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Feriai Surface of Beryllium and Its Pressure Dependence*
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The Fermi surface of beryllium has been thoroughly investigated by means of the de Haas —van Alphen
eGect, and the frequencies, though substantially in agreement with earlier measurements, have been ob-
tained to greater accuracy. This has made it possible to construct a nonlocal pseudopotential model for the
Fermi surface, in which the Fourier coe%cients of the crystal potential are treated as parameters to be
evaluated by Gt ting to the experimental data. In this way, all the principal cross sections of the surface have
been fitted to within 1'%%uo, using only Gve adjustable paraineters. Comparison of calculated cyclotron Inasses
for these cross sections with the masses determined from the temperature dependence of the dHvA ampli-
tudes indicates that the mass is enhanced about 20'%%uo by many-body interactions neglected in the model.
Finally, the pressure dependence of the Fermi surface has been calculated and compared with some available
experimental measurements.

I. INTRODUCTION

~ 'HERE have been several recent studies of the
Fermi surface of hcp beryllium, and the general

features of these investigations, both theoreticaP ' and
experimental, ~' are in good agreement. A consistent
picture of the Fermi surface emerges, which, however,
lacks somewhat in precision. The justification for a
further detailed investigation of this metal is twofold.
First, on the experimental side there is a need to com-
plete the de Haas —van Alphen (dHvA) frequency mea-
surements to a uniform accuracy and also to provide
cyclotron mass values as a function of magnetic-Geld
direction. From the theoretical aspect there is great
value in having an extremely accurate and, at the same
time, soluble model for the band structure and Fermi
surface. Once such a model has been obtained, it may
be used to understand changes in band structure
brought about either by alloying or by straining the
pure metal, for example, by applying hydrostatic
pressure.

It is shown in this paper how the Fermi surface can
be described by a semiempirical nonlocal pseudo-
potential model. The parameters of the model are
Fourier components of the local part of the pseudo-
potential and are evaluated by comparing calculated
dHvA frequencies with the new observed values. Using
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only five parameters, the over-all accuracy of this
frequency fitting for pure beryllium is better than 1%
in the principal symmetry directions. A preliminary
account of this work has already been published. ~ The
Fermi surface is illustrated in Fig. 1 which has been
drawn to be consistent with the results of the pseudo-
potential model. Several important cross sections are
shown in Fig. 2. This surface shows a severe distortion
from the nearly free-electron model, in contrast to
magnesium. s

In Sec. II a description of the experimental mea-
surements of the dHvA frequencies and associated
eRective masses in the unstrained lattice is given. The
formal pseudopotential expressions for computing
energy levels in the crystal are set up in Sec. III while
Sec. IV indicates how these are actually used to calculate
dHvA frequencies and cyclotron masses. In Sec. V the
results are discussed and compared with those of other
authors.

Finally, the model is generalized to the case of the
strained lattice and the calculated strain and pressure
derivatives of the dHvA frequencies are compared with
some available experimental data. In view of the diK-
culty, both theoretical and experimental, in obtaining
these derivatives, the present agreement between the
two is surprisingly good. The application of the model
to the alloy problem will be the subject of a further
paper.

II. EXPERIMENTAL RESULTS

Both the Geld modulation and torque methods have
been used in measuring the dHvA eRect in the field of
a 23-kG rotatable iron magnet. The field modulation
magnetometer has also been used with a 60-kG super-
conducting solenoid. The torque magnetometer, used
for some of the low-frequency neck oscillations, has

' J. H. Tripp, W. L. Gordon, P. M. Kverett, and R. W. Stark,
Phys. Letters 26A, 98 (1967).

R. W. Stark, Phys. Rev. 162, 589 (1967).
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been described earlier. The large aInplitude Geld
modulation magnetometer used was very similar to
those described previously. ' " In this method, the
amplitude of the modulation Geld at any Geld orien-
tation was adjusted either to enhance the amplitude of
a particular frequency or to reduce that of unwanted
frequencies. The single crystals used had residual re-
sistance ratios of approximately 1000 and were obtained
from Nuclear Metals, Inc."

The dHvA frequencies and cyclotron masses are in
general agreement with those of Watts' but have been
measured with the higher precision needed to obtain
the pseudopotential model parameters. Absolute ac-
curacies for the dHvA frequencies are s% or better
while those of the cyclotron masses are better than 3%.
The dHvA frequencies are shown in Figs. 3 and 4 and
are listed for particular directions in Sec. V, together
with the cyclotron masses. Greek letters are used to
denote the frequency branches arising from a common
portion of the Fermi surface, with a subscript specifying
the crystalline plane in which the magnetic field 8 lies
L1 for (1010), 2 for (1120), and 3 for (0001)) and a
superscript denoting the branch. 0. refers to the cigars,
while P and y refer, respectively, to the belly and neck
of the coronet. Figure 5 illustrates typical P and y orbits
for H in the (0001) plane. It is also convenient to
introduce the polar angle () measured from (0001) in

