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VII. CONCLUSION

It has been shown how a nonlocal pseudopotential
can be set up and parameterized in such a way as to
give a very precise description of the Fermi surface of
beryllium. Calculated and observed dHvA frequencies
agree in most cases to within 1%%uz. The effective masses
computed for the various orbits indicate an electron
mass enhancement due to many-body interactions of
about 20/z. The model also provides much other useful
information on the behavior of electrons in beryllium.
For example, the detailed knowledge of the shape of the
Fermi surface yields caliper dimensions and allows some
understanding of magnetic breakdown between orbits.
The electronic specific heat also comes out of the
calculation.

Further uses of the model include adapting it for
computing pressure and strain variations of the band
structure. Kith increased precision in calculation and

alternative assumptions concerning the changes in
pseudopotential under conditions of strain, the agree-
ment with experimental values should improve, since
the present approach yields reasonable results. Finally,
this model may also be applied to the case of dilute
alloys where the simplest procedure is to combine the
sects of lattice-dimension changes with changes in the
Fermi surface due to variation in electron density.
Within this approximation, the Fermi-surface topology
is more easily changed by altering the electron concen-
tration than by application of pressure alone. This
interesting problem remains to be discussed in a later
publication.
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An extremely simple expression is obtained for the isothermal conductivity tensor for an arbitrarily
oriented Fermi ellipsoid in an arbitrarily oriented magnetic 6eld. The relationship between a simple kinetic
equation and a vector form of the Boltzmann equation is demonstrated, and this relationship is used to show
how to include the relaxation time as a tensor quantity. One again obtains a simple result which possesses
the general characteristics shown to be required by other workers dealing in a diAerent approximation.

INTRODUCTION

' 'N a previous paper, ' the authors have utilized the
~ ~ Ham-Mattis transformation' to obtain a tensor
relationship between the kinetic coeScients of electron
transport calculated for an arbitrarily oriented Fermi
ellipsoid with magnetic field 8 directed along the
3 axis and the corresponding coefFicients calculated for
a Fermi sphere with I along the 3 axis. The resulting

expressions are functions of the elements of the recip-
rocal eGective-mass tensor 8=m ' and the Iiiagnitude
of H. This paper discusses the form taken by the
isothermal-conductivity tensor o- of an arbitrarily
oriented Fermi ellipsoid with 8 not restricted to any
specific direction relative to experimental coordinates.

The result is of an extremely simple form and is a

function of the elements of the mass tensor nz directly

along with the components of H. Herring and Vogt'

have treated the problem of allowing for anisotropy in

the scattering by introducing tensor relaxation times

' H. J. Mackey and J. R. Sybert, Phys. Rev. 172, 603 (1968).
'F. S. Ham and D. C. Mattis, IBM J. Res. Develop. 4, 143

(1960).' C. Herring and K. Vogt, Phys. Rev. 101, 944 (19S6).

v"-"', defined for each ellipsoidal piece of the Fermi
surface such that f-&'~ is simultaneously diagonal with
its corresponding mass tensor nz~'&. Working in this
approximation with emphasis on Maxwellian distribu-
tions, they have shown that the diagonal elements
m ' ... which occur in isotropic scalar r theory, are
simply replaced bv m'*~;,/r&'&, , ; i.e., the tensor r"

formalism weights the diagonal mass elements with
corresponding 7". elements. They obtain expressions for
the various conductivity elements by an iterative
technique which generates a series valid at low magnetic
field. The present paper deals with a highly degenerate
system at very low temperatures such that emphasis is
on a Fermi distribution. Hence the results are applicable
to the metals and semimetals. In the present approxima-
tion, results are obtained in closed form, valid for all
values of magnetic field. Korenblit4 has dealt with the
case where there is a single ~ seen by all the ellipsoids
such that 7". does not belong to the principal axes of any
ellipsoid. He has shown how to introduce 7- directly into
the Boltzmann equation. The present work indicates
how this modified Boltzmann equation may be reduced

