
MICHAEL E. FISHER

When H =0, we have in the 6rst place

I'r, N(r)—=0, all r, E, (A11)

and the argument then yields, in place of (A10), the
result

lim inf g~(T,O) )Q I's(T,O; r) .

To obtain a corresponding Upper bound for this case we
use the inequality (A7) in (A2) together with (A11)
which yields

xtv (T,O) &S ' Q Q I' s(rs —rr, T, 0) . (A13)
rI, r2C Q.V

Since I'2 is non-negative, we can extend the sum on r2 to
all those points outside 0& (but in 0„)satisfying

~
rs —rr

~

&E~ where E~ is the diameter of Q~. Then the sum on

r& may be performed yielding

»(T,O) & g r, (T,O,r) &P rs(T, O,r), (A14)
[r/ (RN r

where the last sum might diverge to +~ .On allowing E
to approach oo and combining with (A12), we obtain the
desired result

x„(T,O) = lim x~(T,O) =P I's(T,O,r), (A15)

where the limit may take the value +oo.

It is clear that a completely analogous proof will

establish the lower bound corresponding to (A10) for the
energy Quctuations and the speci6c heat when H&0.
The analysis to establish an upper bound for H =0 along
the same lines fails because U(T,O) 00.
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A functional-integral formulation of the Ising model is used as a link between the usual approach in terms
of summation over spin variables and Geld-theory-like formulas. The latter take the form of Feynman-
diagram expansions, Dyson integral equations, or Schwinger functional-derivative Geld equations. Basic
to the theory is a spinless-nucleon-like Green s function, related to the Ising spin-spin correlation function.
By means of an infinite renormalization technique, a mesonlike propagator, related to local energy-energy
correlations, is bootstrapped. Finally, a vertex function, associated with energy-spin-spin correlations, is
introduced. To zeroth order this theory bears similarity to the spherical model, but vital differences are also
noted. A brief discussion is presented of the relation of methods employed in Geld theory for the treatment
of the infrared divergence, and approximations which might be of value for critical correlations.

I. INTRODUCTION

''N recent years there has been a close interplay
~ - between developments in 6eld theory and the many-
body problem. ' Generally, methods devised in one
discipline have found applications in the other. There
are a number of notable exceptions. For example, no
clear relation has been established between the critical
transition properties of many-body systems and a
fundamental particle effect. On the other hand, no
many-body analog to the infrared divergence exists.
LThere is a striking similarity between the exponent
modi6cation of critical correlations and the form of the
Green's function of certain particles for p' rls. For
two scalar fields, P with mass tN and rp which is massless,
coupled by a Lagrangian term yP(x) q(x), the P par-
ticle has a Green's function which behaves for Ps trt'

(p ~ ) ]I ps(~-(—
'A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,

Methods of QNatttlra Feetd Theory irt Statistical Physics (Prentice-
Hall, Inc. , Englewood ClitIs, N. J., 1963).

In quantum electrodynamics, the electron Green's
function goes like'

(P—hatt)
—r[ 1—Ps/trts [

—'ls —«&» '

for P' trts.j
In this paper we shall develop several formulations

of the Ising model which resemble in many ways the
Geld theory' of a spinless nucleon and scalar meson.
The results may be expressed as a Feynman-diagram
expansion, ' employing, as bare propagator lines, G,,'
(related to the spin-spin correlation function of the
spherical model) and D;so (which starts off infinite).
After renormalization, 6;; turns out to be a progenitor
of the spin-spin correlation function (ts;p,,)„, where tt; is
the spin variable of site i, which may have value &1.
The in6nitely renormalized function D;; is associated

~N. N. Bogoliubov and D. V. Shirkov, Introductioe to the
Theory of Qttarttised Fields (Interscience Publishers, Inc. , New
York, 1959).

3 Such a coupling scheme for the Ising model was first considered
by F. H. Stillinger, Jr., Phys. Rev. 126, 1239 (1962).
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with energy-energy correlations (Ae, Ae, )„, where

d e;=e;-(e;)„,
s= —Esp'p. (1 2)

Further resummation is achieved by introducing a
vertex function I'(ij; k) and developing Dyson equa-
tions. ' ' The vertex function is related to a spin-spin-
energy correlation function (p;p/Aei, )„.

Alternatively, we may make a Schwinger functional-
derivative formulation' of the Ising model. A potential-
energy coupling parameter plays the role of the charge
density (scalar component of four-current). '

The link between field theory and the Ising model
will be a functional-integral formulation of the latter,
6rst proposed by Montroll and Berlin. 4 This formulation
was central to a study made by Langer and the present
author' of critical correlations in the Ising model. Note
that functional-integral techniques have achieved a
number of notable successes in recent years —such as in
the study of the polymer excluded-volume problem, '
knotting problems, ' the density of states in a random
medium, the analysis of first-order phase transitions,
the study of many-body systems with long-ranged
forces, ~ and the theory of the infrared divergence. "

In Sec. II, general features of the functional-integral
approach to the Ising model will be discussed. The
analytic properties in an energylike variable s are
examined. In previous work' similarities to the spherical
model" were noted. Here it will be shown that there are
vital qualitative di6erences in the analytical structure
of the spherical and Ising models. In Sec. III, a series
expansion will be made which will lead to the Feynman-
Dyson diagram theories. In the process an infinite
renormalization will be performed, and a mesonlike
propagator bootstrapped (the D function). A Luttinger-
Ward" formula is developed for the partition function.
The Schwinger formulation is next produced. In Sec. VI,
remarks are made about approximations of the type
introduced in the treatment of the infrared divergence.