FIG. i. Second-band hole surface (coronet) and one-half of the
third-band electron surface (cigar) of beryllium. The volumes of
electrons and holes are equal, about 0.8'P0 of the volume of the
first Brillouin zone or 0.016 states per atom. The shape of the
cigar changes smoothly from a triangular cylinder near the FEM
plane to a hemispherical cap just below H. There are two extremal
cross sections normal to the (0001) axis; the triangular waist in
the FEM plane is minimal while just over one quarter of the
distance from E to H there is a slightly rounded triangular
maximal orbit. The six large pieces of the coronet, sometimes
called bellies, are disposed about the I E lines and joined by thin,
almost cylindrical necks.

"A. S. Joseph arid O'. j . C-ordoii, Phys. Rev. l26, 489 {1962)."R. W. Stark and I.. R. Windmiller, Cryogenics 8, 272 (1968)."A. C-oldstein, S. J. Williamson, and S. Foner, Rev. Sci. Instr.
36, 1356 (1965).

"Distilled, zone-refined material prepared by Nuclear Metals,
Inc. , and supplied to us through the U. S. Air I'orce Office of
Scientific Research and the U. S, Atoniic Fnergy Commission,
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either plane, and the azimuthal angle p measured from
(1010).

The dHvA frequencies have been measured in two
ways: by sweeping H at a given orientation and by
rotating the direction of a constant H. The starting and
ending fields for the y field sweeps, which were below
10 kG, were determined from a Hall probe voltage
calibrated by nuclear magnetic resonance. The small
number of oscillations in the y field sweeps, about 35,
made the uncertainty in these frequencies the highest.
The starting and ending fields for the P field sweeps
with II in the ba,sal plane were also determined from
the Hall probe. However, for 8 in the (1120) and (1010)
planes the number of P oscillations between two values
of H were compared to the number of oscillations of the
dominant n frequency (n') with I along L0001$ in the
same field interval. " This n frequency has been very
accurately measured by O' Sullivan and Schirber'4
(&0.1%) and checks well with our Hall probe cali-
bration. The P frequencies at all symmetry directions
and the o. frequencies at selected angles were deter-
mined by comparison with this 0. frequency. The fre-
quencies at directions between those determined by the
field sweep method were measured by rotating B at a
constant value. The frequency difference between any
two Geld directions is then the product of H with the
number of dHvA oscillations occurring in the angular
interval. The V frequency, assigned to the inside ring
of the coronet by Watts, was not observed. Since the
homogeneity of the magnet Geld at 60 kG was adequate
to observe this expected frequency of 394&(10' G, we
must attribute its absence to a combination of low
amplitude (a narrow band of orbits and a relatively
large cyclotron mass) with a narrow angular range of
occurrence. This frequency, in any case, is of little use

"If more than one frequency is present, corrections must be
made to eliminate the error which occurs when a nonintegral
number of the beats is compared with an integral number of
$0001) a beats.

~' WV. J. O' Sullivan and J.E. Schirber, Cryogenics 7, 118 (1967).

P 0

Fro. 2. Intersections of the Fermi surface with the FXHA and
I'MLA planes. Important caliper dimensions are labeled for later
reference. The scale of (b) is 8 times that of (a).
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FIG. 3. Semilog plot of the angular dependence of two families of dHvA frequencies corresponding to extremal orbits on the
"cigar" and on the "belly" of the coronet shown in Fig. 1.

in fitting our pseudopotential model. In common with~
Watts, the outer orbit on the coronet X' was not
observed.

The p frequencies varying as the secant of the angle
of rotation, show that the neck is cylindrical near
(1120). At 30' from (1120) in both the (0001) plane
and the (1010) plane the secant has been exceeded by
less than is%. At 60' from (1120) the ass frequency has
risen only 2.8% above secant behavior, and yi' only
3.9%.No sharp cutoff in the y frequency was observed.
Rather the amplitude steadily decreased until about
75' from (1120) it reached an unobservable level. The
yl' frequency was not followed since the values of the
neck frequency at crystal symmetry axes and its
behavior in its two synunetry planes were all that was
needed to determine the pseudopotential model param-
eters. Very sharp cutoffs were observed in the ampli-
tude of Ps' at 4.2' from (1010) and of Pss at 3.5' from
(0001), indicating that these orbits have run onto the
neck. Cutoffs in the other p oscillations were not ob-
served because their amplitudes dropped rapidly with
angle and were obscured by the harmonic content of
the e oscillations.