4 I. Ya. Korenblit, Fiz. Tverd. Tela 2, 3083 (1960) LEnglish
transl. : Soviet Phys. —Solid State 2, 2738 (1961)j.
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to a vector form which is related to a simple kinetic
equation for the drift velocity. It is found as a general
result that v" and m enter the Boltzmann equation as
the product 7". 'nz in agreement with Herring and Vogt. '
Korenblit4 uses the Onsager reciprocal relations to
constrain the 7 tensor. This paper questions the validity
of this constraint. As an example of the simplicity and
usefulness of the present results, 0 is calculated for a
set of three ellipsoids symmetrically placed about a
trigonal axis with 8 along the symmetry direction.
The relaxation time is taken isotropic in the basal
plane with a distinct value along the trigonal direction.

The isothermal conductivity tensor 0 is identi6ed from
Eq. (6b) as

l~p
EBp f

(7)

Now change variables in order to facilitate integration
of Eq. (7). Define a transformed momentum w by

w — —'~'"'~'p

where no is an arbitrary constant with the dimensions
of d. This transformation deforms the ellipsoid of
Eq. (3) into a sphere in w space given by

THEORY

A. Isotropic Relaxation Time

2e=now w.

The following relations are obtained from Eq. (9):
(9)

f,= —(C p)Bf,/Bo, (2)

where C is taken to be a function of o. Assume isothermal
conditions and sample dimensions large compared to the
mean free path such that 7' f=0. Taking ellipsoidal
energy surfaces

2e=p ap=p m p, (3)

one may use Eqs. (2) and (3) to reduce Eq. (1) to a
vector equation for C:

The Boltzmann equation in the relaxation time
approximation is

V',f v+V,f L
—eE—(e/c)vXHj+f, /r=0, (1)

where fi= f fo, fp is—the equilibrium Fermi function,
and v- is the relaxation time taken here to depend on
the momentum p only through the energy e. Following
Sondheimer and Wilson, ' a solution for f, is sought in
the form

v= no"'8'"w

dPP = npo/P(nin, no)
—i/Pdow

Substitution of Eqs. (10) into Eq. (7) yields

(10a)

(10b)

d'w=dS(p)«/~ ~~p~
= dS(p) do/(npw), (12)

where dS(o) is an element of area on the sphere described
in Eq. (9). Integration over the energy is now made in
the highly degenerate approximation valid at low
temperatures, where Bfp/Bp is t—he 8 function b(p f), —
and f' is the Fermi energy This op. eration yields

B= —2ech onoo/P(nin pnp)

o=2ec .h'n '/'(n n n ) '/' n'/'wGn '/'w( )d'w. (11)
(Bp)

Now write

—eE+(e/c)H&& C—mC/r=0.

Equation (4) may be written

(4)

ni/~wGn~ i/&wdS(i') . (13)

C=cGE,

where 6 is the transpose of G, which is defined by

(0)—'=8—8'
Writing Eq. (13) in component form, one finds

(5b) ij 0 i 3 E i P jk0 "=—2ech 'npo" (ninon ) "'w/ ' P n'"n "'G p
k

0 —P3
II= H3 0

H2 H]

II'=mc/er.

H2
—H,

0.
(5c) wjwidS(p) ) (14)

where r contained in G is now evaluated a,t p=f
Noting the result

The current density is computed as

J=—2eh P vfid'P,

which becomes

(6a)

Eq. (13) becomes

w, wpdS(g) =-',swi'8jp,

0-- = —eecG"M p

(15)

(16a)
(6b) whereJ= 2ech

—' v(Gp)~ ~dpp E.
&Bp)

~ A. H. Wilson, The Theory of 31etals (Cambridge University
Press, Cambridge, 1959), p. 2086.

n,= (2h—')(-', xwp')Ln "'(n n n ) '"j (16b)

is the number of electrons per unit crystal volume in
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the ellipsoid, 2f = p dp. Equations (5) may be combined
with Eq. (16a) to obtain a compact expression for o:

o.=aztec(H' 8—) ' (17)

