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The energy structure for lattice electrons in an external magnetic field is treated by extension of either
the tight-binding or the nearly-free-electron method. The secular problems resulting from both methods
are identical, if the coupling integrals and the real lattice characterizing the tight-binding method are
interchanged with the Fourier integrals and the orbit lattice characterizing the nearly-free-electron method.
A Bloch-type transformation reducing these essentially two-dimensional secular problems to one dimension
is performed, following the procedure introduced in a preceding paper. For rational fluxes 2 rN/ Mper
lattice cell, an even finite secular determinant is left, yielding a splitting of each zero-field band into M sub-
bands. Total agreement between the level structures resulting from the two approaches is found. The rela-
tion of these structures to the de Haas —van Alphen periods in the case of magnetic breakdown is discussed.

I. INTRODUCTION

HE tight-binding and the nearly-free-electron
methods are known to represent opposite ap-

proaches to the electronic-band structure in crystals.
On the other hand, they too have much in common.
The tight-binding method starts from electron states
localized in real space at different lattice sites. The
splitting of the atomic levels into bands results from
the migration of electrons between neighboring atoms,
that is, from coupling integrals between the lattice
potential and electron orbits at different lattice sites.
The nearly-free-electron method, on the other hand,
starts from plane waves, that is, from electron states
localized in reciprocal space. The formation of gaps in
the corresponding continuous energy spectrum results
from Bragg reflections of the electrons into neighboring
sites of the reciprocal lattice, that is, from Fourier
components of the lattice potential corresponding to
reciprocal lattice sites.

It is the objective of this paper to show that this
analogy can be extended successfully to include prob-
lems which also involve an external magnetic Geld. The
methods used so far in the nearly-free-electron method
may indeed be understood as tight-binding methods in
reciprocal space. An extension of both approaches easily
provides full information on the energy-band structure
for arbitrary lattice potentials and fields. Explicit cal-
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culations are performed for magnetic fields parallel to a
tetragonal or hexagonal axis of the lattice.

The first application of the tight-binding method to
lattice electrons in magnetic fields goes back to Peierls. '
He has proved that the Hamiltonian can be replaced
by the operator E(k), where E(k) is the electron energy
for vanishing Geld and k obeys the commutation relation
Lk,k]=iB. Successful tight-binding calculations of the
magnetic-band structure were performed by Harper'
and by Brailsford. s Using the Peierls E(k) operator,
these authors approximate the eigenfunctions by the
WKB method. The continuous zero-Geld energy bands
are found to split up into broadened Landau levels,
the broadening decreasing exponentially at the band
edges. A direct tight-binding solution of the Hamil-
tonian for Gnite orthorhombic crystals was given by
Gerlach and Langbein, 4 in order to show explicitly the
gradual formation of Landau levels with increasing
crystal thickness. The secular determinant for the limit
of infinite crystals can be reduced to a finite determinant
of order M, whenever the magnetic flux p per unit cell
divided by 2s takes a rational value E/M. The eigen-
values then form M subbands, whose width increases
towards the center of the level system.

' R. Peierls, Z. Physik 80, 763 (1933).' P. G. Harper, Proc. Phys. Soc. (London) h68, 8/4 (1955).' A. D. Brailsford, Proc. Phys. Soc. (London) A70, 275 (1957).
4 E. Gerlach and D. Langbein, Phys. Rev. 145, 449 (1966).
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While experimentally available magnetic 6elds change
the localized tight-binding orbitals only slightly, they
mean a strong perturbation to the free-electron orbitals
used in t'be nearly-free-electron method. Instead of
plane waves and a continuous energy spectrum, one now
has localized Landau states and discrete, equidistant
energies. Calculations of the energy spectrum in lattices
starting from Landau states seeriied to have little inter'-

est, until--Cohen and Falicov' pointed out that an oc-
casional remairiing of the electrons in these orbits in-
stead of following the zero-field energy contours can
produce new quantized orbits responsible for some high-
frequency de Haas —van Alphen oscillations in mag-
nesium. Since with increasing localization in real space
the electrons become more smeared out in k space, they
will more likely tunnel through the small regions of
higher energy caused by the Bragg refl. ections. The low-

field approach to this breakdown phenomenon was given

by Blount. ' A rather general method has been intro-
duced by Pippard. ' ' He assumes the electrons to be
most of the time closely confined to well-defined paths
in real space, but allows switching from one path to
another when the conditions for a Bragg reflection are
satisfied. The centers of all orbits thus connected are
found to form a lattice similar to the real lattice, but
2'/g times as big. It is generally referred to as orbit
lattice. Pippard has applied this model to calculate the
broadening of Landau levels for fluxes per unit cell
equal to 2m;/3f, M integer, so that all centers of the
orbit lattice are identically situated on the real lattice.
Since the switching probability between equivalent
paths is treated as an adjustable parameter, his results
can be applied to weak as well as to strong lattice po-
tentials. An extension to rational fluxes p/2gr=E/M
was given by Chambers, ' using a one-dimensional model
Hamiltonian introduced by Zak. ' The bands found by
Pippard split up in this case into E subbands.

Turning back to the ideas of the tight-binding method
we find that Pippard's model can be interpreted as a
one-band tight-binding method in reciprocal space. The
orbits discussed are tightly bound to a doubly infinite
set of fixed paths in k space; the transitions between
them are caused by Bragg reRections, that is, by the
Fourier components of the lattice potential. Except for
the freely adjustable switching parameter no further
systematic changes of the orbits are considered.

In Secs. II and III we set up the basic equations for a
mnltiband tight-binding and nearly-free-electron ap-
proach in magnetic fields, respectively. In Sec. IV we
calculate in second-order perturbation theory the
broadening of Landau levels due to a one-dimensional

periodic potential normal to the magnetic field. Appli-
cation of the resulting electron orbitals to two-dimen-
sional potentials normal to the field (Sec. V) yields a
secular determinant which has exactly the same form as
that obtained in the tight-binding method. The Fourier
components of the lattice potential replace the coupling
integrals, and the orbit lattice replaces the real lattice.
Each Landau level corresponds to one band. In Sec. VI
we reduce this two-dimensional secular problem to a
one-dimensional one, by means of the Bloch-type trans-
formation introduced in Ref. 4. The general features of
the resulting energy scheme are discussed by performing
a graphic perturbation treatment. Assuming rational
fluxes p/2~=Ã/3f per unit cell of the real lattice in
Sec. VII, we are left with a finite secular determinant
of order 3f (tight-binding method) or Ã (nearly-free-
electron method). Explicit level schemes are calculated
for field directions with tetragonal or hexagonal sym-
metry and in a nearest orbit approximation. The orig-
inal tight-binding bands (or Landau levels) split up
into M (or 1V) subbands, arranged in groups of X (or M).
They are spaced equidistantly for fluxes g/2~ close to
ari integer and energies close to a zero-field band edge.
The electrons primarily move on orbits surrounding
integer fluxes, thus causing discrete levels, and secondly
follow the energy contours in k space, thus not fully
realizing their zero-field mobility: The over-all band-
width is narrowed. In Sec. VIII we occupy ourselves
with the resulting broadening and structure of the
I.andau levels. One-dimensional potentials cause merely
a broadening, while two-dimensional potentials cause. a
broadening and a splitting. The period of the broadening
depends on the area of overlap between adjacent orbits,
and the period of the splitting depends on the area of
the unit cell. Both the broadening and the splitting
entail matching de Haas —van Alphen frequencies
(Sec. IX).