In the course of the work a number of averages or
integral operations will be employed. These are denoted

by subscripted braces or brackets. The definitions are

'E. W. Montroll and T. H. Berlin, Commun. Pure Appl.
Math. 4, 23 (1951).

e E. Helfand and J. S. Langer, Phys. Rev. 160, 437 (1967).
' S. F. Edwards, Natl Bur. Std. (.U.S.) Misc. Publ. 273, 225

(1966); Proc. Phys. Soc. (London) S5, 613 (1965).
~ S. F. Edwards, J. Phys. A1, 15 (1968).
' J. Zittartz and J. S. Langer, Phys. Rev. 148, /41 (1966).
' J. S. Langer, Ann. Phys. (N. Y.) 41, 108 (196/).
"M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math.

Phys. 4, 216 (1963); E. Helfand, in The Equilibrium Theory oj
Classical Fluids, edited by H. L. Frisch and J.L. Lebowitz (W. A.
Benjamin, Inc. , New York, 1964), p. III 26.

B. M. Barbashov, Zh. Eksperim. i Teor. Fiz. 48, 607 (1965)
(English transl. : Soviet Phys. —JETP 21, 402 (1965)$.

~2 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952}.
' J. M. Luttinger and J. C. Ward, Phys. Rev. 118, j.417

(1960).

1ocated at:
& ). : Eq (22)'

( ), : Eq. (2.14);

L l. : Eq (37)

( ), : Eq. (3.8);

( )„": Eq. (3.35).

II. FUNCTIONAL-INTEGRAL FORMULATION

A. Partition Function

Consider the Ising-model partition function (in this

paper only the field-free case will be discussed)

~= Z «p(PZs~/p'p/)
ip

(2 1)

where ti= J/2kliT. The interaction between a spin on

site i and one on site j is —Je,,p, ;p;. The average of any
function of the set {p}=—pi p~ is given by

(e(p))„=—g e(p) exp(P P s;,p;p, ). (2.2)
Z fJ/-+&)

The p summation may be converted to integrations by
introducing 5 functions employed in the form

5(1—p') = — — dt es'i'-"&.
27 i

(2.3)

The partition function becomes

p ) iv

dip)
rri)

$00

Xexp (P g t,)expL —P g(T —V);,p;p, ], (2.4)

=exp t
—P (K„+Xis+3C;,)], (2.5)

X„'=P (sb,, s;,)p;p, ,, —(2.6)

(2.7)

5e;„,=Q (t, —s)p/'. (2.8)

where T is the diagonal matrix with t, in the ii position
and V is the cyclic matrix with elements s,, The objec-
tive of achieving an integral over a Gaussian form in the
p's has been attained.

Before continuing the systematic development, let
us look for familiar aspects in the type of expression to
which the partition function has been reduced. Perhaps
we can best recognize the Z of Eq. (2.4) as a field-theory-
like object by writing

expL —P(—P t, Ps;,p;p+Z t,p )]—
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Later we will go into the reason for dividing the
terms in this fashion, i.e., the introduction and signifi-
cance of s. For the moment we merely wish to point
out that X,„o is a quadratic in the p, 's. Although it is
not local, for the critical problem we believe that the
range of the forces is short compared with the important
distances for correlated fluctuations, so that the essense
of X„would be contained in a local-field-theory-like
term,

where the matrix g „is the inverse (Green's function) of
T—V. The integral operation ( ), is defined by

)&exp(p p t;)
l

T—Vl-'"8(t}. (2.14)

K„'= dr Paj22(r)+tel v'p
l
2]+ (2.9) C. Energy-Energy Correlation

where the p, is regarded as being a function of a continu-
ous, rather than discrete, variable.

The term 3C&' is linear, rather than quadratic, in t, .
We shall find it convenient to write

To study the energy-energy correlation, it will be
convenient to introduce a more general coupling con-
stant (equivalently, a local reduced temperature) into
the Ising model so that the probability of a configuration

(j2} is

K '= —Q t, —lim2 Q e;;(t; s)(t, s), —(2.10—)
&~0 ij

and to renormalize before allowing e —+ 0.
The term 3C;„~ is quadratic in the pj s and linear in

Ij—s. It is the clue to the type of diagram theory to be
suspected, viz. , one with vertices out of which emanate
two lines related to some sort of weighted, tracelike
operation on p p„, and one line related to this "trace"
operation on (t s)(t„—s—).

In creating the "field-theoretic" formulation we shall
find the functional-integral techniques most useful, so
let us return to the partition function (2.4). If the t

contours are shifted sufficiently far to the right, the p
and t integrations may be interchanged. The choice of

(t) contours 6 will be i ~+—y to i ~+y, with

z'= P expl:P (P+~')»2(P+g'"v', j'j ~.

One easily shows that (asterisk indicates general ($},
while no asterisk would indicate ($}=0)

8 lnZ* gpss p
2/2

v;(j -j j).*
j kp+ t=

(2.16)

8 inz/Bf„= —(e )„
—= —(e)' (2.17)

Of special interest is the limit of ($) —+ 0, in which

case Eq. (2.16) reduces to

'r) Q v'j=vo ~ (2 11) Taking a second derivative of Eq. (2.16) and again
letting ($}—+ 0 yields

Equation (2.4) yields'

+(1/2p)(e)„8 „. (2.18)

9' lnZ = (Ae„ae„)„+(1/2P) v„„(j2„j2„)„
d(t) exp(pp t,)lT —Vl '". (2.12)

(As X—+~, an integral of this type is equivalent to a
functional integral; cf. Sec. II E, where this is made
explicit by going to Fourier-transform variables. )

B. Pair Correlations

Of central interest in the development of the theory
are several correlation functions. The first is the spin-
pair correlation (p„j2 )„.By methods completely anal-

ogous to the above, one obtains'

p N(2

(P P )y=
2,8Z

These formulas assume an interesting and simple
functional-integral form. Changing P to P+t, in Fq.
(2.3), one obtains

(p+ 5Z*=2-"II I

Xexp[Z(p+t. )t;jlT-Vl-'" (2»)

Now $ derivatives lead to

(2.20)

