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Upper and lower bounds on the energy level of an auto-ionizing state are derived by a
method which is a generalization of the Stevenson-Crawford formula for the lower bound
on the ground state of a system. These bounds are nonvariational in character, although
the lower bound can be used together with a variational upper bound to obtain a narrower
gap between upper and lower bound. In addition, an upper bound on the transition rate
for the decay of the auto-ionizing state is derived. Although primarily designed to
yield information for more than two-electron systems, for which the Hahn, O' Malley, and
Spruch version of the Feshbach projection operators cannot explicitly be written down,
the methods are here applied to auto-ionizing states in helium below the n= 2 threshold.
These bounds are found to be a far more sensitive test of the adequacy of an approximate
state than is the conventional energy criterion used in conjunction with the variational
approach.

I. INTRODUCTION

In recent years auto-ionizing states of the two-
electron systems He and H have been extensive-
ly studied. The most successful treatment has
been in terms of the Feshbach projection opera-
tor formalism. ' In this formalism, an auto-
ionizing state of an atom described by the Hamil-
tonian H can be defined to be an eigenstate of
QHQ (which is also written as HQQ), where Q is
a Feshbach projection operator definedbelowby' 4

Q&Q(Q4) = E(Q4) .

The definition (1) is not unique, inasmuch as the
projection operator Q is not unique. There are
infinitely many projection operators which satis-
fy the Feshbach requirement on Q; namely that
it exclude any state which has the asymptotic be-
havior of the ionized state. (This is not a very
precise statement, but it will be made more pre-
cise in Sec. III. ) Two distinct Q operators have
so far been introduced in the treatment of auto-
ionizing states in helium below the e = 2 limit.
Hahn, O' Malley, and Spruch' define Q space to
include all functions in which neither electron
has any component of the 1s hydrogenic state
with Z = 2. On the other hand, Lipsky and Russek'
define Q space to be that space spanned by a
finite basis set of bound-state hydrogenic product
states which may or may not include any 1s com-
ponent with Z=2. Altick and Moore4 use a similar
Q space except that they further omit 1s hydro-
genic states, so that their Q space is a subspace
of that defined by Hahn, O' Malley, and Spruch.
(Clearly, there are as many different Q opera-
tors as there are different basis sets. ) It might
be mentioned in passing that although O' Malley
and Geltman' and Bhatia, Temkin, and Perkins'

use the projection operators defined by Hahn,
O' Malley, and Spruch, their results are limited
by the dimensions of the respective trial function
spaces used in the variational calculations. And
it is simple to show that their variational wave
functions and energies are exactly equivalent to
the solution of Eq. (1) for a Q space which is the
intersection of the variational trial function space
used with the Q space of Hahn, O' Malley, and
Sprueh.

Despite the fact that Q space, and consequently
E, is not uniquely determined by the asymptotic
requirements imposed on Q, the location of the
resonance energy Eres for any given scattering
process is in fact unique':

E =E+6 (2)res

Thus the physics of the situation is unaffected by
the arbitrariness inherent in the definition of Q.
The qua, ntity denoted by & and called the "level
shift" makes up for any inaccuracy due to those
basis functions left out of Q space and also in-
corporates any real shift in the precise locations
of resonances which arise from different types of
scattering phenomena (e.g. , e on He+, or hv
on He, etc. ). This point will be discussed in
greater detail in Sec. III.

Now, the theoretical situation insofar as it
pertains to helium bel.ow the n, = 2 threshold is
quite satisfactory. Several different approaches
have all yielded substantially the same set of
auto-ionizing energy levels and these are in good
agreement with experiment. In retrospect it is
clear that the Q operator of Hahn, O' Malley, and
Spruch is, for this case, superior to that used
by Lipsky and Russek. Besides being much
larger in dimension than the latter, the former
also provides variational upper bounds which the
latter does not, unless 1s states are excluded

180



180 LEVELS AND LIFETIMES OF AUTO-IONIZING STATES

from the basis product set as was done by Altick
and Moore.

However, the situation changes when other,
more complicated, systems are considered. For
example, when a 2P electron is ejected from ar-
gon by an x-ray photon, the resulting Ar+ ion is
in a highly excited auto-ionizing state, in the
order of 200 eV above its ground state. It will
decay with the emission of one or several elec-
trons by an Auger or multiple Auger transition.
In this case, an infinite number of states of
Ar++, Ar++, etc. , must be excluded from Q
space in the Hahn, O' Malley, and Spruch defi-
nition. Furthermore, not a single one of these
states can be expressed exactly (they are all
many-body eigenfunctions) in order to construct
a projection operator that will project these
states out of Q space.