II. BASIC TIGHT-BINDING EQUATIONS

Throughout this paper we will use atomic units,
A=e=m=1. The magnetic field 8 we define relative
to the velocity of light c such that the cyclotron fre-
quency simply equals 8. In the tight-binding method we
use for the magnetic vector potential A(r) the sym-
metric gauge

A(r) =-,'(8)& r) .

The Schrodinger equation for an electron in a periodic
lattice potential V(r) and a homogeneous magnetic
field 8 then takes the form

'M. H. Cohen and L. M. I'alicov, Phys. Rev. Letters 7, 231
{1961).' E. I. Blount, Phys. Rev. 126, 1636 {1962).' A. B. Pippard, Proc. Roy. Soc. (London} A270, 1 (1962}.

'A. B. Pippard, Phil. Trans. Roy. Soc. London A256, 317
{1964).

9%'. G. Chambers, Phys. Rev. 140, A135 {1965).' J. Zak, Phys. Rev. 136, A1647 {1964).

a,"b, = 2m. b, , (i,j= I, 2,3) (3)

and choose the magnetic field I to be parallel to a3. This

Denoting an arbitrary set of basis vectors for the real
lattice by a, , we define the reciprocal basis vectors b, by
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restricts B only slightly, as long as we do not consider
a; to form a highly symmetric basis. It enables us to
separate the Hamiltonian (2) with respect to as by
means of the Bloch theorem and to handle (2) through-
out the major part of this paper as a two-dimensional
differential equation.

For the set of atomic functions or, better, Wannier
functions, required for the tight-binding approach
we use the notation ( ~

an)), where a is an arbitrary
lattice vector, a=+, is,a, , and n is the band index. We
assume them to be equally gauged, by mx&ltiplying the
zero-field functions by the phase factors e """.

Let us, for simplicity, first consider the two-dimen-
sional case, that is, a two-dimensional lattice potential
V (r) which varies only in directions normal to the field,
and with no variation of V(r) parallel to B. Reserving
the notation a for three-dimensional lattice vectors, we
denote two-dimensional lattice vectors normal to B
generally by e, with

ss= plal+psas a=ss+sssas

so that the set of orbitals necessary for the two-dimen-
sional case is ( ~cn)).

In order to solve the Schrodinger equation (2) by the
variational principle, we have to calculate the matrix
elements of H Ewith respec—t to ~en) and to equate
the resulting secular determinant to zero. If we assume
the overlap integrals to vanish and use the general
gauging relation

(a'n'
~

H —E
~
an) = ((a' —a)n'

~

H E~ On)—
X exp[—'iB(a Xa')], (5)

we obta, in

{n'n'~ H E,
~

nn) = (EI„—L)8„„8 + U „(—ss' —n)

Xexp[-,'iB(nXss')], (6)

where F."„is the expectation value for the KE,

H„= (On~ —,'{—iV' —A(r))'
~
On), (7)

and U„.„(ss) is the coupling integral defined by

U„„(n)= {nn'
~
V(r)

~

On) . (g)

Equation (6) gives the general secular problem for the
two-dimensional tight-binding case. The exponential
exp[-', iB(nXn')] shows the most important effect of
the magnetic field on a transition of an electron from

~nn) to
~

u'n') to be a phase shift, which equals half the
magnetic Aux through the parallelogram spanned by e
and e'.

Turning to the three-dimensional Hamiltonian (2),
we use the same procedure as before, but replace the
two-dimensional orbital set (~nn)) by Bloch sums

( ~
n8sn)) over the three-dimensional orbital set ( ~

an)) .
We put

~
e8,n) =g e-'»' ~ans), (9)

where 83 is the wave number for the a3 direction, or,

more exactly, the projection of the wave number in the
hs direction on as. Then, applying (5) once more, we
obtain for the matrix elements of /X —F. with respect to
in8sn)

(n'8'n'~H —E~ 8.n)=8(8' —8)([H (8)—E]8..8 ~

+ U„„(n, '
n,—8,) exp[—'iB(eXa')]), (10)

where U ~ (n, 8s) is a Bloch sum over coupling integrals
for varying p3 and fixed e,

U. „(ss,8,) =p e'»'s(an'~ V{r) t On),

and H„(8s) is obtained from the expectation value H
for the KE and a Bloch sum over coupling integrals for
varying p3 and e=o,

H.(8s) =H.+P ~'"sss(Psasn'~ V(r)
~
On). (12)

The secular problems (6) and (10), obtained for the two-
dimensional and three-dimensional case, respectively,
are equivalent, since 8(8s' —8s) separates (10) with re-

spect to the field direction. The transition from the two-

dimensional to the three-dimensional case is achieved

by the replacement of the energy integral H„and the
coupling integrals U „(n) by their Bloch sums H (8s)
and U „(ss,8s) with respect to the as direction. There-
fore, in the following sections we generally treat the two-

dimensional case (6) and return to the three-dimensional
case (10) only in order to obtain the correct electron-
state density.

In applying (6) and (10) we have to k.eep in mind,

firstly, that the separating 8 functions
b(8s' —8s) multiplying the energy-term result from the
omission of all overlap integrals; and, secondly, that
the most important coupling integrals between orbitals
at adjacent sites are not generally characterized by low

values of p, & and p, 2, because of the choice of an arbitrary
basis a, . Except for highly symmetric field directions,
none of the nearest-neighbor coupling integrals can be
found within the U„„(n), so that only the three-
dimensional approach is meaningful.

III. NEARLY-FREE-ELECTRON METHOD

For the nearly-free-electron method we keep the
condition B~~as and introduce a Cartesian coordinate
system, x, y, s, where the s direction coincides with a3,

and, consequently, the xy plane coincides with the plane
spanned by b, and h, .

For the vector potential it is more appropriate to use
instead of (2) the asymmetric gauge

A(r) =B[O,x,O).

With this gauge, the Schrodinger equation (2) takes
the form

(H E)P= ( ;V','+-';( iV„——Bx,)'——
+ l (r) —~-)0(r) =o (14)
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For the lattice potential we use (following the nearly-
free-electron method) the Fourier expansion

V(r) =Z V(b)e*" V(—b) = V*(b), (1~)

where b runs over all reciprocal lattice vectors; b
, p,b, . Splitting up b into the components

g=uibi+p2b2, b= y+p3b3) (16)

we note that g r projects r on the xy plane t or (bi, b2)

plane], while z affects merely b3 r
In order to separate the Hamiltonian (14) with re-

spect to the field direction, we follow a procedure which
is closely related to that applied in the tight-binding
method. However, the roles of the real space and re-
ciprocal lattices are interchanged. We distinguish once
more between the two-dimensional approach, in which

V(r) shows no variation parallel to the field direction,
and the more general three-dimensional approach.

ln the former case we are left with

In order to prove the latter, we displace r in U(r)
by (a...a;„,0), i.e., the xy component of a,(i= 1,2). This
is equivalent to a displacernent of z by the negative z

component —a;„according to the general relation
V(r+a, )= V(r). Such a change of z in the potential
V(r) of (18) does not affect the eigenvalues E(x,y; 83),
but results in replacing c&,(x,y; z) by c&,(x,y; z—a,,).