&&exp(p p t, ) l
T—vl-'j2g„„

= (1/2p)(8 .)~, (2.13)

which implies that

—(e)„=1/2P+ (t„),. (2.21)
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Furthermore, The partition function may be written

+((t-—(t-) *)(t-—(t-) *))*, (2 22)

d~"gXPz~KQ (z) (2.30)

and

1
s=—Pt,E ~'

(2.24a)

(2.24b)

In terms of these variables Eq. (2.23) may be written
in the relevant form

(ae„tt e„)„=(q „y„),—(1/2P') 8„„
1/Ar)P

—2(cs/k ——',), (2.25)

where cII is the specific heat per particle.
An alternative relation between energy-energy corre-

lations and functional integrals was given in Sec. V of
Ref. 5, and will not be discussed here.

which yields the relation

(he Ae„)„=——,'P 28 „+((t —(t ),)(t„(—t„),)),. (2.23)

We will find it convenient later to introduce variables

e//Q(z) 2
—%1l/'1/2( d{q }'[T—V

i

—'". (2.31)

We shall now point out, however, that there must be
vital differences in the analtyical structure of 0 and QsM.

For the spherical model, one performs the s inte-
gration by a saddle-point method, with sz determined by

The prime on {p}' indicates omission of the p=0
variable. As E —+~ and p becomes a continuous vari-
able this is truly a functional integral. The meaning of
the {p}' integral and the contours are discussed in
Appendix A.

In order to arrange the integrals in an order in which
the {p}' integrals are done erst, it may be necessary to
introduce a convergence factor. This is clari6ed in
Appendix 8 for the ideal lattice model and is also
exhibited in Eq. (3.5).

Equation (2.30) bears a resemblance to a formula
arising from the spherical model, "wherein

e//"sMi&& = (il1'i/2P/jir ) (2/Pe) I
sl —V

I

"' (2 32

D. Spin-Spin-Energy Correlation P+ ~~sM (ss) (2.33)

A central role in the theory will be played by a vertex
function which is related to a spin-spin-energy corre-
lation function. To develop the necessary formulas
consider 8(//, ti„)„~/8(/„. from the dual points of view of
p, summations and functional integrals. One finds that

&S 2/0 y P)PSM ~ (2.34)

for ss&vo Ls=t/0 is a branch point of QsM(s)1. At a
critical temperature the solution of Eq. (2.33) has
sq ——vo. For lower temperatures the proper evaluation of
Eq. (2.30) requires that one select"

This results in a third-order phase transition.
+(1/+)(1/ p)L'il(B~~)&/~R (2 ) Let us imagine that a similar technique applied for

the correct 0, i.e.,
E. Fourier-Transform Variables and s p+n (.,)=0. .)es„ (2.35)

It is convenient to make an orthogonal change of
variables to the fourier components t„, with p in the
Brillouin zone of the reciprocal lattice:

has a solution for p(p, . LRecall the condition (2.11)
that the s contours be to the right of 8&.jThe free energy
per particle, F/1V =f, would be

t, =X-'/2P te'p '

t =N-'/2+ t„e
27

For p=0 define the special variable

s=lV-'g t;=X '/2t„-
(2.27)

(2.28)

f//ksT = —pss —Q(ss),

and the energy per particle, «= B(Pf)/BP, is

«= V(&s+2P ')—

If sz&vo, this implies, erroneously, that

I&—-', Jvo,

(2.36)

(2.37)

and for p&0 introduce the names Pcf. Eq. (2.24)j
cp„=t„, y/0,
1'—1/2 g p e i pry-

y&0 »M= 2J(&S 2P ')—j—(2.38)

i.e., that the energy per particle is more negative than
it would be under conditions of perfect order in the
system. t The difficulty does not arise in the spherica, l

model, where
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I

7 . I + gp I

fl lA n m

I
I

~ ~ ~

n

while the e's provide convergence. The prime on the y
summation means to omit the y=0 term. We are inter-
ested in functional integrals of the type

Fro. 1. Diagram series for g„,„(r) PEq. (3.14)$.

d{~}'&(s{k }')

«),=L~gh, iLg&, .

At a later point we shall return to the question of
whether the s integration can be performed by a saddle
technique, rather than as the straightforward, but
complicated, integral along 8. Unfortunately we shall
find difhculties associated with the few simple schemes» parti«»r,

(3 &)

(3 g)

e&o(*&= —i&P&/s( /s) k//s [sl V
~

r/&[gj (3 9)
III. DIAGRAMMATIC PERTURBATION THEORY isneeded to calculate thepartition function. Thecorre-

lation function (/k /k„)„may be obtained from the
"Green's function"

The basic link between the functional integrals and
a Feyriman-diagram expansion is a theorem for moments
of a Gaussian distribution which is analogous to Wick's
theorem. In this section we shall show how this rule
may be exploited. First, it is necessary to broaden our
definition of the partition and correlation functions.

In Ref. 5, it is demonstrated that the determinant
~T—Y~ may be reexpressed in terms of a Green's
function:

fT —Vf-'/s= /sl —Vf'"

G-(s)—= (B-(s,{k}'))'
The energy-energy correlations are related to

D-(s) =——(k -k -),.

(3.10)

(3.11)

The diagrammatic perturbation theory will be in
powers of q. Thus either the range of y in the integration
must be effectively small or a resummation must be
performed. Basic to the development is the integral-
equation-like version of the Green s-function equation:

(
Xexp~ —— dr Q kp;g;, (r) ~, (3.1)

o

~sl —V~ ' '=exp{ —ks P 1nt s —r/(y)]},
peBZ

'gmn. (r) =Gme r P Gmk f/kgke(r) y

where the zeroth-order Green's function is

G„„'=[(sl—V)—'j„„.

