developed for interacting neutral atoms, is ap-
propriate in its present form to an interacting ion-
atom pair provided one uses the screening func-
tion and electron density of the ion.

This interaction potential accounts for exchange
effects but correlation, inhomogenieties, non-
vanishing absolute temperatures, and relativity
are neglected. Expression (23) was found to yield
repulsive potentials for rare-gas atom interactions
which are in good agreement with experimental re-
sults as well as other approximate theories at
close distances.

We choose, then, to use expression (23) to cal-
culate the repulsive potential of interacting ion-
atom systems. However, a word of caution:
UFTD(R) does not directly replace A/R~; instead

limit condition in the next section.
We have calculated by machine computation the

repulsive potential for all alkali-ion-rare- gas-
atom combinations using the screening functions
and electron densities given by Thomas. " Rep-
resentative values of the repulsive potentials are
shown in Table I. Since logUF TD(R) versus R is
practically linear over a considerable range of
R, values of UFTD(R) to about twice the largest
8 in Table I can be found by extrapolation. "

IV. DESCRIPTION OF THE CHARGE-EXCHANGE
MODEL

In the interest of keeping the parameters of the
charge-exchange model Eq. (22) at a minimum,
we utilize the calculated repulsive potentials and
the limit condition Eq. (25) to arrive at a para-
metric procedure which is equivalent to finding
a suitable A and n. The development of the para-
metric procedure can be appreciated by first con-
sidering the alternative of finding a suitable A and
n. Assume that n =12 is a suitable choice for the
repulsive exponent, the parameter A must now be
adjusted to give a desired equilibrium internucle-
ar distance. If the equilibrium separation is
known this procedure does not lead to any diffi-
culty. The difficulty is that for the systems of
interest here, and for most systems where the
use of a model is indicated, the equilibrium sep-
aration is unknown.

In order to arrive at the parametric procedure
we rely principally on physical intuition and the
limit condition. Consider the ion and the atom
separated by a distance A larger than the sum of
their FTD radii; clearly, the dominant forces
are attractive. As 8 decreases to less than the
sum of the FTD radii, the electron-cloud repul-
sion comes into effect and begins to dominate the
interaction. Since the equilibrium separation is
unknown it is not possible to exactly determine
the excursion of 4(R) through its minimum. The
calculated values of UFTD(R) show that this term
is small until R is about equal to the radius of the
largest atom, B&2. On the other hand, at small
internuclear distances UF TD(R) is large and the
attractive forces, as we use them, are no longer
effective nor correct. The procedure that sug-
gests itself is to carry the attractive forces down
to the largest FTD radius, hold it constant for
smaller R, and add them to UFTD(R). Since
UFTD(R) increases quite rapidly with decreasing
8, it soon takes over completely and insures the
limit condition. One is at liberty to choose the
cutoff of the attractive portion of the potential and
the slope ascribed to it for smaller 8 in order to
produce a particular excursion of 4(R) through
the minimum. In spite of the apparent generous
latitude of the parametric procedure, a moments
reflection indicates that, in fact, the opposite is
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TABLE I. Repulsive potential U&TD(R) (in e /ao) for pairs consisting of nn alkali ion and a rare-gas atom as a
function of R in a.u.