Consequently, we can expand E(x,y; 8~) into the
Fourier series

E(*,y; 8,) =g V(y, 8,)e'e'
P

(20)

where the notation V($,83) for the Fourier components
is chosen so as to emphasize the fact that E(x,y; 83)
serves as potential for the following integrations within
the xy plane. E(x,y; 83) is independent of B, since in (18)
by cancelling the xy components of the KE we also
cancelled the magnetic field.

Knowing the set {c&,(x,y; z)) and {E(x,y; 83)) of
eigenstates and eigenvalues of Eq. (18) we try to solve
the Schrodinger equation (14) with the ansatz

{ ', V~'+ ,'—( —iV„-Bg—)'+Q—V(g)e'~' —E)
P

&&4(»y) =0 (17)
P(r) =Z c (x,y; z)f (x,y) . (21)

{——;V,'+ V(r) —E)c(x,y; z) =0.

Fquation (18) is an ordinary differential equation of
second order with regard to the z variable. As potential
we use the total lattice potential V(r), which is periodic
in z, with the period being as according to our choice of
coordinates. The variables x, y normal to B are to be
treated as external parameters. Thus, using Floquet's
theorem, we classify the eigenstates of (18) by their
wave number 03. We denote the eigenstates and eigen-
values by c8,(x,y; z) a,nd E(x,y; 83), respectively, with

cp, (x,y; z+a,) = e"&cp,(x,y; z) (19)

and find the partial eigenvalues E(x,y; 83) to be periodic
not only with respect to 83, but also with respect to x
and y.

The omission of all Fourier components V(b) with p3/0
implies that, for most field directions, actually none of
the most important Fourier components corresponding
to nearest neighbors in the reciprocal lattice remains.
An investigation of (17) then provides qualitative in-

formation on the level structure. For quantitative re-
sults, however, it is necessary to solve the three-
dirnensional secular problem. The treatment of the two-
dimensional equation (17) can be shown to yield an
already correct level structure, if B takes a highly sym-
metric lattice direction, so that most neighbors lie in
the (bi,b,) plane, and overlap regions distant from this
plane can be excluded on energetic reasons.

Turning to the three-dimensional Schrodinger equa-
tion (14) we ignore in a first step the xy components of
the KE and solve

We can separate the equation with respect to 83, and we
obtain

{ ', V,'+ ,'( —V—'„Bx-)'—+E(x—,y; 8 ) E)—
&&0~.(x,y) =0, (22)

if we assume that all spatial derivatives V V(r) of the
lattice potential can be neglected, compared to V(r)
itself. Explicitly, we neglect 7', ,„co,(x,y; z) and 7', ,„'
Xce,(x,y; z) compared to E(x,y; 83) and co, (x,y; z).

The error linked with the separation (22) can be
estimated, if we assume that the motion of wave packets
in reciprocal space follows approximately the Lorentz
equation. That is, we do not consider an interaction of
states with different wave number 83. Substituting (21)
into the Schrodinger equation (14), multiplying with

cg,*(x,y; z) from the left, and integrating over z, we

dispose of the hitherto arbitrary xy-dependent phase in

co,(x,y; z) such that J'dz c&,*(x,y; z)V', „cq,(x,y; z) =0.
We are left then with the second derivatives

J dz c&,*(x,y; z)V, ,„'cg,(x,y; z), which we include into
the potential E(x,y; 83). After some transformations we

6nd that

E,(x,y; 83) = ——,
' dz cp,*(x,y; z)(V,'+V'„')c8,(x,y; z)

1
2

&',b u3'=y3~o

t v'.
,„V(b')e* '~]*~,„V(b)e~

LE(8+2 u ) —E(8)]'
(23)

with V, „being the two-dimensional V operator
(V'„7„,0). The keeping of the spatial derivatives of

co,(x,y; z) results in an extra potential Ei(x,y; 83) in (22).
Ei(x,y; 83) can be considered small compared to
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E(x,y; 8&) if the Fourier components V(b) with ps/0
produce an only smoothly varying potential in the
(b&,bs) plane, i.e., if.B takes a highly symmetric lattice
direction. For other field directions (22) must be re-
fined by adding the Lorentz potential E&(x,y; &&).

{Note that

V, ,„N(r) V, ,„r)(r)= LBXVN(r) j.LBXVr)(r) j/Bs

with arbitrary functions N(r), r)(r).}
Throughout this paper we generally think in terms of

the simpler two-dimensional case (17), yet refer to the
three-dimensional equations (18) and (22) for quanti-
tative reasons. The essential change between both cases
is achieved by replacing V(g) with V(L3,8s).

tions analogous to (28) in the next section. In this sec-
tion we temporarily assume V(r) to be independent of
bs r. (Note the simultaneous use of two different co-
ordinate systems. We do not assume x,y to coincide
with rr ——br r/br, r, = bs r/bs. ) To solve the Schrodinger
equation (17) with the remaining one-dimensional po-
tential we make the ansatz

(29)

where the Xe(x) are an arbitrary set of functions. By
inserting (29) into (17), eliminating the y dependence
by a Fourier transform, and shifting the origin of x to
(k„+P„)/8, we obtain

P=e'"pp(x), (24)

we are left with a harmonic-oscillator equation in the
x direction, whose eigenvalues are the equidistant
Landau levels

IV. ONE-DIMENSIONAL POTENTIALS

For a perturbation treatment of (17) Lor (22)j we
note that in the limit of vanishing lattice potential it
can be separated by applying Floquet's theorem in the

y direction. Substituting

{—
z V.'+z(Bx)' —E}7re(x)+ Z V(K)

O'I Ibi

,( k.+P")- I'
Xexp iP I x+ I xe e'I x+— 1=0. (30)

) 4 8)
The only term depending explicity on g is the phase
factor exp(iP, P„/8) in the perturbing term. This ex-
ponential, as well as the wave number k„, can be elimi-
nated by the substitution

E=8(n+ ', ), - (25)

and whose eigenfunctions are the Hermite functions

|'P,k„P,P„)
xe(x) =exp il + I

x(x).
k 8 28)

(31)

We are then left with the single equationk„q ( 1 By' )'
h„l x—I=I —

I
H (()e &'";

8) E2.n!
(~8) k /8 (26) {—,V'g +-, (Bx) —E}x(x)1 2 1

&0" I V(r) I4) =Z V(5)~(k.' —k.—P.)(v'I e"*'I p) (27)

The 8 function 8(k„'—k„—P„) in (27) means that only
those oscillator functions interact, whose origins are
separated by hx=P„/B. Thus the system of functions
to be used in a perturbation treatment of (17) is re-
duced to functions of the form

e*'"~+ep»h„[x (k„+P„)/8j. — (28)

The selection rule hx=P„/8 for the origin of inter-
acting states is the basis for Pippard's~ ' investigations
of magnetic breakdown and the Landau level broaden-
ing by means of the orbit lattice. We use the orbit lattice
throughout this paper repeatedly as a very useful in-

terpretation, although our calculations are not based
on it at any stage. For more information on the orbit
lattice, we refer the reader to Pippard's original papers.