(3.12)

(3.13)
v(y) =g kl;;expLiy (r;—r;)j, Equation (3.12) may be iterated and the result expressed

3.3

in the form of a series of diagrams:
and the Green's function g;;(r) is the inverse of the

(s-//-r q;)8,; r/;, — (3 4)

Equation (3.1) is derived by taking r logarithmic deriv-
ative of the determinant of Eq. (3.4) and reintegrating.
A generalization will be useful. Define

g„(r)= (expression in Fig. 1). (3.14)

B. Q Function

The solid lines stand for G' and the prongs (dashed lines
with a cross) indicate kp. At each intermediate vertex,
a summation is performed.

~=~'«pi — dr Z k'cl"(r)
I2, ' ' ) (3 5) The integral term in the exponent of S can be reex-

pressed as a diagrammatic expansion (Fig. 2) with

(3 6) closed loops of G' bonds:

We choose e„= t. „)0, and eventually ~„~0. Mean-
g p 1—=~xpl — & Z ~'s;;())

Ss k2 (3.15)

FIG. 2. Diagram serie& for
S/Se PEq. (3.16)].

=(expression in Fig. 2).

Note that since 6;; is independent of i, and

(3.16)

I

(-iP+ + ~ e ~

I

the first diagram is zero. We adopt the convention that
with each closed loop of 6 bonds there is associated n

factor of ~.
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( ~)2~ "m2

m2 I mal~" g „P
I

FIG. 4. Example of diagrams
which have equal values, but
which must both be included.

FIG. 3. Typical terms in the
expansion of S/g'. and

I

(p prongs) i II

)
In order to perform the p integrations it is necessary

to expand the exponential. A typical term, composed of
m2 two-prong loops, m3 three-prong loops, etc., is given
in Fig. 3. The only p integrals are the multidimensional
Gaussian moments

C. D Function
Consider

D'—= —(v'v ), (3.19)

= —
Lv '~ Sj./LSI' (3.20)

The S in the numerator is expanded as in Eq. (3.16)
and Fig. 3. The g integral again amounts graphically
to connecting the prongs of the loops to each other, and
now also to the two prongs which stand for q; and q, .
After performing a particular linkage we obtain a
diagram, some of whose loops are connected directly or
indirectly to q; and/or rp, , and some of which form a
part of the diagram not so connected. Associated with
any diagram connected to p, and/or q; there can be any
of a set of diagrams which is identical to the set which
generates (S)„.The factor arising from the sum over
this set just cancels the [S)„in the denominator of Eq.
(3.20). Thus we get a linked-cluster theorem. D,, is
equal to a sum, the terms of which are in correspondence
with all connected diagrams formed by linking the
prongs of loops with the two prongs q; and q, .The value
to be assigned to each diagram is determined as follows.
Associate a summation index k~- ~ k~„with each inter-
Inediate vertex. Include a factor G~I, 0 for a solid line
connecting vertex k to k', and —DI,~ for a dashed line.
Sum over k~ .k~ . Since the q's occur in pairs, all the
powers of (—) are even. Finally, include a factor of s
for each closed loop of 6' bonds. Then we obtain

w 1/g-
Ey )

(~' ~'..).'= lI' —
I

2~/
d jP} P'r' ' ' 0'ra

Xexp(s Z'.„P„q,)

gll pairings

X (q r„q,„)„', (3.17)

where frsifsss f„s„ indexes the pairings of the sub-
scripts i~ .i2„.'4 In graphical terms, we perform the

( )„"average" of a given graph by drawing all the
graphs which can be made by linking pairs of prongs in
all ways. The average (linkage) of a pair of prongs is
represented by a dashed line between the two vertices,
which stands for

(v 'v, ),'—= —D' '
& -1 ~~ —1 —jp (r&—rg')= —cv' ~ 6& 8

p
(3.18)

When the prongs of Fig. 3 are linked together, there are
repetitions of the same diagram due to two causes. The
first is the m~! possible permutations of the m~ p-loops.
We shall include such diagrams only once, thus cancel-
ling the prefactor 1/ms!ms! . Secondly, any p-loop
may be placed in p proper rotational positions. By not
duplicating these graphs the factors 1/p are eliminated.
On the other hand, it will be necessary in the ensuing
discussion to include duplicate diagrams which arise
from inversion of a loop, such as those shown in
Flg. 4.

A linked-cluster theorem can be developed" for the
evaluation of logLS)„. We shall find it more pro6table
to proceed in a Luttinger-Ward" fashion. First, how-
ever, it is necessary to examine several other functional
integrals.

D,;= (expr—ession in Fig. 5); (3.21)

I
I+--- + +

II
I

t4 Equation (3.17) is easily derived by taking derivatives of the
characteristic function

(«i (Z'~. ~.)),'=exV( —
2 2'4~-./")

y p

"Reference 1, p. 130 ff.

+ ~ ~ ~

f'ro, 5, Diagram series for —Dv t Eq. (3.21)].

F I ELD —THEORETI C ASPECTS OF ISI NG MO D EL
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Y7y g
l ( MkL = -~

l
I r s 1L I J

FIG. 8. Diagram series for
3fk& EEq (3 28)j

I
L

diagram into two disconnected parts. XVe represent the
sum over such graphs by

P D,k'Eki( —Di,')
kl

/ S + ~ ~

FIG. 6. Diagram series for G PEq. (3.22)g.

in diagrams this quantity will be represented by a wavy
line as shown. The diagrams in which p, and y; are not
directly linked lead to a terin (ie,)(ie;) which is zero in
the absence of a field. (More generally, define

)+( ')( ) )

G „=(expression in Fig. 6); (3.22)

in diagrams this quantity will be represented by a heavy
line as shown.