The cyclotron masses m were determined by mea-
suring the temperature dependence of the dHvA ampli-
tude A at a given H. The amplitudes were measured
as a function of temperature and the masses were then

~determined by the least-squares fitting of a straight line
to the expression 1nL(A/T)(1 —e 's r'~) j= bmT/H, —
where b is a known constant (see Lifshitz and
Kosevich"). The number of points fitted varied from
seven to twelve and solutions were obtained iteratively.
In this method, the consistency of the mass value can be
checked by repeating the process for several diferent
values of the magnetic field. If two frequencies are
present this method yields an apparent mass which
oscillates at the beat frequency because a single com-
ponent frequency has been assumed in the calculations.
Even when the second frequency has a relatively small
amplitude a significant variation may be introduced.
In one case, for example, where the amplitude of the
second frequency was 2s% of the first (fs/fi 1.2 and-—
ms/INi ——0.98), the apparent mass oscillated with a
peak-to-peak variation of 12% of the mean mass.

When using the modulation technique in the presence
of two dHvA frequencies, it is possible to null either
component over a range of fields by continuous ad-
justment of the modulation amplitude. However, in
this work, the modulation amplitude was not varied
with H and therefore the null appeared only at some
given field. At neighboring fields the apparent mass

~ I. M. Lifshitz and A. M. Kosevich, Zh. Eksperim. i Teor. Fiz.
29, 730 (1955) [English transl. : Soviet Phys. —JETP 2, 636
(1956)j.
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ALE I. Physical properties of pure beryllium.

Lattice dimensions at O'K'

Unit cell volume at O'K
Brillouin-zone dimensions

Radius of the free-electron sphere
Elastic constants at O'K

in units of 10"dyn/cm'

Work function'
Free-atom 1s leveld
Number of states/atom contained

in the hole or electron surfaces (calc.)
Density of states at Fermi level (calc.)

(expt. )'

c=3.5814 A
a=2.2828 A

Qo= 109.0758 (a.u.)'
FA =0.4642 (a.u.) '
I"E=0.9710 (a.u.) '
kp=1.0278 (a.u.) '

CIy =29.94
C12-—2.76
C13=1.1
C33=34.22
C44 ——16.62
0.23 Ry
8.698 Ry
0.01573

0.85 states/atom Ry
0.99 states/atom Ry

FIG. 5. Cross section of the coronet (not to scale) in the basal
plane showing the approximate position of the p and p orbits for
H lying in the basal plane 15' from (1120).

given in atomic units by

1
B,,=l,s5,,+ S(G;;) e—(G;,)pe(k) —Z„7

Qp

(k, i 1s)(1sik;)-
X , (2)

(1st1s)

where G;;=k;—k; is a reciprocal lattice vector Othe.r-

wise, H;; vanishes. Qs is the unit cell volume and 5(G;;)
is the structure factor. If ~1 and ~~ are the atomic
positions in the unit cell, $(G) =e'o "+e'o'". By
choosing the origin midway between the two atoms,
the structure factors are all real which simplifies the
numerical work. Writing the periodic lattice potential
V as a sum over all sites of an atomiclike potential
e,i(r), the term e(G;;) is found to be the Fourier trans-
form:

e(G) = e'o'tt. , (r)dr.

Similarly if ixt, (r) is the 1s atomic orbital

(1s
~
k) = e'~'ni, (r)dr.

S&, is the 1s atomic-energy level modified by the
presence of the other atoms in the lattice, while E(k)
is the eigenvalue of H to be found. The normalization
constant (1s~ 1s) has been included simply to make the
expressions independent of the particular normalization
used for the atomic functions. It may be seen that the
term arising from the nonlocal part of the pseudo-
potential depends upon k; and Ii; separately, whereas,
in a local model, the matrix element depends only upon
their difference.

a References 19 and 20.
b J. F. Smith and C. L. Arbogast, J. Appl. Phys. 31, 99 (1960).
o R. Schulze, Z. Physik 92, 212 (1934),
d Reference 21.
e G. Ahlers, Phys. Rev. 145, 419 (1966). This value supersedes that

quoted in Ref. 7.

IV. CALCULATION

Equation (2) provides the formal recipe for calcu-
lating the energy levels as a function of position in the
Brillouin zone. The Fermi surface is then constructed
to enclose a volume twice that of the zone and dHvA
frequencies found by evaluating extremal cross sections
of the Fermi surface. The density-of-states curve and
effective cyclotron masses on the Fermi surface may
also be found.

It is important to notice from Eq. (2) that the
eigenvalue E(k) itself appears in the matrix elements
and therefore must be found self-consistently. There is
no serious problem on a surface of constant energy,
where one is interested in k as a function of E, and in
any case convergence of the iteration is very rapid.

The errors which arise from truncating the expansion
of the pseudo-wave function may be minimized by the
correct choice of plane waves included in the combina-
tion. Symmetry considerations suggest that, at least
near the Fermi level, these errors are smaller if 12 rather
than, say, 11 or 13 waves are used. The next smallest
number would be 24.