We return to the general treatment of two-dimen-
sional lattice potentials normal by B by means of func-

Then, calculating the matrix elements of the lattice
potential with respect to the free-electron functions (24),
we obtain

+ 2 V(y)«p iP*I*+ I &I x+—I=o. (32)
t' P '! ( P))

e))» & 28) E 8)

The eigenfunctions of (32) for vanishing lattice po-
tential are once more the Hermite functions h„(x)
as given by (26). For the matrix elements of
expl iP, (x+P„/28) j with respect to h„(x) we find, fol-
lowing a procedure similar to that of Quinn and
Rodriguez, " that

Po) ( Py)
c ..(p) =(h„,(x) exp g.~~

x+
~

h,
~~
x+—

~8)
Ps y n tn'!

=expl—
48) 2"+"' (n' o)!(n o—)!o!—

/ P*+iP,q"' '/ P. iP. "--—
X i Ii, (33)

E gB ) E ~8
where the sum over 0 can be replaced by Laguerre

r~ J. J. Quinn and S. Rodriguez, Phys. Rev. 128, 2487 (1962).
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ception are the zeros L„(bi2/28) = 0. The level broaden-
ing in this case is due to the second-order terms and the
band edges are obtained by replacing V(b&) by l V(b&) l

and il V(bi) l, respectively.
Variations of the magnetic field change the phase of

the cosine term in (40), thus shifting either up or down
the approximate curve for L„shown in the left-hand
diagram of Fig. 1. This causes rapid simultaneous
changes of the bandwidths and the mutual repulsion
shown in the right-hand diagram of Fig. 1.

y= B(aiXa2), (41)

has to be equal to 2x divided by an even integer, which
is just the case Pippard discussed in his investigations
on magnetic breakdown. ' His procedure corresponds to
a solution of Eq. (32) by means of pxi" (x)+qxi2~(x),
where y "i(x) and x"'(x) describe different possible
electron orbits in k space, and p, q are adjustable switch-
ing parameters (p'+q'= 1). For p= 1 one obtains
Landau levels matching the area enclosed by the orbit
corresponding to x'"(x); for q= 1 one obtains Landau
levels matching the area enclosed by the orbit corre-
sponding to y &'&(x). The level broadening given by (35)
corresponds to that obtained by Pippard near these
limiting cases p= 1 and q= 1, i.e., the dependence of p
and q on 8 may be taken from (35) and (40).

The condition of rational fluxes per unit cell, B(aiX a2)
=2m./M, has been used repeatedly in derivations of
one-dimensional effective Hamiltonians. Among these

V. TWO-DIMENSIONAL POTENTIALS

In Sec. IV we were able to separate the one-dimen-
sional set of differential equations (30) for zo(gljbi)
by introducing an appropriate phase factor. We ob-
tained an uncoupled set of equations (32), whose eigen-
values may be degenerate.

Turning back now to two-dimensional lattice po-
tentials, we find that an analogous separation no longer
is generally possible, since in deriving (32) we explicitly
used exp[i(g'Xg). /28j=1 for all reciprocal lattice
vectors g, g' under consideration, (g,g'llbi). However,
also for a two-dimensional variety of vectors g, g' there
are similar possibilities for separating (30) with respect
to g. That is, exp[i(g'Xg), /28j becomes equal to 1,
if we assume (g'X g),/28 to be an integer multiple of
2ir for all combinations g, g, which obviously is true
if required for the basis vectors bi, b2. Thus finding
(32) to be valid again, but for all vectors gJ B, we

apply the same perturbation treatment as in the one-
dimensional case and obtain equations similar to (35)
and (36), yet without the restriction gllbi. The level
structure shown in Fig. 1 is qualitatively maintained,
except for the increased number of broadening Fourier
components V(g).

The condition used here, (bi Xbi),/28= 2irM, can be
transformed by means of (3) to give B(aiXai) = 2m/2M.
The magnetic Aux p per unit cell of the real lattice,

we mention the reciprocal methods of Harper' and of
Zak. '0 Harper uses the E(k) operator introduced by
Peierls, ' which he separates by means of plane waves
in the y direction and arbitrary functions in the x direc-
tion. Approximating the latter functions by the WEB
method he ignores the translational properties imposed
on the eigenfunctions by the magnetic field. He obtains
the correct broadening but no splitting of the Landau
levels. Zak, on the other hand, uses functions adapted
a priori to the magnetic translation group. ""He re-
duces the two-dimensional Hamiltonian by means of
the relations imposed on the Fourier components of
these adapted functions by the periodic boundary con-
ditions. This group theoretical procedure yields neces-
sarily the correct information on the magnetic band
splitting. The method applied in the present paper is a
generalization of that given in Ref. 4. The derivation of
(32) inclusive of the two-dimensional extension to I3J B,
follows the procedure of Harper, i.e., the Hamiltonian
is separated without regard to the magnetic translation
group. Compatibility with the latter is obtained in
Sec. IV by using Landau orbitals in each stage of the
perturbation treatment, and in the following sections
by applying periodic boundary conditions.

Going back to arbitrary values of the flux P, we find
the set of differential equations (30) to split up into 2X
subsets, whenever p equals 2irM/A. This gives rise to a
splitting of each broadened Landau level into E
subbands.

In order to treat the two-dimensional nearly-free-
electron approach in a completely general fashion and
to show its close relations to the tight-binding approach
we now introduce the perturbation treatment mentioned
in Sec. IV. We use a set of ansatz functions similar to
those defined in (28), namely,

l gn) = exp[i(k„+P„)y] exp[i(k„+-', P„)P./8j
X ~.[x—(k„+P„)/8). (42)

where H„, as in the tight-binding case, is an expectation
value for the KE

a„=(W„(x) lk[—iV —&(r)32
I V„(x))

'4 K. Brown, Phys. Rev. 133, A1038 I,'1964).
"J,Zak, Phys. Rev. 134, A1602 (1964).

(44)

The second exponential on the right-hand side is in-
cluded so as to follow as close as possible the procedure
used for the one-dimensional case. In (42) we use general
functions io„(x) instead of the Hermite functions h„(x);
this enables us to include orthogonal orbitals already
corresponding to a given nearly-free-electron band struc-
ture, although we mostly think in terms of Hermite
functions h„(x). The calculation of the matrix elements
of the Hamiltonian (17) with

l
gn) yields

(y'n'
l
a—I:

l yn) = (e.—Z)s„.„s,,+C„.„(y'—y)

X V(g' —g) exp[i(g' Xg)./28 1, (43)



640 D I ETER LANGB EI N 180

Oi

rmvvm v
sMvv&n, M~'NR ~UV~

lattice potential and changes the gauge of the electron
orbits. On the other hand, a switch by a vector e of
the orbit lattice maintains the gauge of the electron
orbit but changes its position relative to the lattice
potential. This can be compensated by a shift of the
lattice potential in the opposite direction.

Compensating for this opposite phase shift by trans-
posing the secular determinant for the orbit lattice,
we note the following equivalences:

8)
I

o

e,
I

I

~nn) ~ (gn~, B(eXn') ~ (g'Xg), /8,
H„a, U ~ ( ) [C „(y)V(y)]*. (48)

FIG. 2. Graphic perturbation treatment: {a) unperturbed bands,
{b) splitting of intersections up to third order, and {c) splitting
of intersections up to ninth order.

and C„. (g), in close analogy to (33), is given by

c- -(y)

=(p (*) I p[g.( +P„/2&)]I I p.( XP,/&)&. (45)

In deriving (43) we assumed that the set of basis func-
tions (42) is independent, i.e., that no two vectors g
have the same value of P„. This implies that the two
coordinate systems x,y and r&, r2 are not commensurate.
Recalling that the system x,y is fixed by the choice of
the vector potential, while r~,r2 correspond to the basis
vectors of the lattice, we have avoided any simultaneous
period of the ansatz functions

~
gn) with respect to the

y direction. Each such period entails a field-dependent
selection rule for the origins of p„(x), thus requiring a
separate treatment of rational and irrational Quxes

g/2~ at a too early stage. We need rational fluxes in
fact only for quantitative numerical reasons.