D. G Function

Next let us examine the series for G „=(g „)„.g
can be expanded into a series, a typical term of which is
represented by (—1) ' times a base line of l+ 1 G' factors
and l prongs LEq. (3.14)].These prongs, and the prongs
of the loops arising from the expansion of S, are to be
connected in pairs to give the result of y integration.
The sum over all pieces not connected to the G base
line cancels LS]„again. Diagrammatically, we obtain

(sign chosen to make P positive definite). The series
for I';, begins

I'„=(expression in Fig. 7)
= sG'i'G'i'+ . (3.23)

This equation ma, y be represented compactly in a
matrix notation, but since these matrices are cyclic,
it is best to use the Fourier-transform representation.
This is a completely conventional procedure in diagram
theory. ' A momentum p; is associated with each bond in

such a way that momentum is conserved at the vertices
(arbitrary directions are also assigned to the lines).
Summations (integrations) are performed over all

intermediate moments. Equation (3.24) takes the form

All but the last diagram in Eq. (3.21) is of this type. On
the other hand, there may be one intermediate dashed
line which, when cut, separates the diagram, or two such
lines, or three, etc. This leads to the series

De=Dpi'+2 D r'I'ki( Dk')—
kl

+ P Dk "I'k t ( Di k
—)&k l ( Dl )+ ' (324)

Is] ll ~2l2

E. Se1f-Energies D(p) = 1/{LD'(p)] '+&(p)), (3.25)

The functions D;; and 6 „may be expressed in terms
of proper self-energies. In the evalua. tion of —D;, , when

the prong for q, is linked through a group of loops to p;,
it may be done in such a way that there are no single
intermediate D linkages which, if cut, separate the

Pal= i j

where D'(p) = 1/e~. Now the limit e„—+ 0 may be taken:

limD(p) =limp(p) . (3.26)

The fact tha, t D'(p) —&~ is of no consequence. It
is of interest that in this calculation one can see how

the infinite renormalization arises from the initial
development.

J+ ~ e ~

grk

B(

I

~ ~ ~

j
te ~

I

A

Fio. 7. Diagram series for P;; PEq. (3.23)]. FIG. 9. Structure of a typical diagram in the expansion of D;;.
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Fzo. 10. Diagrammatic representation of Eq. (3.29) for D. Fro. 12. Diagrammatic representation of Eq. (3.31) for G.

We omit the details of the analogous and routine'
proof that G may be expressed in terms of a self-energy
~(u):

(3.27)

In like manner, the typical diagram for G can be
divided as shown in Fig. 11.Summing over the diagrams
which may appear between the cuts leads to the results
shown in Fig. 12 and Eq. (3.31):

The series for M begins (note the convention of minus
sign

G „=G „s—Q G„,'F(ij; k)D&&G, &G&„,
ijkl

(3.31)

M~t ——(expression in Fig. 8)
Dkl Gkl (3.28)

or
1

~(p) =—Z' r(p, p —«; «)D(«)G(1 —«) . (3.32)
q

F. Dyson Theory and the Vertex Function

In the infinite diagram series for I' and M it is pos-
sible to completely eliminate G' and D' bonds in favor of
G and D. Rather than pursue this course, we will follow
the procedure suggested by Dyson, and center attention
on a vertex function. First, consider D... a typical graph
of which has the structure given in Fig. 9. We proceed
from right to left along the graph until we come to the
last place at which the diagram can be cut along a D
(cut A). At the end of this line, vertex m, the diagram
branches into two G' lines (part of a Gs-bond loop). We
proceed along one branch until we come to the last
place at which the section from 3& to m may be removed
by a cut of a G line (cut Bt). Cut Bs on the lower branch
is similarly defined. Finally, make cut C to remove the
last D' bond. In the various regions a variety of diagrams
may appear and these may be summed over, indepen-
dently of the other regions. Thus in the region from j to
cut A, the diagrams of D appear and summing yields
D;. In A to Bi and A to 82 appear the G graphs
yielding G&, and G&, . The sum over all diagrams which

may appear in CB&83 will be termed the vertex function
I'(l&l&', m), and will be denoted diagramatically by a
triangle. This leads to Fig. 10 and Eq. (3.29) for D',

D,, =Dos ——', Q Dg, 'F(t, is) k)G(,~G ~Dt~, ) (3.29)
kl1L2m

1'(ij; k) =3;;b,„
&1&22122klk2

XD,„,G.. .G;,s,I'(krk; k)+ . (3.33)

G. Luttinger-Ward Theory for Q

At this point we may profitably return to a consider-
ation of a diagrammatic expression for 0 in terms of the
G and D functions. A further extension of definitions to
introduce a coupling parameter X will be of value.

To close the set of Dyson relations, an equation for
1 must be obtained. Unfortunately, this equation again
involves an infinite series. ' A typical diagram for I' can
be reduced to a skeleton by making cuts which isolate
D terms, G terms, and I' terms. Summing over all
possible inserts between these cuts results in an
"integral" equation for I'. There is not a single skeleton,
as for D and G, but an infinite number. The first few
terms in the series equation for I" are those given in
Fig. 13 and Eq. (3.33):

which can also be written

1
&(«) = Z 1'(1, 1 —«; «)&(p)&(p —«) (3 30)

2X s

k
I

I'

D C

Fro. 11. Structure of a typical diagram in the expansion G,„.
+ 0 ~ ~

I' 1G, 13. Diagrammatic equation for F; cf. Eq. (3.33).
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Define the function

8"=8'expI —— d Q pq, ,( ) I. (3.34)

renormalized G or D. The skeletal graphs are then
gmuped by the number of vertices 2n:

(3.43)

The bracket (8)„"has the weighting factor 8"":
B„P.) =P G'(p)M LG",D"j (3.44)

«&,"=
I 88"j(L8'j

Generalizations of G and D are

(3.35)

=2 2 D"(1F'-LG",D"3 (3 4~)

and
G,-"=(S...P)),"

D. .x —(~,~.) x

(3.36)

(3.37)

Digrammatically, the eBect of the above X insertions is
to associate a factor of X with each vertex arising from
expansion of g. By differentiating Lg $„with respect to
) it is easy to show that

+ill P
EQ=ln +-',X ln—+-', Q 1nG'(p)

Z .. 7r p

+-', lim(g' lnL2s D'(p) J—I), (3.38)

3I„ is composed of the skeletal M graphs with 2n
vertices. The X factor at each vertex has been extracted
in Eq. (3.43) but M is still a function of X by virtue of
its functional dependence on 8" an.d D~. Identical
statements hold for I'„.