Combining Eqs. (Sa) and (16a) one finds

J= o.E= n—ecGE,

J= —rieC(t') .
(18a)

(18b)

Equation (18b) shows that C(i) is the drift velocity
established by the applied fields.

p= —eE—(e/e) vXH —r"='mv (22)

Comparison of C to vz as above shows that Eq. (4)
should be replaced by

—eE+ (e/c)HX C—r" 'mC=O (23)

in the Boltzmann description.
Equation (23) has the solution given in Eqs. (5) if

H' is generalized from that form given in Eq. (Sd) to

H'=r" 'mc/e (24)

With this change in the definition of the "saturation
6eld tensor" H', the calculation of J is identical to that
given above, and one arrives again at Eqs. (17) and (18),
where the elements of r" are to be evaluated at e =t .

Korenbilt4 has shown that the collision term in the
Boltzmann equation may be replaced by

(Bf/Bt),.ii V'~f mr" 'v——— (25a)

Using Eq. (2), where fi=f fo, Eq. (25a) may —be

B. Anisotroyic Relaxation Time

Imagine an electron to move under the influence of
E and H in an isotropic viscous medium. A kinetic
description is given by

p= —eE—(e/c) vXH p/r. — (19)

At equilibrium, p =0 and the drift momentum is
given by

—eE+ (%)HX vd pd/r =0. — (20)

Anisotropic mass may be introduced by writing
p=mv such that Eq. (20) becomes

—eE+ (e/c) H X vo mvd/r = 0—. (21)

Comparison of Eq. (21) with Eq. (4) indicates why the
simple kinetic model generally gives the same result
as the solution to the Boltzmann equation if one con-
siders z to be characteristic of electrons on the Fermi
surface: The Boltzmann equation may be reduced to
a vector equation LEq. (4)j equivalent to Eq. (21)
in which C plays the part of the drift velocity.

Now imagine a medium which is characterized by
diferent viscosities in three orthogonal directions. A
correct kinetic description is given by

approximated by

(Bf/Bt),.ii=r 'mC v(Bfo/Be). (25b)

(25d)

as used in Eq. (1). Insertion of Eq. (26b) into Eq. (1)
yields Eq. (23) with 7. ' replaced by r '. This replace-
ment follows into Eq. (24). However, if there exists a
coordinate system such that 7. is diagonal, then 7" is
symmetric and f. '=f='. It is to be noted that in this
case 7. and m appear in 0- through H' in the combination
7"- 'ns, in agreement with Herring and Vogt. ' It is to be
emphasized that Eq. (25b) follows from Eq. (25a) in
an approximation in which three terms proportional to
v have been neglected. Although it is difFicult to judge
quantitatively the degree of this approximation, it
appears emminently reasonable for the formalism to
reduce to Eq. (25d) for the case of isotropic scattering.
Neglect of these terms is necessary for this connection
to be made between the ordinary scalar 7 approximation
and the Korenblit approximation.

DISCUSSION

The resistivity tensor for a single ellipsoid is obtained
from Eq. (17) as

p= (nec)
—'(H' —H). (26)

Although Eq. (17) was derived for a coordinate system
in which m is diagonal, it is clear that the form of
Eq. (26), and therefore the form of Eq. (17), is invarient
under orthogonal similarity transformation. Therefore,
Eq. (17) may be used for any coordinate system so
long as II' and B are represented in that system. If the
total Fermi surface consists of a single ellipsoid, then
one expects 7 to be diagonal simultaneously with n
such that H' is diagonal. Then the Onsager relation