Equation (43) has exactly the same form as the
central equation (6) for the tight-binding approach.
The energy integrals B between atomic orbitals in
the real lattice are replaced by energy integrals H„
between Landau orbitals in the orbit lattice. The cou-
pling integrals between atomic orbitals in the real lattice
in like manner are replaced by coupling integrals be-
tween Landau orbitals in the orbit lattice. The band
index of the atomic orbitals has become the quantum
number for the Landau levels.

Comparing the exponentials in (6) and (43) we find
that they yield just opposite phase shifts. The center
of the magnetic orbit

~ gn) in real space is given by

= (~./~, -~./a, o), (46)

so that the exponential in (40) can be rewritten to give

exp[i(g'Xg), /28]= expPB (o'Xe)]. (47)

The phase shift on a transition from ~gn) to ~g'n')
equals the negative Aux through the parallelogram
spanned by o and e'. The reason for this opposite sign
compared to the tight-binding result (6) is as follows:
A switch by a vector 0. of the real lattice maintains the

In general, we use the notation of the tight-binding
method, but repeatedly take into account the much
stronger field dependence of the integrals which appear
in the nearly-free-electron theory.

The equivalences given in (48) can be extended
successfully also to the three-dimensional case. If for
the three-dimensional extension of the basis functions
(42) we use ~$8sn)=c&, (x&y; s) ~gn), we find (48) to hold
with H„, U„,„(n), V(g) replaced by H„(8s), U„,„(n,8s),
V($, 8s), respectively.

VI. ONE-DIMENSIONAL SECULAR PROBLEM

In order to separate the two-dimensional matrix (6)
or (43) we follow closely the procedure introduced in an
earlier paper on the tight-binding approach to finite
crystals'; that is, we transform

~
nn) according to

~
8ipsn) =P exp[ —i@i(8r——,'p,y)] ~

nn). (49)

Equation (49) is a Bloch sum for the et direction, yet
with the wave number 8i modified by sip&P. The matrix
elements of H Ewith respect —to (49) are

(8r'ps'n'~a E) 8ipsn) =—8(8r' —8i)((a —E)8„„8„$„s

+ 2 exp[i(pr —ut)(8i —l(~s'+~s)4)]

XU. .(n' —n)}, (50)

where we have made use of (6). In this and in the
following section we assume the coupling integrals
U „(n) to vanish for n'&n (one-band approach), so
that we are left with a one-dimensional secular problem.
A one-band approximation certainly is more in accord
with the tight-binding than with the nearly-free-electron
method. The former method, in fact, turns out to in-
clude the low-field, as well as the high-field case. In
the nearly-free-electron method the one-band approach
corresponds to first-order perturbation theory; a per-
turbation treatment for degenerate states (such as the
unperturbed Landau orbitals for fixed n) requires in
first order their diagonalization with respect to the per-
turbing potential. Interactions between nondegenerate
states (such as the Landau orbitals for n'&n) then
cause second-order perturbation terms. We discuss
these interband interactions qualitatively in Sec. VIII.
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For a further simpli6cation of our notation in the
one-band case we put E=H„+E„and U„„(e)= U(pip2).
The secular determinant corresponding to (50) then
becomes

~ Q exp[i@i(82 (-p ,'—)y))U(pii)
Pl

Z exp[2pl(8& p4')) U(P12) ~ ~ ~

Ã1

Q~ exp[i@i(82—pg) 7 U(piO) E„—
Pl

g exp[i@28(i (p—+-', )g)7 U(pi1)

2 exp[i i(8i —(~+2)4)7 U(~21)
Pl

Z "p['"(8.-(.+1)~)7 U("0)-E-
P1

Z-~ p['"(8.-(.+1)~H U("2)
Pl

Z e pL u (8 —(w+-')4')3U(u 1)

=0

(51)

For one-dimensional potentials in the a~ direction the
determinant (51) is diagonal. This yields the level
broadening shown in Fig. 1 (in first-order perturbation).
Switching on the potential in the a2 direction gradually,
first the nearest-neighbor coupling integrals and. suc-
cessively further off-diagonal terms have to be taken
into account. The bands thus split into several sub-

bands. Since a general perturbation treatment of (51)
yields lengthy formulas, we illustrate the result to be
expected in Fig. 2. Explicit calculations for fields parallel
to a tetragonal or a hexagonal lattice axis are given in

the next section. Figure 2(a) shows a portion of the
one-dimensional energy bands given by the diagonal
elements of (51). Neighboring diagonal elements are
shifted. in the 82 axis by an amount p. In order to include

all first-order interactions (with regard to the two-
dimensional case), we plot each band over slightly more
than one period, so that adjacent bands have just one
period 22r in common. Figure 2(b) shows the energy
bands which result from splitting all intersections when

the off-diagonal elements of (51) are taken into account.
In this way two gaps of first and second order and one

gap of third order arise. They are distinguished by a
decreasing gap width (and the indices 1, 2, 3). (In the
three-dimensional case the nearest-neighbor coupling
integrals may correspond to rather high values of p2,
so that first-order intersections between more distant
diagonal elements result. ) The price we have to pay for
limiting the extension of the one-dimensional bands is
that the resulting bands still are limited fragments.
Consequently in Fig. 2(c) we extended the one-dimen-
sional bands over two more periods [extending in fact
the bands obtained in Fig. 2(b)). Now gaps up to ninth
order occur. The gap width again is assumed to decrease
with increasing order. Continuing this procedure until

either the splitting becomes negligible or the bands
happen to coincide (which requires rational fluxes,
p/22r= E/M), we end up with a generally large number
of field-dependent subbands, which evolve regularly
into groups produced by the lowest-order gaps.

The secular determinant (51) and the perturbation
treatment attached to it seem rather asymmetric with
regard to the crystal directions a&, a2, The one-dimen-
sional bands are produced by the integrals U(pi0) and
split up owing to the effects of U(pip2) with p2)0.
However, carrying out a perturbation treatment for a
finite subdeterminant of order M, we find the symmetry
with regard to ay, a2 restored as soon as M includes
several periods (Mp))22r). The corresponding secular
polynomial is conveniently obtained by the diagram
technique described in Ref. 4, with the adjoined
products given by (6). The diagram between any two
positions e, e' represents the interaction of the respec-
tive orbitals ~a22), ~n'22), thus contributing the factor
U(e' 0) ex—p[2iB(n &&n')). Summing over all non-
equivalent closed graphs which contain an equal num-
ber of diagrams, we obtain for the leading terms of the
secular polynomial

M ME M-2 2 Q U(~) U(~&)
a+a'=0

ME M '-,'—
a+a'+ a"=0

U(e) U(n') U(n")exp[22iB(n&&n'))

+ =0 (52)

U(10), U(01), U(11)QO (53)

[and their complex conjugates U(10), U(01), U(11)).
We are left then with a much simplified secular deter-
minant, which contains elements different from zero
only on the diagonal, in the near diagonals, and in the
upper-right and lower-left corners. Denoting its elements

VIL TETRAGONAL AND HEXAGONAL AXES

In discussing the eigenvalues of (51) we noted a
smooth transition between the level schemes for rational
and irrational cruxes P. Therefore, it is only a mild re-
striction to assume $=22rX/M in the following in-
vestigations. Since the matrix elements of the secular
problem (50) are periodic in -'2(p2+p2') with period M,
we apply Floquet's theorem to the eigenvectors. Then,
using exp(iM82) as a separation parameter, we end up
with a finite secular determinant, which results from
(51) by limiting p to 1&p&M and replacing U(pi@2)
by+& U(p&+2+AM) exp[iPM(82 212&g)) F—r—omapr. oper
permutation of rows and columns one finds that its
period with respect to 82 is also reduced to 22r/M.