Differentiation of 8„(X) involves the successive dif-

ferentiation of each of the n bonds D" and 2n bonds G~

of each graph. When one of the G" bonds of M„ is
isolated for differentiation, the first factor G" closes the
graph again to make an 3f„diagram. Detailed consider-
ation" '" shows that

e~o p

1

p(~~,h„—(z))„~.

dB„BG"
=2+ e3I +2+' nP„,

p BX
(3.46)

0 The X integral of I can now be done by parts, the
explicit X's of Eq. (3.43) bein integrated and the 8„

duced in Sec. III H„one can show that
1 g G)( BD"

P (Xp;g;;(X))y"= P G, "G;„"D;;ir~(tne; j) (3.39) I p g (]) dy p g), (y) +p px(p)
n BX p BX

=2 G"(u)~'(I) (3.40)

=2 2'D"(P)&"(1). (3.41)

The dangers of proceeding in a fashion which inter-
changes the e-+ 0 limit and X integration in Eq. (3.38)
are easily seen. Since

D"(u) = I:"+&"(u)j ', (3.42)

'~The X introduced here is similar to the usual scaling of
strength of interaction. Such a parall. elism is induced by the
change of variables y =Ay. ;.,

v' —+ r/P.
'~ A. Klein, Phys. Rev. 121, 950 (1961).

in the limit c ~ 0 the right side of Eq. (3.41) is 2(X—1).
The X integral in Eq. (3.38) diverges. Actually, because

P(X) has at least two vertices, for small X it is of order
X . Thus the X integral effectively cuts off at ) =& ~,
avoiding the divergence. A convenient method of per-
forming the A integration first is to employ techniques
introduced by I uttinger and Ward, " although we

parallel Klein's argument. '7

In considering the graphs contributing to 3SI" of

Eq. (3.40) or I'" of Eq. (3.41) we first go to skeletal

graphs such that the full series is recovered by sumrrung

over these skeletal graphs but with each bond a fully

G
=2.VB' —r. ln —+ilf(p)G(p))

GO

—Z' »=+&(f)D(v) I
(34))

D'
~~

We have determiried the diagrams of Q~ from the skeletal

diagrams of M or P, with renormalized D and 0 bonds.
One can also show" that Q~ is composed of the skeletal

diagrams of 0 with renorrnalized D and G bonds, when

one carries the arguments of Sec. III' through to
the point of constructing a linked-cluster theorem, in

the usual way. "
Finally, one obtains for 0 an expression totally in

terms of the renormalized 6 and D functions:

+&/3 p
iVQ=ln +-,'E ln —+-', P lnG(p)

+x, Q' 1nL2x-D(p) j+-,'(.V —1)+AQ'. (3.48)

H. Further Discussion of the z Integral

In Sec. II D, it was shown that if one were to perform
the s integration in Eq. (2.30) for the partition function



F I EL D —THEORETI C AS PE CTS OF IS I NG MOD EL 609

by a direct saddle-point procedure, the saddle point
would have'to lie to the left of vp. This co'nclusion was
drawn from examination of

= -l~("+l~') (2.37)

After considering the Luttinger-Ward equation (3.48)
one might conclude that the singularity of 0 does not
retain any trace of the singularity of each of the terms
in its perturbation series. The terms of the perturbation
series have a singularity at z= vp due to this singularity
in G'. One expects that the comparable singularity of
0 is at the singularity of G, i.e., where

that G „(s) has the same r„dependence as the spin-
spin correlations, or that D;,(z) has the same r,, de-
pendence as the energy-energy correlations.

IV. SCHVfINGER FORMULATION

An alternative formulation of field theory is that
due to Schwinger, ' involving functional derivatives. To
examine the analog of this approach, we return to the
Ising model with generalized coupling, Eq. (2.15). An
0* may be defined by

eN""(z) = zÃ (z—yi2~)N(z
l sI V

so —vo+3/I(p=o, so) =0. (3.49) X«p(s Z 5')Lexp(Z b, o,)3j,. (4.1)

~zs 1 2 ~u———&0
dp 2p' J Bp

(3.51)

This means that z8 moves from left to right with de-
creasing temperature (unlike the spherical model).
The critical phenomena cannot be due to the saddle
point moving to the left to strike zp.

There is another type of saddle-point integration
which might be valid for the z integral and is important
for the ideal case (Appendix 8). Imagine that the
singularities of e~"') lie to the left of vp on the real axis.
Distort the s contour to run from —~ io, co—unter-
clockwise around Go, to —oo+io. Then the partition
function can be written

OQ

dz e+Pexv &.& (3.52)

We expect this to be the same point at which

P(p=o, s,) =o. (3.50)

If the point so defined by Eqs. (3.49) and (3.50) lies
to the left of fp one might speculate that this accounts
for z8 being to the left of Gp. This is probably not the
explanation, however, since from Eq. (2.37) we can also
conclude that

The ( )„operation is generalized to

(()').*=«exp(z &'( ~)gj'/I exP(Z t'o ')g3, . (4.2)

Z(G') '
),G~.*+(( g .)„*=8„„. (4.3)

The term (p&()&a)„*in Eq. (4.3) may be replaced by
a f derivative operation, since

with

=';*=&~.O';),*-C.G;;*,

Ci—= ((oo)„*.