The final results depend sensitively on the lattice
constants c and a which in the present work (see Table
I) were taken from Ref. 19 and corrected for tempera-
ture using the thermal expansion data of Ref. 20. The
atomic orbital 0.1, is taken as the free-atom wave func-
tion, tabulated in Ref. 21.

To complete the setting up of a matrix element it is
necessary to know the potential e, r, (r) and also the
shifted atomic core level E1,. Following the method of
Ref. 22, the coefFicients e(G) which depend only on the

'9 G. London {private communication).
~OR. W. Meyerhoff and J. P. Smith, J. Appl. Phys. 33, 219

{1962).
» F. Herman and S. Skillman, Atomic Structure Calculations

{Prentice-Hall, Inc., Englewood Cliffs, X. J., 1963}."J.C. Kimball, R. W. Stark, and F. M. Mueller, Phys. Rev,
162, 600 (1967).



674 TRIPP, EVERETT, GORDON, ANI3 STARK 180

magnitude of G are treated together with Ei, as dis-
posable parameters chosen to minimize the deviations
between calculated and observed dHvA frequencies.
Since results are sensitive only to the shorter G vectors,
it is possible to determine accurately only four values
of e(G) corresponding to the vectors 1010, 0002, 1011,
and 1012. The value of e(0001) does not affect the
results because S(0001) vanishes while n(0) simply
fixes the zero of energy: Neither is given by this method.
For the longer G vectors, the off-diagonal elements are
set to zero, equivalent to assuming exact cancellation
between the local and nonlocal parts of the pseudo-
potential.

There are several salient features of the experim. ental
Fermi-surface results which are of great use in guiding
the procedure for frequency fitting (see Figs. 3 and 4).
The first and most obvious is the absence of pockets of
electrons, both at I' (the lens) and at I (butterflies and
needles) which in an empty lattice model would be
present. In the earliest stages of 6tting, this rules out
certain combinations of parameters immediately.
Having removed these unwanted pieces of the Fermi
surface the next feature to notice is that the necks con-
necting up the coronet are very thin and have a low
effective mass. These y frequencies are sensitive to all
the parameters and thus act as effective constraints.
Another distinctive observation is the appearance of
the beat frequency o.' —n' in the cigar oscillations. Only
for restricted ranges of the parameter values does this
waisting in the cigar occur in the model. It turns out
that the beat frequency is particularly sensitive to the
energy difference (E—Er,) in the nonlocal term. It also
depends upon the energy at which the T~ and T4 bands
cross each other near E on the FE axis (see Sec. V).
It seems that good agreement is obtained only when
this crossing lies below the Fermi level, so that Tj
de6nes the I'E dimension of the cigar while T4 de6nes
the coronet. With these general considerations in mind,
the 6tting procedure for the dHvA frequencies was
considerably expedited.

V. RESULTS AND DISCUSSIOH

Some relevant data for pure beryllium are shown in
Table I, while in Table II the final values of the 6tted
pseudopotential are listed and compared with other
possible forms of the potential. It is worth mentioning
here that the pseudopotential 6t ted in the way described
is not necessarily unique and neither is it altogether
independent of the numerical procedures used in the
calculation. For example, small changes would be re-
quired if a different number of plane waves were used
in the expansion. The second column in Table II gives
values of the Fourier transform of the self-consistent
potential used by Loucks and Cutler in their orthog-
onalized plane-wave (OPW) calculation. ' Since the
pseudopotential and OPW formulations are essentially
id.entical, the potentials should be comparable and

YA&LE II. Comparison of potential coefficients used in beryllium
calculations. Values of v (6)/QD are given in Ry.

Present
6 work

1010
0002
1011
1012
0000

-0.1947—0.1630—0.1537—0.1163—0.62'
8.64

Loucks and
Cutler

-0.1809
=0,1587
=0.1513—0.1009

Local
approx. '
0.0571
0.0889
0.0981
0.0976

Heine and
Animalub

0.0334
0.0470
0.0479
0.0318—0.352

'Obtained from the full non1ocal matrix element LE@. {2)g where both
states lie on the Fermi sphere.

b Note that these values have been normalized to the unit cell volume Go.
& Estimated, using the experimental work function of beryllium.