&'~(+H) =t ~'(—H) (27)

follows from Eq. (26) because H is antisymmetric; this
is the case considered by Herring and Vogt. ' Examina-
tion of Eqs. (17) or (26) shows that for the Onsager
relations to hold for a single ellipsoid, H' must be
symmetric; i.e., the product 1=Vs must be symmetric.
This is obviously the case of v"- and ns are simultaneously
diagonal. If the Fermi surface consists of a set of
ellipsoids which do not belong to a common set of
principal axes, then r", which refers to the crystal
symmetry, will not likely be simultaneously diagonal
with any of the various m. Then the conductivity tensor

This approximation has the property that for the case
of isotropic scattering, where r"= r, Eq. (25b) reduces to

(Bf/Bt)„ii= r 'C ~ p(Bfo/Be) = fi/r—, (25c)

so that the formalism will reduce to the results obtained
from the approximation
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belonging to a single ellipsoid will not generally obey
the Onsager relation

o" (H) =0 "(—H) (2g)

However, if there exists a three-, four- or sixfold
symmetry axis, one may expect 7"- to be diagonal in a
coordinate system having one axis in the symmetry
direction with r exhibiting isotropy in the plane
perpendicular to this direction. Then the total conduc-
tivity given by the sum of the individual conductivities
as computed from Eq. (17) should obey Eq. (28). In
the problem treated by Korenblit, 4 he has required the
product 7" 'm to be symmetric in order to have the
ODsager relations hold for the partial conductivity due
to one of a group of ellipsoids. It is not clear to the
authors that this constraint is necessary. As will be
shown in an example below, it is quite possible to have
the partial conductivities not obey the Onsager relations
individually while the total conductivity given by their
sum does obey these relations. In any event, the T"

explicity considered by Korenblit is such that 7". 'm

is symmetric.
As an example, consider a Fermi surface consisting

of three ellipsoids symmetrically placed about a trigonal
axis with the magnetic field directed in the symmetry
direction. Let the principal ellipsoid be rotated out of

c=cosf,

s= sing,

(29b)

(29c)

where m; is a principal element of ns. As discussed above,
take 7"- to be isotropic in the basal plane as

Then one has

7

0
.0

0
0 (3o)

'm»c/er
H'= 0

0

0 0
m22C/er m23C/er, (31a)
m23c/er3 m33c/er3.

0 —H 0'
II= H 0 0

.0 0 0,
(31b)

Substitution of Eqs. (31) into Eq. (17) gives the
contribution of the principal ellipsoid to the con-
ductivity as

the principal axes by a rotation through angle f about
the i axis. Then nz for this ellipsoid has the form

m1 0 0
m= 0 m2c2+m3s2 (m2 —m3)sc, (29a)

.0 (m,—m3)sc m2s'+m3c'.

(H22 H33 H23 H32 )
BH33'
HH„

—HHg3'

H11 H33
—H11'H3g'

—HH23'
—H11'H23'

(H11'H22'+ ')
(32a)

6=H33'(H;2+H2),

Hi Hll (H22 H23 H32 /H33 )

(32b)

(32c)

(a.r)11——(0 r) 22= NecaH, L,

(0 r)1,= —(0 r) 21= -1VecH,L,

(34a)

(34b)

(0 )33
——1Vec/1/H33'+H1, 'H, 3'H3, 'L/(H33')'j, (34c)

S=3e, (34d)

The total conductivity ~~ due to all three ellipsoids is
given by

dr= o+Z(-;~)oZ( ——;3)+Z(——3,m)oZ(3m), (33)

where Z(8) is a right-handed rotation about the 3 axis.
Combining Eqs. (32) and (33) gives

a = ,' (H;/H11'+H-1 1'/H;),

L= (H;2+H2) '.
(34e)

(34f)

The other elements of 0.~ are zero. One sees that,
although the partial conductivities do not obey the
Onsager theorem Lsee Eqs. (32)j, the resulting total
0 as given in Eqs. (33) does obey the reciprocal relations.
This example should emphasize the simplicity of the
result given in Eq. (17) and the ease with which the
total conductivity due to many ellipsoids may be
written down even in the case for H not along a sym-
metry direction.