On the other hand, a finite basis set of configura-
tions of product independent-particle model states
can readily be formed to serve as a basis f'or Q
space. As a matter of fact, Auger transitions
have long been calculated with a Q space con-
sisting of only a single basis element, namely
a Hartree or Hartree-Fock state for the initial
ion wave function. %hat has been lacking here-
tofore is a test for the adequacy of the basis set
used to define Q space.

The main purpose of the present paper will be
to demonstrate the existence of bounds, both
upper and lower, that can be derived to bracket
the auto-ionizing energy level and test for the
adequacy of the basis set used to define Q space.
These bounds are nat variational in nature. They
are variants of the Stevenson-Crawford formula
for the lower bound on the ground state as applied
to higher states. ' Moreover, it will be seen that
a lower bound on the lifetime of the auto-ionizing
state can also be obtained.

II. FORMULATION OF THE BOUNDS

In this section we will formulate and prove an
inequality from which it will be possible to de-
rive both upper and lower bounds on the energy
of an auto-ionizing state and to obtain a lower
bound to the lifetime of that state. First, how-
ever, the motivation for so doing will be presented.

As pointed out in the Introduction, it is possible
only in the simplest cases to actually construct
the projection operators we would like to use.
In all other cases, it is necessary to make do
with a rather small dimensional Q space in order
to obtain any results at all. And even in the case
of helium, where the desired projection operators
can actually be constructed, the variational ap-
proach subsequently used limits the effective Q
space used to the dimension of that part of func-
tion space included in the trial function. One goal
of the inequality to be demonstrated below is to

Here, Q space is that which we would like to use
were it feasible. Since we will not in general be
so fortunate, we further partition Q space into
two disjoint parts, one of which we are able to
handle. Thus

@=Q +8, (4)

where Q~ space, which we call trial-function
space, is such that the eigenvalues and eigen-
functions of Q&H QT can be solved for exactly:

Qz JfQ~ I 9~4) = & I QzII') .

Since QT and 8 are themselves projection opera-
tors, we have, in addition to (4),

Q '=Q, 8'=P Q A=O, (6a)

and, of course, PQ =PA=0. (eb)

An elementary example of such a decomposition
can be found in the case of helium below the n = 3
limit. Here Q would be the Q operator of Hahn,
O' Malley, and Spruch which contains all functions
of r, and r, in which neither electron has any 1s
hydrogenic component with Z = 2:

where P, is the hydrogenic 1s state with Z=2,
1

&0(i) = (8/w)' e

The subscript 1 or 2 between the brackets indi-
cates that the inner product is to be taken over
that variable only. On the other hand, QT space
could be some finite basis set of configurations of
hydrogenic product states which contained no P,
component, as was used by Altick and Moore,

where Un is a properly symmetrized (for singlet
states) or antisymmetrized (for triplet states)
configuration of hydrogenic product states. Thus
n stands for the set of quantum numbers L, ML,
n„ l„n„ f, . Alternatively, Q~ space could be
a finite basis set of Hylleraas functions with Q, (1)
and Q, (2) projected out as was used by Bhatia,

permit the bracketing, both above and below, of
the energy of an auto-ionizing state which would
follow from a Q space we would like to use in
terms of the Q space we are able to handle.

To this end, we first decompose Hilbert space
into two disjoint parts by a pair of complemen-
tary projection operators P and Q:

P'=P, Q'=Q, PQ=O, P+Q= 1.
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Temkin, and Perkins. In either choice, QT space
is a finite dimensional subspace of Q space and,
in both cases, the eigenfunctions and eigenvalues
of QT HQT are known exactly.

In other, more complicated cases, such as ar-
gon with a vacancy in the 2P shell, QT space
might consist of a single basis element, such as
the appropriate Hartree- Fock product state. It
will be seen that it is not actually necessary to
construct the full Q space in order to make use
of the inequality to obtain the bounds.

o =(P(H h-)y IP(H 8-)y ),.Q=(Q(H ~,)~, IQ(H ~, )e,&.

(16a)

(16b)

As a consequence of (15) and (16) we have two
important inequalities which will be used in the
proof below.

so as to show their non-negative definite charac-
ter.

A. Bounds on the Energy
o(h ))(x (h ))0,

o(g ))o (h ))0
(iva)

(17b)

QrHQr~r =~r~Z (10)

where Q g =P, RP =PQ =0.