"A. O. E.Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).

indeed it appears that the average difference between
the two is only 0.009 Ry. If the nonlocal term in the
pseudopotential Eq. (2) is evaluated with both states
on the Fermi sphere, free-electron radius kp, and added
to the local term, then the resulting local-type potential
should be comparable with the form factor derived from
the model potential by Animalu and Heine. " (For
G) 2kF, initial and Rnal states are antiparallel. ) The
comparison is shown in the last two columns of Table
II and for the three Brillouin-zone planes intersecting
the Fermi surface, there is a factor of almost 2 between
them. This difference seems to have no simple explana-
tion. A glance at columns one and three shows that the
cancellation of the crystal potential by the orthogonal-
ization terms in Eq. (2) reduces the strength of the net
potential by a factor of 2 or 3. However, a brief investi-
gation of such a local form indicated that not only was
quantitative agreement with experiment poor, but also
the unwanted pieces of the Fermi surface (lens, butter-
Ries) appeared. If beryllium behaves in this respect at
all like magnesium, "then a local 6t might be expected
to be inferior. The value of v(0) in the table was esti-
mated from the experimental work function of beryl-
lium. The energy difference Ep —E&, used in the calcu-
lation 8.64 Ry lies close to the value it would assume
if the free-atom level were unaGected by the presence
of neighbors in the crystal, namely, 8.46 Ry.

In Table III some calculated dlvA frequencies are
compared both with our own observed values and also
with those of Watts. Corresponding cyclotron masses
are included in this table. The high accuracy of those
frequencies used in the parameter fitting process is
maintained for other directions of the magnetic field,
as may be seen in Table III. It is encouraging that even
though the potential can distort the free-electron sphere
enough to exclude the smaller overlaps into higher
Brillouin zones, yet the model agrees so well with
experiment: In symmetry directions the agreement is
better than 1%.Following the frequency branches out
from the symmetry axes, this accuracy is maintained
except for the sensitive y frequencies. Even here the
deviations increase only to about 2rs'Po. The number of
electron states per atom in the cigar is equal to the
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TABLE III. Calculated and observed dHvA frequencies and the corresponding cyclotron masses. Frequencies are in units of 10 G
while masses are relative to a free-electron mass of 1. The last column shows the mass enhancement factor.

Field direction 8,
and branch

Cigar

Present
calculation

dHvA frequencies
Present

experiment 'P& di6.
Watts
expt.

Present
(calc.)

Cyclotron masses
Present
(expt. ') Fxpt. /calc.

0.'
Qp2

ng'
A2

0!2
CX2

Pl
Pl
Pl
Pl
Pl
Pl
Ql
QQ

pl
p 2

p 2

p 2

p 2

p2
p Q

00
0'

20
20'
50'
90'
90'

Coronet
90'
78.6'
70.1'
60.6
54.5'
50.6'
90'
90'
90'
90'
90o
85'
750
65'
52'
0'
0'

9.48b
9.75b

10.14
10.35
14.92
53.77b
53.08

0.1097b
0.1119
0.1167
0.1262
0.1353
0.1428
0.2257
0.1270

12.41
15.31
14.86b
14.64
13.74
13.06
12.75

393.8
528.1

9.42
9.72

10.07
10.31
14.90
54.0
53.1

0.110
0.112
0.116
0.127
0.138
0.146
0.226
0.127

12.4
15.3
14.91
14.60
13.68
12.98
12.65

0.6
0.3
0.7
0.4
0.1—0.4
0.04

—0.3—0.1
0.6—0.6—1.9
2 02—0.1
0.0
0.1
0.1—0.3
0.3
0.4
0.6
0.8

9.55
9.85

53.7
53.7

0.113

0.23
0.131

12.5
15.4
15.0

381

0.136
0.142
0.145
0.151
0.213
0.496
0.491

—0.0178—0.0182—0.0190—0.0205—0.0220—0.0233—0.0372—0.0207—0.21.4—0.298—0.285—0.273—0.237—0.215—0.203
1.021—1.405

0.168
0.170
0.180
0.180
0.251

—0.0212—0.0215—0.0223—0.0240—0.0259

—0.260—0.35+0.02—0.35%0.03—0.33+0.02—0.285—0.256—0.256

1.24
1.20
1.24
1.19
1.18

1.18
1.18
1,17
1.17
1.18

1.22
1.17
1.23
1.21
1.20
1.19
1.26

a The uncertainty in masses is estimated to be &3% except vrhere specificall stated.
b Used in the frequency fitting procedure.

TAsLE IV. Calculated caliper dimensions of the Fermi surface
in (a.u.l ' (see Fig. 2 for designations).

Caliper

ECJ
Eb
rc
rd
Er
Xe
r/
rg
lk
ghrl
rp
rI,0
Pcl
uk

Present
calc.

0.1317
0.0711
0.1239
0.0728
0.129
0.4288
0.5777
0.762
0.2518
0.108
0.5796
0.590
0.0196
0.0095
0.0098

Watts'

0.09(O)
0.09(0)
0.09 (2)
0.09(2)

0.48
0.56

0.23
0.13
0.57

0.02

0.08

Loucksb

0.141
0.075

0.453
0.574

0.246
0.118

0.017

0.008

Terrell'

0,190

0.185

0.465
0.59

0.23

0.58

0.01

a Reference 5.
b Reference 2.' J. H. Terrell, Phys. Letters 8, 149 (1964).

number of hole states per atom in the coronet, calcu-
lated to be 0.01573.