In order to obtain explicit energy bands we now
make a nearest-neighbor approximation. To include
directions with tetragonal, as well as with hexagonal
la'ttice symmetry, we keep merely the coupling integrals
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The constant part of the secular determinant can be
conveniently expressed using the symmetric variables

IF = IU(1o)l'+IU(01)[+IU(ii)[
IFs ——Re( U(10)U(01) U(11)), (56)
IF4=

f U(10)U(01) ['+
f
U(01) U(11) ['

+ f
U(11)U(10) ['

+ kV+- cos~f

5 ( Q+Q+ )+(~+I+gg) cosi$
W~ W~

Summing over the graphs shown in Fig. 3 and the
equivalent rotated and inverted graphs we obtain

6 (=+I+ NN)" ( =+//+44)"(. -. )

t W+ Q M+ )(=+-I NN i "'0 N,N

cos&P

( 4+&+ )~( 4+&+ )

p+ + +

cos —,'$

+. . . cos2$

cosset

W 3

FIG, 3. Graphs contributing to a sixth-order perturbation treat-
ment. Each single line indicates a transition between adjacent
lattice sites; the corresponding matrix elements are given by
Eqs. (6) and (43).

by det(p, r), we have

det(p, p) = U(10) exp ji(8i pp)]—+U(10)
XexpL —i(8)—py)] —E„,

det(p, p+1) =det*(p+1, p)
= U(01)+ U(11)XexpLi(8 —(p+-,')p)],

det(M, 1)= det*(1,M)
= (U(01)+U(11)Xexp[ i(8,—(M+-,')y)])

Xexp[iM8s]. (54)

Expanding this secular determinant in terms of products
of its elements we know from its periodicity 27r/M with
respect to P that all nonconstant terms containing less
than M factors exp(i8i) ca,ncel. The only terms de-
pendent on 8~, 02 are hexag

$, 7I'

5 hexa g ono I

E,„~ ME„~—'W~+LM(M 3)/2!]E—~ 4W2s

—LM(M —4) (M —5)/3!]E."-'W,'+
ME ~ —'4 cos-,'&Ws+MI (M—3)/1!
—sinsp/sin-, 'g]E„~ '4 cos-', &WsWsW

—M(sinsg/sin-, 'P)E ~ 'W4

+ML(M—5) sinssP/1! sinsiP
—sinsp/sin-, '$]E„~ 'W, W4%

+ML2 (1+sinssP/sinsg) (M—5)/1!
—(3+sinssP/sins')
Xsin —,'g/sin-', P]E„~ 'Wss+

+(—1)"W(8„8,) =O,

where &= 2vrlV/M Equatio. n (57) generally yields M
allowed subbands for E„, with the band edges corre-
sponding to the extremal values of W(8i, 8s).

We begin our discussion of this level scheme with
the case U(10)WO, U(01)= U(11)=0, then gradually
increase U(01) to U(01)= U(10), and finally increase
U(11) to U(10) = U(01)= U(11). Thus we systemati-
cally evolve from a one-dimensional lattice to a tetrag-
onal structure and from this to hexagonal lattice; the
intermediate values correspond to orthorhombic and
monoclinic structures.

Putting U(01) = U(11)= 0 entails that also Ws and
IV4 vanish. The eigenvalue equation (57) becomes a
Tchebichef polynomial of order M in E„/2+Ws, The
energies corresponding to the extremal values

IF(8&,8,) = (—1)&~+" LU(10)~ exp(iM8i)+c. c.]
+ (—1)-~+'LU(01)~ exp(iM8~)+c. c.]
+ (—1)~&~+"+'LU(11)ir exp(iM(8i+8s))+ c.c.].

(55)

IF(8&,8s) clearly has the form of the nearest-neighbor
tight-binding energy expression in tetragonal or hexag-
onal lattices. In our investigations, U(10), U(01), and
U(11) cannot be assumed to be a priori real. They may
contain phase factors due to the relative shift of the
gauge center and the lattice potential I

as in (37)] or
due to the phase shift at a switching point I as in (34)].

0 ()7) U(0/) U(0/) U(lf)

FIG. 4. Magnetic subbands for M =5 and a gradual
evolution of the tetragonal and hexagonal symmetry.
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&2! U(10)
I

~ of W(8i, 8s) are

E„=2IU(10)
I
cos(Xs/M) (X=O, 1, , M). (58)

En

u{io)+U(oi)
Tet ra gona l

The one-dimensional bands are not yet split, but (58)
denotes the energies, where the splitting for U(01)
«U(10) begins.

Going to arbitrary values of U(10) I with U(11) still
equal to zero) we note that in (57) either even or odd
powers of E„occur. The level splitting thus is sym-
metric with respect to the center J.'„=0.The extremal
values of W(8&, 8s) are given by

&V(8„8,).,=a 2[I U(10)
I

&+
I U(01)

I
~). (59

2--

E„
u(IO) u(OI)

Tetragonal

0-

x lgI

-2

0
/8

Fio. S. Magnetic snbbands for simple ratios p/2s. =X/M
and tetragonal symmetry.

Due to additional symmetries of the secular determi-
nant (54) at these band edges (the eigenvectors become
real and possess a symmetry center), we can split up
(57) further to yield two polynomials of order —',M for
even M and two polynomials of order is(M —1) and
—',(M+1) odd for M. This enables us to obtain explicit
quadratic or biquadratic equations for the dependence
of most band edges up to M= 8 (and also for M= 12)
on the coupling integrals U(10) and U(01).

In Fig. 4 we plot the resulting bands for M = 5. The
right-hand bands correspond to 1V= 1, 4! g—=& ssir (mod
X2')) and the left-hand bands refer to 1V= 2, 3Q —=+ s4s.

(mod2s)). The characteristic difference between both
structures is the position of the first-order gap. For
LV= 1, 4 the first-order gaps are those near the zero-field
band edges; each separates a single subband from the
others. For S=2, 3 the first-order gaps are those near
the zero-held band center; each separates two subbands
from the others. Going gradually from the tetragonal
to the hexagonal case, we find that the upper first-
order gaps are further widened, while the lower ones
are narrowed.

2

0
I I I I I

0 i 0.2 05 0.4 0.5

Fzo. 6. Magnetic subbands for &=25, E=. 1 ~ ~ 12
and tetragonal symmetry.