Ion

Na

0.03
0.10
0.60
1.20
1.40
1.60

o.ao
0.60
1.50
2.20
2.40
2.60

0.10
0.60
1.50
2.00
2.50
3.00

0.10
0.60
2.00
2.50
3.00
3.30

0.10
0.60
2.00
2,50
3.00
3.30

He

187.5
49.1
3.74
0.76
0.45
0.25

173.9
12.5
1.43
0.32
0.21
0.11

294.0
20.4
2.3
0.83
0.29
0.08

555.6
37.1
1.5
0.54
0.19
0.09

810.0
52.7
2.1
0.75
0.28

0.15

923.6
235.6
16.3
3.17
1.87
0.98

833.8
54.2
5.9
1.43
0.92
0.52

1410.0
88.1
9.4
3.48
1.30
0.38

2666.8
157.2

6.1
2.4
0.88
0.40

3886.6
221.1

8.5
3.37
1.28
0.64

Ar

1648.8
415.1

27.6
5.24
3.01
1.58

1468.7
91.1
9.65
2.27
1.49
0.85

2483.5
147.5
15.2
5.71
2.16
0.62

4697.7
261.7

9.9
4.0
1.5
0.65

6846.5
365.6
13.7
5.6
2.1
1.0

3258.1
805.4
50.9
9.34
5.28

2.66

2847.5
166.4
16.9
3.96
2.52
1.46

4814.7
267.6
26.4
9.95
3.70
0.99

9106.4
471.0
17.2
6.8
2.4
1.1

13 273.0
653.9
23.4
9.4
3.5
1.9

Xe

4846.7
1183.6

72.5
13.1
7.38
3.58

4182.5
235.8
23.6
5.50
3.41
1.93

7070.4
377.6
36.4
13.7
5.02
1.29

13 370.
661.a
23.4
9.2
3.3
1.5

19486.6
914.1
31.6
12.6

2.6

7628.1
1836.1
109.1
19.4
10.8
5.08

6482.2
352.1
34.6
7.99
4.84
2.66

10953.
560.9
53.0
19.7
7.1
1.7

20 705.
975.1
33.2
13.0
4.6
1.8

30 171.0
1341.7

44.4
17.6
6.6
3.4

true if we are to be consistent with our previously
stated intuitive ideas. For example, if large
modifications of the above procedure are required
in order to bring the model into agreement with
experiment then this strongly implies that the
model is not correct. Here, then, lies its main
advantage: since the parameter adjustment range
is limited, the model and consequently the charge-
exchange contribution is amenable to experimental
verification for a class of interactions. For the
present, in lieu of experimental confirmation, we
can only expect that the initial predictions of the
model be reasonable.

A figure of merit for the parametric procedure
can be that

C(R i)/U (Rbi) = 1.0,

where B&& is the radius of the smallest atomic
center. We have found that this procedure leads

, to figures of merit for all alkali-ion-rare-gas-

I

1

I REPUlSIVE POTENTIAL, U~D(R)

$(R)

RB~&

ODEL USING PARAINETRIC PROCEDURE

TION:

—B/R —C/R4 6

OR

-B/R —C/R + 6 E

FIG. 1. The graph indicates the parametric procedure
used in lieu of the two constants A and n. The attractive
portion of the interatomic potential is calculated down

to Ry2 and taken to be constant for smaller R. The pro-
cedure permits the adjustment of the attractive cutoff
(show above as Ry2) and the slope for smaller R (shown
above as zero) within a narrow range of values for each.
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atom systems from 0. 8 to 0. 95 while making the
excursion through the minimum smoothly. The
procedure is shown schematically in Fig. 1.

The interatomic potentials have been calculated
for all the alkali-ion-rare-gas-atom pairs using
the charge-exchange model and the 12-4-6 model.
The potentials were calculated from 0. 25 to 12. 00
a. u. every 0. 25 a. u. A comparison of. the two
models is summarized in Table II by C (Re&) and
2 ECT(Re&). Table III lists the values of the
atomic quantities used in the calculations.

The equilibrium separations seem small but
reasonable. For a given alkali ion the minimum
values of C(R) increase from He to Xe owing
mainly to the increase in the atom polarizability.
For a given rare-gas atom the binding energy de-
creases from Li+ to Cs+. For the 12-4-6 model
this trend is explained by a greater increase of

the repulsive potential over the attractive portion
due to the increasing size of the ion. For the
charge-transfer model the same considerations
apply along with the added feature that the charge-
transfer contribution decreases in going from Li+
to Cs+ owing to the decrease in electron affinity
of the ion. The charge-transfer contribution
augments the long-range attraction and leads to
stronger binding energies.

Except for the alkali ions on Ne cases the charge-
transfer contribution increases the binding energy
over the 12-4-6 model by an average factor of
about 5. For the Ne cases this factor ranges
from 7 to 44. This increase seems unduly large
but in part is explainable by the behavior of the
two-center overlap integral which is greatest for
any alkali ion with Ne. Nevertheless, the values
of hE T for the Ne cases seem reasonable in

TABLE II. Comparison of the total potentials at the equilibrium separation for the 12-4-6 and charge-exchange
models with R

q in a.u. , and 4E and 4 in eV.