The situation with regard to the masses shows no
such good agreement and it is generally accepted (see
Ref. 18, p. 125, for example) that the observed masses
are enhanced by electron-electron and electron-phonon
interactions neglected in the present treatment. Within
experimental uncertainties the enhancement factors
shown in the last column of Table III are essentially
constant. We feel that these values are more reliable
than the preliminary ones given in Ref. 7. The en-

hancement factor is in rough agreement with a compari-
son of the calculated density of states at the Fermi
level, 0.85 states/Ry atom, to the value from specific
hea, t measurements on high purity beryllium of 0.99
states/Ry atom (see Table I). where the factor is 1.16.
Note that this divers from the specidc heat enhance-
ment quoted in Ref. 7, being based on an improved
determination of the specific heat.

In earlier 6rst principles calculations, ' ' there was
general qualitative agreement between predicted and
observed values for large extremal cross sections of the
Fermi surface but they failed to fit the finer details of
the surface. This is probably due to the sensitivity of
these features to the choice of potential. These points
are well illustrated by Table IV where caliper dimen-
sions for this model and previous models are compared.

An important point to note from Table IU is the
height je of the cigar (see Fig. 2). The Brillouin-zone

height is 0.4642 (a.u.)
—' so that while the cigar con-

structed by Watts actually overlapped the zone
boundary and contained open orbits the present model

cigar does not. However, as Watts has pointed out. , the
two cases are not experimentally distinguishable on the
basis, for example, of magnetoresistance saturation
because even at 6elds of the order of one gauss there is

magnetic breakdown across the AHL zone face. Watts's
cigar height was based on an assumed circular waist
section of the cigar, whereas all calculations have sub-

sequently indicated a triangular section. The present
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TasLE V. Symmetry point energies relative to r&+ in Ry.

r,+
r4

+
3fg+

3II2
M2
M8+
M4
E6
L]
E,;
J3
Ll
Hj
II2
IJ8

AI
+F
Tj,T4 crossing

Present calc.

0
0.9132
0.5548
0.4998
0.6180
1.4373
1.3222
1.1847
1.4204
0.7004
0.7871
0.6075
0.9614
0.9109
1.3422
0.7927
0.1642
1.7253
0.8796
0.8611

Terrell

0
0.8999
0.5185
0.4644
0.6048
1.2919
1.2996
1.0962
1.3132
0.6415
0.7605
0.5729
0.9278
0.8463
1.2563
0.7588
0.1612
1.5945
0.84

(a)

+K

work gives a value for the radius of curvature at the
corners of the triangle (along I'K) of 0.002 (a.u. ) '.

This last result can be used in estimating a value for
the breakdown field for electrons moving around the
waist of the cigar with the magnetic field along the c
axis. Using the curvatures of both cigar and coronet on
the I"E axis, together with the distance in reciprocal
space, ak, in Fig. 2, across which the electrons must
tunnel to reach the coronet, the breakdown 6eld ob-
tained'4 is about 120 kG. This value is of the right order
to explain the onset of magnetic breakdown observed
by Watts in fields approaching 100 kG, although no
detailed Gt to his data has been attempted. This break-
down has also been observed in the magnetoresistance
rn.easurements of Alekseevski et a/. 25 where a departure
from the usual parabolic field dependence begins around
50 kG."

A comparison of the energy levels at symmetry
points with those of Terrelp is given in Table V. Terrell's
E(k) curves have a slope on the average 6% smaller
than our own which indicates that eRective masses in
Terrell's calculation are 6% higher than ours. Corre-
spondingly, the mass enhancern. ent factors are reduced.
Energy values along symmetry directions have been
computed self-consistently and are shown in Fig. 6.

In a semiempirical model of this type, it is difhcult
to estimate the "accuracy" since the discrepancies
between calculated and measured frequencies are them-
selves used to determine the potential. However, it is
important to know how well the Fermi level can be
found using the volume of the Fermi surface as the

"R.G. Chambers, Proc. Phys. Soc. (London) 88, 701 (1966).
25 N. E. Alekseevski, V. S. Egorov, and A. V. Dubrovin, Zh.

Eksperim. i Teor. Fiz. Pis ma v Redaktsiyn 6, 793 (1967) L'English
transl. : Soviet Phys. —JETP Letters 6, 249 (1967)g.

26N. K. Alekseevski (private communication). Because of an
error of ~m in the Geld orientation shown in Fig. 1 of Ref. 25, the
breakdown observed is between cigar waist and coronet and not
between the ends of cigars as the Ggure implies. This latter break-
down would require very much higher Geld strengths.