(4.4)

(4.5)

One obtains the Schwinger equation' for the Green's
function:

Z(G') '- G -'+I C'-+ IG-'= &-. (4.6)
z

For large distances, if GI, * can be treated as a con-
tinuous function of the variable rj„ then the first term
niay be approximated by' (for an s-dimensional iso-
tropic lattice)

From the Green's function (3.13) we obtain for
G--*=—(S-),*

&NT(z) hm((zNQ(z-ia) eNQ(z+ia))
a~o

(3.53) Z(G') ' ~R-*=—Z (s —z-~)Go.' (4 7)

The saddle z would be determined by

(3.54)

and one can show in the previous manner that the z8
must be to the left of vp and move from left to right with
decreasing temperature. It is dificult under these
circumstances to see what analytic feature accounts for
the critical point, if we continue to assume that the
critical feature is associated with the zero of Eqs. (3.49)
and (3.50). One possibility is that the singularity in s
of 8 for p=o is to the left of the singularities for non-
zero p. This is the opposite of the behavior of Go.

Until we have a clear idea of how the z integrations
are performed, it is impossible to con«m the suspicion

where

—= (s—~o)G*(r-,r-)

o zp zGA(r r )+ (4 g)

1
o'=—P lr; r l'z);—

2$
(49)

The Schwinger equation, through second derivative
terms, assumes the more familiar form

( 8
l
(s-fo)-~'v'+e(r)y —--

l

8g(r))

XG*(r,r', (())=8(r r'). (4.10)—
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FIG. 14. Diagrams with no inelastic scattering
of D with the vacuum.

(D') ' is defined in Eq. (4.20). Equation (4.18), with the
exception of P—1.(z), is analogous to a Schwinger
equation. ' It should be pointed out that if we perform
the z integration of Eq. (1.4), then

so that

D;;*=——(v 'v '&.*
= —BC~/Bg,

=—PD;,*
i BC;

(4.11)

(4.12)

Thus this Schwinger equation also takes the form

One sees that $(r) (or $, if we continue to work at the
level of discrete variables) plays the role of a charge
density (scalar component of a four-current) and C(r)
acts like the conjugate potential of the Geld which is
induced.

One frequently eliminates the current in favor of the
Geld. This can be done by noting that

gNPc+XQ~ (z)

ds

=0
7 (4.19)

so that the 1.(z) term does not appear in an equation
obtained from Eq. (4.17) by multiplying by e~~*+~"'«i
and integrating over s. If oneperforms this operation
and allows e~ 0, the resulting equation merely states
that (p„2&„=1.

There is a more interesting way in which the L,(z)
term can be avoided. Up to this point we have carefully
circumvented difficulties associated with the fact that
DP(P) is a cV—1 dimensional matrix but D,to is 1V-dimen-
sional with rank cV—1.Do and (D') ' as used are defined
by

QG
Q(G') '

t,Gt,.*+C'-G *—Z D 2* =B . (4.13)
(3.18)

The field equations for C; and D,,*have an interesting
aspect in this formulation, too. Such fieM equations are
derived in field theory by use of Bose commutation
relations. Here we must introduce an alternative theo-
retical technique. Consider the differential operator

(B)' BP„B
kBp„) ~ Bp BP,

(D') '=E 'g—'
e e-p-«'-tti.

Note that this implies

Q D', t, (D') 't, 8 1/-N——"—

Thus Eq. (4.11) can be written

C;——,
' P D';.G .*++Do,„t„=o,

(4.20)

(4.21)

(4.22)

Q-lt2 Pt esP r~

u 8cp~

gf one has a function F(q i q ~), then

(4.14) which is an "integral" form of the usual Schwinger
equation.

A Geld equation for D,;* is obtained by taking the
derivative of Eq. (4.22) with respect to (t. One obtains

BIl 1 BF

Bpp X t' By;
(4.15) BG

D,;*=D';,+ ', Q D'; D,2*-
mk ~C'I

(4.23)

Since (B/Bp„)' is a sum of derivatives B/Bgp
quantity

((B/Bq )'&„'=
~ ~

Lexp(Z t'~")gj
(B(py~) .

~ —rp

&&Lexp(Z 4~')gap (4 16)

The equations for G and D may be rendered identical
to the Dyson equations (3.31) and (3.29) by taking the
limit of all $ ~ 0 and identifying'

BG „
(4.24)

vanishes. Explicit performance of the operation on the
right-hand side, using Eq. (4.15), yields

0=+(D') '...C,——',G *+& +P—L( ) „(4.17)

A final word may be said about the significance of
the vertex function. Equation (4.24) may be multiplied
by Dk& and summed on l, to yield, in conjunction with
Eq. (4.12),

( ~gp..&.=g G;G.,D„r(2&; l)

(4.18)
This relation is also easily verified by drawing the dia-
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grams for both sides. One may now return to Eq. (2.26)
to show that

Z (G G 'D&&P(~j; t)).= 2P—(tj-u-A«). +6 -~-).

&&LA.+b-~) —(1/~')L~(2% -t .).)~/P] (4 26)

FIG. 1.5. A diagram with an
elastic scattering of D with the
vacuum.

The result for the inverse Laplace transform of the
averaged Green's function is

V. DEVELOPMENT BY ANALOGY WITH THE
TREATMENT OF THE INFRARED

DIVERGENCE

G(R, t) =X )br(r) expl dr
I
r (r)'

0

In field theory the difficulties which arise in the in-
frared region may be handled by taking account of
processes in which large numbers of low-energy photons
are emitted and absorbed. Processes in which these
photons undergo inelastic scattering with the vacuum
to be reabsorbed as several lower-energy photons may be
ignored. In the context of the present diagrams this
means that we must account for processes involving
multiple D lines, such as those shown in Fig. 14, but that
processes which involve loops from S, such as shown in
Fig. 15, are to be ignored (except insofar as they re-
normalize D). From the functional-integral point of
view, this is equivalent to replacing the g dependence of
S by a Gaussian in g:

g~ = j&')'(p/x) "—exp L ~ (cV —1)+0"(s)
+-', g»G(I))] expL2 Z'D '(p) ~.~-.) (5 1)

With this approximation and normalization factor,
(q,q, )„and 0 are correctly given, and G „is approxi-
mated by the sum over the subset of diagrams iridicated
above.