Ion

Ll

Na

Cs+

Model

12-4-6

charge
exchange

12-4-6

charge
exchange

12-4-6

charge
exchange

12-4-6

charge
exchange

12-4-6

charge
exchange

Quantity

Req

Req
S
~ECT
C

Req
4

Req
S
~gC T

Req
4

Req
S
~CT

Req
4

Req
S
~~CT
4

Req
S
~gCT
C

He

3.25
-0.18

3.25

0.28
—0.24
—0.42

4.75
—0.03

4.25

0.21
—0.12
—0.12

5.25
—0.03

5.00
0.18

—0.06
—0.07

4.25
—0.05

4.00
0.21

—0.06
—0.12

4.75
—0.04

4.75
0.17

—0.04
—0.08

4.00
-0.16

4.00
0.47

—0.93
—1.09

5.75
—0.02

4.75
0.53

—0.70
—0.68

6.00
—0.03

5.25

0.55
—0.50
—0.50

6.50
—0.01

5.75
0.53

—0.45
—0.43

7.00
—0.02

6.00
0.54

—0.40
—0.39

4.25
—0.53

4.25

0.49
—1.26
—1.79

4.75
—0.19

4.25
0.51

—1.18
—1.27

5.25
—0.15

5.00
0.52

—0.76
—0.90

6.00
—0.10

5.50
0.51

—0.68
—0.75

6.25
—0.09

6.00
0.51

-0.57
—0.65

4.50
—0.65

4.50
0.47

—1.49
—2.14

4.75
—0.33

4.50
0.49

—1.41
107 1

5.50
—0.22

5.00
0.52

—0.97
—1.15

6.00
—0.15

5.50
0,52

—0.86
—0.96

6.25
—0.14

6.00
0.52

—0.71
—0.83

4.50
—0.85

4.50
0.42

—1.78
—2.62

4.75
—0.64

4.75
0.45

—1.69
2e33

5.00
-0.43

4.75
0.49

—1.36
1073

5.75
—0.26

5.50
0.49

—1.07
—1.30

6.00
—0.26

5.75
0,50

—0.93
—1.17
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TABLE III. Atomic quantities used in the calculations.

He
Ne

Ar
Kr
Xe
Li
Na+
K+
Hb+
Cs+

Polariz ability
(10 cm )

2.16
3.98

16.30
24.80
40.10
0.80
1.96
9.0

13.0
24.0

Ionization
potential

(eV)

24.6
21.6
15.8
14.0
12.1

Electron
affinity

(eV)

5 4
5.1
4.3
4.2
3.9

Oscillator
strength

1.1
2.4
4.6
4.9
5.6

comparison with the other cases and follow the
trends. Therefore it seems that the increase fac-
tor is unduly large because the minimum values
of the 12-4-6 model are too small and not because
the values of 4E are too large.

The results indicate that the charge-transfer
contribution to the interatomic potential is rea-
sonably large and can be used to explain the bind-
ing of some molecular ions that otherwise one
would not expect on the basis of a 12-4-6 model.

V. CLASSICAL-MECHANICS DESCRIPTION OF
RAINBOW SCATTERING

where b is the impact parameter, R~ is the dis-
tance of closest approach, and O(R) is an inter-
atomic potential model. The cross section at a
given center of mass angle is given by

o 1(x) =(b/sin)t)IdX(b)/db (28)

Even though we apply classical theory in our in-
itial analysis it is worthwhile to indicate the de-
velopment of the semiclassical expression since
this, . in turn, lends justification for the use of the
classical approach. The quantum cross section
is given by

The advantages of the exchange model are that
(i) the number of parameters are minimized, (ii)
it estimates charge-exchange forces, (iii) its
validity for a class of interactions can be tested
experimentally.

We have concentrated on the latter virtue and in
the interest of providing a basis for detailed ex-
perimental verification have computed the clas-
sical rainbow angle for Cs+/Ar at a relative en-
ergy of V. 0 eV for the exchange model and com-
pared it to the predictions of the 12-4-6 model.

We briefly present a description of elastic scat-
tering which is useful for the analysis of low-en-
ergy collision experiments. " Since we are pri-
marily interested in comparing the rainbow scat-
tering for two interatomic potential models and
since the essential features of classical and semi-
classical theory as applied to low-energy colli-
sions are similar, we can fruitfully utilize the
simpler classical approach for our initial com-
parison.

The classical description of scattering at low-
energies centers around the classical deflection
function which is given by

C y

(29)

where scattering amplitude f ()t ) is

f ()t) = —. Z (2l +1) (e "l—1)P (cos8), (30)2i l

o = [x (l+-)/sing] ~dg(l)/dl ~, (31)

which is found to be equal to the classical expres-
sion upon setting b = x(l + —,'). Although these con-
ditions are not always satisfied by the systems of

where l is the angular momentum and gE is the
phase shift. We can arrive at the semiclassical
expression by making the following approximations
in the quantum expression":

(1) replace t)1 by its JWKB approximate value—
this requires that the potential vary smoothly,

(2) replace the Legendre polynomial by its asymp-
totic value for large l,

(3) replace Xl by fdl —this and (2) require that
many partial waves contribute to the scattering at
a given angle.
The above approximations and evaluation of the re-
sultant integral by the method of stationary phase
leads to the semiclassical cross section"
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interest here, it is nevertheless, legitimate to use
the classical description for an initial comparison
of two interatomic potential models.