In Fig. 5 we exhibit the subbands resulting in the
tetragonal case U(10) = U(01) for several simple values
of P, which allow an explicit representation of the roots
of (57). Figure 5 shows that the subbands are arranged
very regularly. They are very narrow at the edges of the
zero-field band and broaden towards its center. The
subbands obviously tend to form equidistant broadened
Landau levels. The position of the subbands depends
primarily on p, while their width and structure depend
on the rational ratio g/2s =.X/M. Note the formation
of groups of subbands, with the number of subbands
per group being given by 1V. (Since the number of sub-
bands equals M, and X and M have no common divisor,
the number of subbands in the central group neces-
sarily must differ from X.)

The largest over-all bandwidth corresponds to @—=0
(mod2s), where it equals the zero-field bandwidth.
Tending to move on the energy contours in k space the
electrons do not fully realize their zero-field mobility
normal to their magnetic orbit, except when the area
of this orbit equals an integral multiple of the unit cell
cross section.

For a further illustration of the above results, so as to
include slightly more complicated values of p, we calcu-
lated the band splitting for M = 25 and E= 1, . , 12 on
a computer. The resulting structure is shown in Fig. 6.
All the facts stated before turn out to be much more
distinct. The broadening of the three lowest and the
three highest levels for g/2m=1/25 is smaller by a
factor of about 10 ' than their spacings. For P/2'
= 2/25, the bands as expected appear in pairs; the gaps
between two consecutive pairs are 10' times larger than
the tiny gaps between the two bands in the same pair.
To indicate pairs, triplets, and quadruplets of subbands
we have doubled, tripled, and quadrupled the length
of the horizontal segments which denote their positions.
Broad subbands occur whenever the rational representa-
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U{lO)+U(OI)+U(I [)

Hexagonal

distinct close to P=—0(mod2vr). Near one of the zero-
field band edges two nearly degenerate eigenvectors of
the secular determinant (54) exist, each one being dif-
ferent from zero only at one side of the extreme of
det(p, p). The erst-order gap near the opposite zero-
field band edge, on the other hand, is broadened com-
pared to the tetragonal case. This gap does not vanish
even for @/2m=-', . The second-order gap, which in the
tetragonal case waslimitedbyg/2m=sr, isnow extended
to//2n=s, etc.

r I
sxii f

I

Fro. 7. Magnetiesubbands for sirnpleratiosp/2m=E/M
and hexagonal symmetry.

VIII. LANDAU LEVEL STRUCTURE

So far we were mainly concerned with the tight-
binding approach, i.e., we neither assumed the total

En

U(1O)+U(Ol)+ U(l I)
2 ——

Hexagonal

tion of&/2m yields low integers%, 3II. The splitting for
p values close to these simple ratios is equidistant.

The switching on U(11) brings about an important
modification of the band splitting which is due to the
fact that according to (54) even the erst-order gap
width det(p, @+1) depends on 8i. This destroys the
symmetry of the band structure with respect to E„=0,
so that in (57) even, and odd powers of E„, occur
simultaneously. The band edges are now obtained from

W(8i, 8s),„
2(—1)~LIU(10)

I
"+IU(01)I~+ IU(ll) I

"]
(—1)~+'LIU(10) U(01)/U(11) I-+cyclic]

(60)

O.l

I
~ l

0.2 0.5 OA

I
I

0.5

FIG. 8. Magnetic subbands for 3f=25, 1V=1, ~, 12
and hexagonal symmetry.

A separation of (57) into two polynomials of order
',pf I or -', (3l—1—) and rs(M+1)] is again possible; the
solution of the polynomial equation, however, is corn-
plicated by the presence of all powers of E„up to —',M.

Figures 7 and 8 exhibit the results of computer cal-
culations for this hexagonal case. Figure 7 is similar to
Fig. 5, and shows the band structure for some low
values of M, while Fig. 8 once more gives the structure
for M= 25 and S= j, . . . , 12. Low values of M again
yield relatively broad subbands. In the vicinity of these
simple rational values, the subbands tend to form equi-
distant Landau levels. To be more exact, they tend to
form equidistant levels at one edge of the broad sub-
bands for low M values and equidistant pairs at the
other. The pair formation is a consequence of the vanish-
ing first-order interaction near the corresponding sub-
band edge. The different translational behavior of the
orbitals I8ipsn) involved imposes a selection rule on the
matrix elements induced by the lattice potential. The
formation of equidistant levels and level pairs is most

bandwidth 2I-U(10)+U(01)+U(11)] to change with
8 nor accounted for the characteristic dependence of
the orbit lattice on B. Experimentally, available Quxes
g per unit cell of the real lattice reach, at best, values
up to IO ', so that the limit of the tight-binding method
is the extreme left of Figs. 5—8. In this region we find
Landau levels whose width increases from the edges
towards the center of the level system .Each level is
represented by a goup of E out of a total of M sub-
bands. The Landau levels near the band edges are equi-
distant. For the mean position of each group of sub-
bands one obtains a generalization of previous results
of Blackman, "of Harper, ' and of Brailsford';

E.()=Z U..(-)-~(+-,)I-(-:Z U..(-»
—Z-'U. '(~)]'" (~=0». .) (61)

1 M. Siackman, Proc. Roy. Soc. (j.ondon) A166, j. (1938).
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y= (1/B)(biXb2), =B(niXo2) . (62)

Experimentally available fields now include a large
number of periods: g))2m. Using relation (3) between
the real and reciprocal lattice vectors we find that

1 (btXb2),

2x 8 2m B(aiXa2)
(63)

The Qux through one cell of the orbit lattice divided by
2~ is the reciprocal of the Qux through one cell of the
real lattice divided by 2x. From this reciprocity it fol-
lows that g/2n and @/2m simultaneously become ra-
tional. In the tight-binding case, p/2vr=lV/M yields a
splitting of each band into M subbands, arranged in

groups of 1V, while in the nearly-free-electron method we
find a splitting of each broadened Landau level into N
sublevels due to @/2m=M/X. This means that the
band structures produced by both methods agree

E/
B

(Equation (61) does not apply to the level pairs arising
in the hexagonal case.]

Turning to the nearly-free-electron scheme, we re-
call that the band index n is the quantum number of
the Landau levels. We have to superpose the structure
shown in Figs. 5—8 on each separate Landau level,
noting that the equivalent for p now is the flux P
through one cell of the orbit lattice. According to (46)
and (48) we have

subbands by the interference effect produced by the
different components V(It), as shown in Figs. 5 and 6,
and Figs. 7 and 8 for the tetragonal and hexagonal case,
respectively. In Fig. 9 the tetragonal case is shown and
only the first- and second-order gaps are actually dis-
played.

%'e did not calculate explicitly the effect of the inter-
band interactions. However, much information is al-
ready contained in the above results: The one-dimen-
sional potential used in Sec. IV yielded zero interaction
between orbitals belonging to different gauge centers.
Orbitals belonging to the same gauge center repel each
other in second-order perturbation theory by an amount
inversely proportional to their energy difference, so
that the repulsion is stronger between narrow bands
than between broad ones, and an effective level shift
in the direction of increasing level broadening results.
In the two-dimensional case treated in Sec. V we see
from the general secular equation (50) that all orbitals
belonging to the same value of 8~ tend to repel each
other. Since the labeling of orbitals by 8& alternates
between adjacent subbands (see Fig. 2), each addi-
tional interaction must broaden the gaps and narrow
the bands. This is also the effect of the interband inter-
actions. As in the one-dimensional case the interband
matrix elements are striclty correlated to the intraband
matrix elements, by relations analogous to (38) and (39).