It is interesting to note that to this approximation
6 is related to an "excluded-volume" random-walk
problem of polymer physics. Assume that we are inter-
ested in distances R=

~

r —r„~ sufhciently large that b
may be approximated by solution of the differential
equation'

[(s—vo) —O'V'+ p(r)]g(r, r', s—vo) = 8(r—r') . (5.2)

A Feynman integral may be written for

d d'&kl~() —«(')l3) (&&)

This may be interpreted physically as the canonical
ensemble probability density that a walk which starts
at a time zero at the origin will be at R at time t if the
walk is random except for a repulsive energy D(r)
between segments separated by a distance r.

The infrared divergence of the electron Green's
function may also be treated as such an interacting walk
problem, where the interaction is the time-dependent
Coulomb potential. Because of the long-range nature of
Coulomb forces it appears to be appropriate, to leading
order, to use as the weighting factor an interaction D,
averaged over free random walks. " For short-range
interactions it is necessary to use a more self-consistent
averaging scheme, as in the work of Edwards. ' Neither
of these approaches appears to yield meaningful results
in application to this Ising problem if it is assumed that
D;, has the same ri, dependence as the energy-energy
correlations.

Vr. CONCLUSIONS

A great deal of our physical intuition about many-
body systems is due to our ability to think of the
fundamental processes in quasiparticle or collective-
mode terms. To the degree that the results presented
here cast the Ising model into this familiar form they
may be of value. It appears to be possible to create a
parallel formalism, and hence a similar interpretation,
of other many-body systems"" for which the appro-
priate quasiparticles may or may not be clear.

and is

ion+a

g(r, r', t) = e*'g(r, r', s)ds,
2' Z —ioo+a
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g(r, r', t) =K br(r)

( 1
&& exp( ——

40-'

t

~

r'(r) ~'dr —
q [r(r)]«~ ~. (5.4)

0 ~

APPENDIX A: {q)' INTEGRATION

For the sake of actually performing the integrals over
the set {p)', it is useful to change to sine and cosine

The paths r(r) go from r' to r in "time" t; K is a normali-
zation constant. The function p now appears exclusively
as a linear term in the exponent, so that with the
Gaussian 30 the p functional integral may be performed.

"A. J. F. Siegert, Physica Suppl. 26, S30 (1960); R. Hirota,
Ph.D. thesis, Northwestern University, Evanston, Ill. , 1961
(unpublished).' As a nontrivial example, L. Dworin and the author have con-
structed the preliminary formalism for the Anderson magnetic-
ImpurIty model.
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transform variables defined by (assuming the number of
sites in-each direction to be odd, to avoidi-modes a,-t the
vertices of the Brillouin zone)

where p;. now has a p() term, unlike Eq. (2.30). A change
of variables back to p;, i = 1 . X may be made, in
which form the p integration can be performed:

p, = i/g(2) LX„'+ix„'j,

V'—2=i/V (2)L&2'—ixz'j.
2mi N

(A1) Ni/2

(A2)

The Jacobian of the transformation from the (/2 to the
X is iN ', The p label for the X's runs over half the
Hrillouin zone excluding zero. The X™contours are from
—oo to ao.

As an application, consider

xi
N—1

(2+ ~)-(/2e (/z+r) zt (B4)

1/2-
2-'+' II' —

~

2~)
d{P)

' exp(-,' P' e„q„(- „)

(2~1/2) Netz

27r
P

—1/2(P+{-) (1—N) /2e N(t+—z) z/I7

(BS)

1/2-

= II'
I

— (II"«.'«.')
E2~

Xexp{—-,'P" e„[(x z)'+(X~z)'$) =1. (A3)

The k integration will be performed by the change of
variables g=k+f' and expansion of (g= f) '". Inte-
gration by parts yields

g1/2

APPENDIX 8: IDEAL SYSTEM
j=0 r(l) j!

The noninteracting lattice model is a special case
which is illustrative of some of the analytic features
which enter in the type of formulation introduced in

this paper. It is trivi. al to handle the ideal case by Eq.
(2.12). If one wishes to make a formulation paralleling
the general case, it is necessary to include a convergence
parameter f' in the definition of Q(s). Only let {~0
after the z integration of Eq. (2.30) (actually, {may be
set to zero after the s contour is distorted). We define 0
by (a more convenient convergence factor than 3' is
employed)

eN" = (N' /i) (P/27) J (B1)

X=1'-' d{0)'t II(2+v») '"j exp(f Z (/') (B2)
1=2

A g0 term may be added to the definition of q; and a q 0

integration included by means of a 8 function in integral
representation. Then,

—:N+1 -(—I)'I-(-',N+ j—i)(N.)/-1

I'(!N+j)f "-'

( 1):"—+/=I (~)P,/s):N+/ 1-+, —
dq (B6)

I'(-', N+ j) t I7.
~'lt even

S odd.

The important point to notice is that the terms of the 1

summation represent an entire function. The s inte-
gration of t,'N&' times these terms yields zero by closing
the contour in the left half-plane. Thus the divergence
for f~ 0 is avoided. For the remaining terms, only
j= 0 survives.

J(s) has a branch point at 2=0, logarithmic for
X even, and half-power for Ã odd. Distort the s
contour to —~, counterclockwise around zero, to —~,
as in Sec. III H. %e And that

+112 &e

2miN
d{v) II(s+v')"'

eNr( ) —2N(Np)N/2( $)1/2N —1/p(1N) (B7)

which yields Z=2+. It is of interest to note that for

(t, Q +N(/21 ~) (B3) this ideal case e ~z+ " ' has a saddle point at
"=-1/2O