Hg

FERMI
LEVEL

K5

KI
4J

LU

HHiH g

Mg

(b)

FIG. 6. Self-consistent energy eigenvalues for
the major symmetry axes.

criterion, because in applying the model to strained
lattices, this level becomes the only quantity to be
determined. Now, the model is effectively insensitive to
changes in Ep small enough to maintain the accuracy
of the selected frequencies, roughly sr%. The uncertainty
in E& is thus set by the neck orbit, since this has the
lowest eRective mass. In this case a frequency shift of
0.4% is produced by a change of 20 pRy which provides
a reasonable estimate of the uncertainty in Ep.

VI. EFFECTS OF STRAIN

As long as any strains in the lattice preserve hex-
agonal symmetry, there is no difhculty in applying the
model of pure beryllium to the determination of the
strain dependence of the band structure, and the strain
and pressure derivatives of dHvA frequencies may be
calculated. The present work treats only displacements
in this class, including uniaxial strain along the c axis
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TABLE VI. Experimental and theoretical values of pressure
derivatives of dHvA frequencies. Values of 8 lnf/BP are given
in units of 10 kbar ' where f is the frequency and p is the
pressure.

TABLE VII. Theoretical values of strain derivatives of dHvA
frequencies. Values of 8 in//Beg are given, where eg is the strain
along the c axis.

Sheet

Cigar
n'
A

Field
direction

(0001)
(0001)

Present calc.

—1.9+ 1.0
1.7~ 1.0

O' Sullivan and
Schirber

—1.0& 0.6
1.6% 0.4

Sheet

Cigar
~1
0,2

Coronet
~1

Field direction

(0001)
(0001)

(1120)

Present calc.

—2.1~0.5—2.2~0.5

—100 &5
Coronet

~1
pl
p2

(1120)
(1120)
(1010)

—15.0~12
3.5~ 1.4
5.5+ 1.3

—40 +10
3 &1

5.0—

e=o

0i ar
f 8p

l50
I

- 5.0— y~, e&90

FIG. 7. Variation of 8 lnf/Bp with estimated Fermi level for
various frequencies f. For p1' the ordinate is in units of 10 ~

kbar ' and for all other frequencies 10 4 kbar 1. The correct
Fermi level on this energy scale is 70 pRy and is indicated by the
vertical dashed line.

"B.Vasvari, A. O. E. Animalu, and V. Heine, Phys. Rev. 154,
535 (1967); A. O. E. Animalu (private communication).

of the crystal and the strain field corresponding to
hydrostatic pressure.

Clearly, it is of first importance to know how the
crystal potential changes with lattice spacings, c and a.
In a first-principles calculation, it is usually possible to
And how the several contributions to the potential,
such as the ion core, exchange, etc., each vary. Even in
a model potential of the Heine-Abarenkov type, the
pressure dependence is known. '~ In this semiempirical
model, however, the potential is available only as a
number of Fourier components s(G) of the local part
of a pseudopotential. The simplest assumption, and the
one used here, is that s(G) is a smooth function of G.
Values appropriate to the changed reciprocal lattice
vector magnitudes may then be interpolated. The core
level E~, which also appears in the pseudopotential is
kept fixed in this treatment. The explicit dependence
of the matrix elements, Eq. (2), on cell volume is in-
cluded in the computation.

For the case of hydrostatic pressure, values of c and
u are obtained from the data in Table I and the changes

in pseudopotential are found as outlined above. The
derivatives are then obtained from the dHvA frequency
diRerences. The Fermi level for the compressed metal
is found as before by equating the numbers of hole and
electron states. To achieve this, the Fermi energy is
estimated and the volumes of the corresponding hole
and electron surfaces are compared. From the density
of states the true value of Ep can then be obtained.
Figure 7 shows how the calculated pressure derivatives
vary with the estimated Fermi level. It is at once
apparent that a correction to the level of 20 p,Ry, which
is the estimated uncertainty in the calculation, would
produce a considerable fractional change in the deriva-
tive values. In particular, the y~ derivative varies some
ten times more rapidly than the other frequencies
because of its small effective mass.

From Fig. 7, using the best estimate of Ep, the
pressure derivatives can be obtained. The results are
shown in Table VI. The available data of O' Sullivan
and Schirber" are in good agreement for the n' ' and P'
frequencies, but there is a discrepancy between calcu-
lated and observed values for y~'. However, despite
the great sensitivity of this frequency to all the param-
eters, the difference lies only just outside the range of
the combined estimated errors. It is of some interest
that both experimentally and theoretically the n' and
n' frequencies change in opposite directions with pres-
sure, but a shift of only 30 pRy would suKce to make
both the calculated values assume the same sign. If the
pressure dependence were linear over a sufIj.ciently large
range, the beat frequency would vanish completely at
a negative pressure (tension) of about 100 kbar. At
tensions of this order, the model also predicts the
appearance of a small lens portion of the Fermi surface,
but well before this, the cigar will touch the coronet
along FE, changing the topology of observable orbits
on the surface. The pressure at which this happens is
also the pressure at which the Tj and T4 levels near K
on FE cross at the Fermi level itself. Table V shows
that in the unstrained metal this crossing lies only a
few hundredths of a Ry below E~.