A lot of information about the interband interactions
may also be obtained from the computer calculations
of Sec. VII. We found each secular determinant (54)
to yield a number of Landau levels, with E subbands
per level for P/2vr=X/M, which is just a multiband
approach. The outer Landau levels (those near the
zero-field band edges) of Figs. 6 and 8 show exactly
the same substructure as those obtained in a one-band
approximation. The inner levels (those near the zero-
field band center) are comparatively broad and tend

t

27r

/25

Tetragonal

/2
= /~

H exagonat

/25

I III/&

Fro. 9. Landau level structure.

totally, whenever the zero-field bands produced by both
methods are alike.

Figure 9 shows the resulting structure of the Landau
levels. As in Fig. 1, a nearest-neighbor approach is used,
and ) bt )

=
~
b2t is assumed. In the first step we ignore

the subband splitting shown in Figs. 5—8, but superpose
independently the broadenings caused by the different
Fourier components V(g).

If we approximate the Laguerre polynomials as be-
fore, then we obtain the band edges shown by dashed
lines in Fig. 9. These preliminary bands are split into

Ist pnd hard 4th

group of subbands

Ist 2nd 3rd 4th 5th 6th

group of subbands

FIG. 10. Comparison of the level structures resulting from a one-
band (P/2~=-3) and a rnnltiband (p/2~=3/25) approach. The
hexagonal levels are alternatively inverted.
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FIG. j.1. Coupled Landau orbits.

to repel each other. This repulsion distorts them towards
the center: The innermost level repels only imperfectly
since it contains, as we saw before, fewer states. Figure
10 shows the structure of the Landau subbands obtained
for g/2m. = 3/25 compared to the Landau level obtained
for g/2~=25/3=3 (mod1). When the bandwidth is
adjusted for the sake of comparison, the agreement
between the two structures is perfect.

A similar splitting of the Landau levels for rational
fluxes &=2m%/M into E sublevels was obtained by
Chambers. ' He uses Pippard's model' and the one-
dimensional model Hamiltonian proposed by Za,k."
Though some features of his treatment coincide with
those used here, he obtains at most two groups of sub-
bands. This, as well as a lack of symmetry with respect
to the lattice directions a~, a~, is due in his case to an
incompatibility in the simultaneous use of asymmetric,
periodic boundary conditions and independent switch-

ing parameters q~, q~.

IX. de HAAS-van ALPHEN AMPLITUDE

In order for the above structure (Fig. 9) to be observ-
able in the de Haas —van Alphen or related effects it is
necessary for the broadening of the Landau levels to be
of the order of their spacing. This is just the condition
which Reitz gave for magnetic breakdown. " Consider-

ing first the broadening we find Landau levels of modu-
lated width to cross the Fermi energy as the field is
varied. To obtain the frequencies of this modulation
from (43)—(45) and (34), we use for the I aguerre poly-
nomials an asymptotic expansion for fixed ratio of
argument to order, namely, "

sin)(ri+ 2) (28—sin28) +~7r7= (—1)" . . . (64)
$~(e+-', )sin287'"

with $2B(n+-')7'" cos8=2P. The angle 8 is conven-
iently interpreted by means of the quasiclassical electron
orbits in k space attached to the Landau orbitals used.
In Fig. 1i we plot four such orbits at adjacent lattice

The lens orbits enclosing 1.& and I.& do not yield quan-
tized levels with spacing Li,~/2m. B, but modulate the
Landau levels produced by the central circular orbits
C )with the de Haas —van Alphen period h(1/B) = 2n./C7
according to (65).

The structure of the broadened Landau is caused by
orbitals actually including the two-dimensional varia-
tion of the potential (by those graphs shown in Fig. 3,
which include a nonzero flux). The decisive variable
for this structure is the Aux @, so that also a periodic
behavior in 1/B results, i.e.,

~(1/B) =2 /~b, Xb, ~. (66)

However, the very short period given by (66) can hardly
be detected in the de Haas —van Alphen effect. Physi-
cally one should observe 6rst the hole orbit S (Fig. 11),
which is related to the central orbit C, the lens orbits
Li and L2, and the reciprocal lattice cell by

~
biXb2~

= C—Li—Lg+5.
It is questionable whether even the Landau sublevel

crossing of the Fermi energy could give rise to rneasur-
able de Haas —van Alphen oscillations. Figures 6 and 8
show these sublevels to be roughly equidistant only at
values of p close to zero (mod2z). The corresponding
orbits thus enclose a very large number M of cells in k

space, which gives rise to a probably unobservably large
frequency in the magnetization. Similar conclusions
on these hyperorbits were drawn earlier by Chambers
and Pippard. '

The typical behavior of the de Hass —van Alphen
susceptibility is shown in Fig. 12. %ith respect to the
a3 direction the free-electron-state density 1V(E) ~
(8—E„)'"has been assumed. The broadening of the
Landau levels resulting from the central orbits C by
the lens orbits L~ and I.~ means that its amplitude is
modified.

If the broadening were neglected, the contribution
of the C-orbit quantization to the susceptibility would
read in our notation"

xosc
C sin[i C/B (p+~~)7r727r'vkT/B—

(2ir)'QB =i v' "sinhI 27r'vk T/B7
. (67)

1~ L. Landau, Proc. Roy. Soc. (London) A170, 363 (1959}
(appendix to a paper by D. .Shoenberg}.

sites 0, bi, b2, bi+b2. 8 is the angle between these orbits
and the Brillouin-zone boundaries at +-', g, while
2B(n+-', )(28—sin28) measures the area of overlap be-
tween adjacent orbits. The indication of areas in Fig.
1I we choose in a,ccord with the notation of Chambers, '
with the slight modification that our areas are defined
in reciprocal space, while Chambers uses the orbit
lattice. Applying (64) for bi as well as for b2 we find
the de Haas —van Alphen periods produced by the
broadening to be

~(1/B) = 2~/L„2~/L, .
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These effects are more appropriately derived by the
tight-binding method, which in addition to the splitting
of each zero-field band into subband groups (Landau
levels) yields clearly marked low-order gaps. (Compare
the first- and second-order magnetic gaps in Figs. 6
and 8.) The position of the subband groups is given by
the flux P, and their structure is determined by the
ratio g/2ir=E/M. From counting the total number
of states we conclude that all magnetic gaps are crossed
by single levels between any two rational values of
p/27r: The number of states at energies above the first-
order gap in Figs. 6 and 8 is just p/2m times the total
number of states. Still, the state density in the mag-
netic gaps is strictly zero. Indications suggesting a
similar formation of low-order gaps within the nearly-
free-electron Inethod are obtained from the second-
order perturbation treatment performed in Sec. IV.
The mutual repulsion of Landau levels is strictly cor-
related to their broadening, i.e., they are pushed towards
the energy direction with increasing broadening.

&Vote added im proof: The level structure correspond-
ing to the tetragonal tight-binding case Li.e., the level
structure resulting from the fundamental determinant
(51) for U(&1 0) = U(0 &1)00, U(pips) =0 otherwisej
has recently been treated numerically by Butler and
Brown. " In addition to the qualitative level scheme
given for this case in the concluding section of Ref. 4,
Butler and Brown obtain a subband structure equiv-
alent to that shown in Figs. 5 and 6. This renders
important further support of the results given in Secs.
VI and VII of this paper.
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