The interaction of two particles via an inter-
atomic potential possessing attractive and repul-
sive branches leads to a nonmonotic classical de-
flection function which possesses a minimum.
Since the classical cross section contains the term
I dx/db i ', it will have a singularity where dg/db
vanishes at some angle Xz. On either side of X&
there is a buildup of the cross section due to con-
tributions from both branches at some angle near

Vfe refer to X as the rainbow angle and to
scattering in the neighborhood of X ~ as rainbow
scattering because of its analogy to optics. " At
low energies the scattering is dominated by the at-
tractive portion of the potential and, in particular,
rainbow scattering is extremely sensitive to the
shape of the attractive portion near the minimum. "

The semiclassical treatment is not very different
from the classical one even when the above con-
ditions are not met. In the semiclassical treat-
ment the rainbow angle is shifted to slightly small-
er angles and for low angular resolution there is a
broad peak in o()f)sing versus X instead of the
classical sharp rise to infinity.

The rainbow angles were calculated using a com-
puter program written by two of us (M. G. M. and
J.F.A. ) that determines, (1) the repulsive poten-
tial ETFTD(R); (2) the charge-exchange contribu-

tion gECT; (2) the classical deflection function

X (b); (4) the rainbow angle y~; (5) the super-
numerary spacing; and (6) the phase shift q&,

.
for a given interatomic model containing up to
four terms, for a, given system at a relative en-
ergy of collision E~.

The interatomic potential models for Cs+/Ar
are shown in Fig. 2. The results of the classical
rainbow scattering calculation at E ='7. 0 eV for
the two models are

= 1.4 (12-4-6 model),

y = V. 9' (exchange model)

in the center-of-mass system. It is clear that
measurements of low-energy elastic scattering
should provide a valid test of the exchange model.
The predictions of the exchange model have been
compa. red to rainbow scattering measurements of
Cs+/Ar ' and were found to be in good agreement.

$(a) is Ev
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0

-0.2

—. 0.3

—0.4-

Cs —Ar

12-4-6
- — MODEL

EXCHANGE
MODEL

—0.5—
-0.6

-0.7

-0.8
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

INTERNUCLEAR DISTANCE IN AU

However, in view of an uncertainty in the scat-
tering volume of this experiment the agreement
can only be taken as an indication that the ex-
change model is more appropriate than the 12-4-6
model.

VI. SUMMARY

A charge-exchange model for the interatomic
potential has been developed and applied to al-
kali-ion- rare- gas-atom inter actions. As ex-
pected, the charge-exchange stabilization energy
leads to stronger long-range attraction arid great-
er binding energies. Its main advantage is that
since it contains only one parameter. (the para-
metric procedure) adjustable only within a nar-
row range it allows for detailed experimental
verification of the physical assumptions. The
predictions for rainbow scattering of the charge-
exchange model and 12-4-6 model were compared,
and it was found that they are sufficiently differ-
ent to provide a suitable experimental verifica-
tion of the exchange model, and consequently the
charge- exchange contribution.

FIG. 2. A comparison of the attractive portion of the
interatomic potential for Cs+/Ar using the 12-4-6 model
and the exchange model.
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The atomic absorption cross section of strontium has been measured at an instrumental
bandwidth of 0.07 A in the antoionizing wavelength interval from 1646 to 2028 A. Corrections
have been applied to eliminate the bandwidth dependence of the results. Figures summarizing
our best estimate of cross section versus wavelength are presented. The observed structure
is grouped into series, and the measured wavelengths and oscillator strengths forthemembers
of each series are tabulated.

I. INTRODUCTION

The absorption spectrum of strontium vapor at
wavelengths shorter than its principal series
limit at 2177.13 A was first recorded photo-
graphically by Garton, Pery, and Codling in 1959.'
Absolute absorption cross sections in this auto-
ionizing region were first obtained by two of us
(Hudson and Young) in 1963 at an instrumental
bandwidth of 1 A. Shortly thereafter Hudson,
Carter, and Stein, using an improved apparatus,
were able to obtain absorption spectra of hot
gases at an instrumental bandwidth of 0. 075 A. '
As this approaches the bandwidth used by Garton,
Pery, and Codling (0. 027 A), we decided there-
fore not to publish the 1 A data, but to wait until
high-resolution spectra could be obtained. This

paper is an account of these high-resolution spec-
tra.

II. EXPERIMENTAL APPARATUS AND
PROCEDURE

Details regarding the basic theory and experi-
mental arrangement have been discussed pre-
viously. ' ' Figure 1 shows the configuration of
the apparatus. It consists essentially of a 2. 2-
m normal incidence scanning monochromator,
behind the exit slit of which is a temperature-
regulated furnace that serves as an absorption
chamber. Light was generated in a hydrogen
Hanovia lamp operated at approximately 1000 %.
A 1200 lines/mm Bausch and Lomb replica grat-
ing was used, which combined with 20-p, entrance