Some strain derivatives for uniform strain along the
c axis have also been calculated and presented in Table
VII. In the absence of comparable experimental data,
these values must be regarded as predictions.

~' W. J. O' Sullivan and J. E. Schirber, Phys. Letters 25A, 124
(1967); and private communication.
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VII. CONCLUSION

It has been shown how a nonlocal pseudopotential
can be set up and parameterized in such a way as to
give a very precise description of the Fermi surface of
beryllium. Calculated and observed dHvA frequencies
agree in most cases to within 1%%uz. The effective masses
computed for the various orbits indicate an electron
mass enhancement due to many-body interactions of
about 20/z. The model also provides much other useful
information on the behavior of electrons in beryllium.
For example, the detailed knowledge of the shape of the
Fermi surface yields caliper dimensions and allows some
understanding of magnetic breakdown between orbits.
The electronic specific heat also comes out of the
calculation.

Further uses of the model include adapting it for
computing pressure and strain variations of the band
structure. Kith increased precision in calculation and

alternative assumptions concerning the changes in
pseudopotential under conditions of strain, the agree-
ment with experimental values should improve, since
the present approach yields reasonable results. Finally,
this model may also be applied to the case of dilute
alloys where the simplest procedure is to combine the
sects of lattice-dimension changes with changes in the
Fermi surface due to variation in electron density.
Within this approximation, the Fermi-surface topology
is more easily changed by altering the electron concen-
tration than by application of pressure alone. This
interesting problem remains to be discussed in a later
publication.
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Magnetoconductivity of a Fermi Ellipsoid with Anisotropic Relaxation Time
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An extremely simple expression is obtained for the isothermal conductivity tensor for an arbitrarily
oriented Fermi ellipsoid in an arbitrarily oriented magnetic 6eld. The relationship between a simple kinetic
equation and a vector form of the Boltzmann equation is demonstrated, and this relationship is used to show
how to include the relaxation time as a tensor quantity. One again obtains a simple result which possesses
the general characteristics shown to be required by other workers dealing in a diAerent approximation.

INTRODUCTION

' 'N a previous paper, ' the authors have utilized the
~ ~ Ham-Mattis transformation' to obtain a tensor
relationship between the kinetic coeScients of electron
transport calculated for an arbitrarily oriented Fermi
ellipsoid with magnetic field 8 directed along the
3 axis and the corresponding coefFicients calculated for
a Fermi sphere with I along the 3 axis. The resulting

expressions are functions of the elements of the recip-
rocal eGective-mass tensor 8=m ' and the Iiiagnitude
of H. This paper discusses the form taken by the
isothermal-conductivity tensor o- of an arbitrarily
oriented Fermi ellipsoid with 8 not restricted to any
specific direction relative to experimental coordinates.

The result is of an extremely simple form and is a

function of the elements of the mass tensor nz directly

along with the components of H. Herring and Vogt'

have treated the problem of allowing for anisotropy in

the scattering by introducing tensor relaxation times

' H. J. Mackey and J. R. Sybert, Phys. Rev. 172, 603 (1968).
'F. S. Ham and D. C. Mattis, IBM J. Res. Develop. 4, 143

(1960).' C. Herring and K. Vogt, Phys. Rev. 101, 944 (19S6).

v"-"', defined for each ellipsoidal piece of the Fermi
surface such that f-&'~ is simultaneously diagonal with
its corresponding mass tensor nz~'&. Working in this
approximation with emphasis on Maxwellian distribu-
tions, they have shown that the diagonal elements
m ' ... which occur in isotropic scalar r theory, are
simply replaced bv m'*~;,/r&'&, , ; i.e., the tensor r"

formalism weights the diagonal mass elements with
corresponding 7". elements. They obtain expressions for
the various conductivity elements by an iterative
technique which generates a series valid at low magnetic
field. The present paper deals with a highly degenerate
system at very low temperatures such that emphasis is
on a Fermi distribution. Hence the results are applicable
to the metals and semimetals. In the present approxima-
tion, results are obtained in closed form, valid for all
values of magnetic field. Korenblit4 has dealt with the
case where there is a single ~ seen by all the ellipsoids
such that 7". does not belong to the principal axes of any
ellipsoid. He has shown how to introduce 7- directly into
the Boltzmann equation. The present work indicates
how this modified Boltzmann equation may be reduced

4 I. Ya. Korenblit, Fiz. Tverd. Tela 2, 3083 (1960) LEnglish
transl. : Soviet Phys. —Solid State 2, 2738 (1961)j.