Then there exists an eigenfunction g of QHQ be-
longing to the energy eigenvalue E:

The inequality will now be stated and will be
proved below. I.et P& and h& be an eigenfunc-
tion and eigenvalue of QZ HQT

The importance of Eqs. (17) stems from the fact
that, in the general case, we are not able to con-
struct P and Q and, therefore cannot actually cal-
culate oP or oQ. Equations (1V), however, pro-
vide us with an upper bound to both. Using (11),
we can further rewrite oQ as

a =&Q(H- ~T)QyT I Q(H- ~T)QyT& . (i8)

QHQLI =El,

such that E lies between the bounds

g o&/2 &E c g po&/2
T T

where a is defined to be

(12)

(13)

To proceed with the proof of the inequality ex-
pressed by Eqs. (12)-(14), we expand the trial
function pI in terms of the eigenfunctions g~ of
QHQ which are assumed to form a complete
orthonormal set which spans Q space,

Q=Z„I(„)(0„ I .

~(~~) =&y~I(H- ~T)'I eT&
where QHQg =E gn nn' (19b)

=((H-8 )y I(H-h )@ )-O. (i4)

~(h )=(y I(H-8 )(P+Q)(H-8 )Iy )

=(y I(H-h )P(H-8 )Iy )

.&e~I(H ~T)Q(H ~T)Ie~)

-=cr (8 )+o (8 ). (15)

Further, using the idempotency properties of I'
and Q expressed by Eqs. (3) and the fact that P
and Q are Hermitian, we can rewrite oP and o

Q

It is clear from (14) that o, being the inner
product of some quantity with itself, is greater
than or equal to zero. It is equal to zero, if,
and only if, QZ is a true eigenfunction of H. In
that case, of course, E will be equal to ST .

In proving the inequality stated by Eqs. (12)-
(14), it is convenient first to decompose the
non-negative definite quantity o into two non-
negative definite parts. Using the completeness
property of (3), i.e. , P+Q=1, it is possible to
rewrite e as

(20a)

where Q la I'= i.
n n

(20b)

Substituting the expansion (20) into the expression
(18) for oQ, we get, after using (19b) and the
orthonormality properties of the tP&,

~ =Z„Ia„I'(E„-~~)'. (2i)

Now, of the entire set of eigenvalues E„of QHQ,
there must be one, say E~, which lies closest in
value to the trial energy S~. (We exclude from
consideration the case in which 87 lies equally
close to two levels E and E~ &. Except for
degeneracies, i. e. , E~ =E~ ~, the unlikelihood
of such an occurrence is such that the case does
not warrant detailed treatment, and degeneracies

The summation over n stands for summation over
the discrete portion of the spectrum and integra-
tion over the continuous portion. Remembering
that &f&T, which lies in QI space, is automatically
an element of Q space, we can expand QT in
terms of the g„:
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(E g )2o (E g )2
n T m T

Using this, we have immediately that

(22)

o (gT)-(E -gT)'Z is i'=(& -gT)'.
(2&)

As a corollary to this result, in those cases for
which we are either not able or willing to con-
struct QHQ, we have that

will have been removed at the outset by restric-
tion to a particular symmetry state, e.g. , 'P ).
Thus we have

a.
Good

QT-space

{schematic)

Bad
QT- space
(schematic)

It should be noted that Eq. (29) is a simple ex-
tension of the Stevenson-Crawford formula for
a lower bound on the ground state where the
Hamiltonian under consideration is QHQ. Theo-
rems III and IV can also be applied to excited
nonauto-ionizing states (i.e. , the ordinary op-
tically excited states) by simply setting Q= I,
since, in this case, there is no unbound state to

o(g ))o (g ))(@ g )2 (24)
66,-

Finally, taking square roots of one of the in-
equalities contained in (24) we get

~]2~ IE g
Q m T

or, in more usable form,

(26)

Theorem I: g —o 'I' ~ E ~ g +O' 'I2. (26)T Q m T

Similarly, from the other inequality expressed
in (24) we get the weaker, but often more usable
result,

Theo~em II. 8 —o' ' &E - 8 +(r' '
T m T (27)

lg -E i- ig -& l, for eon, o-n-N, (26)n n n s'
then the energies En are bracketed by

Theorem III: 8 —o '~' &E
n Q n n

and

(29)

Theorem IV. 8 —e'I' ~E
n n n

%e note that the bounds on an auto-ionizing level
established by Eq. (26) or Eq. (27) are not varia-
tional in nature. They can be used even with the

QT space employed by Lipsky and Russek where
the Hylleraas-Undheim theorem yields no useful
information. It may, however, be the case, as
with the QT space used by Altick and Moore or
Bhatia, Temkin, and Perkins, that useful infor-
mation on upper bounds can be obtained from the
Hylleraas-Undheim theorem. In that case, the
lower bound provided by (26) or (27) can be com-
bined with the upper bound supplied by the Hyl-
leraas-Undheim theorem, in the following theorem:

If for a set of levels E„where 0 & n + N the trial
function energies Sn from the eigenstates of
@THAT are each closer to the corresponding
energy level En than to any other Es, i. e. ,

62-

6t-
C9
K
UJ 60-"
LLJ

59-

58-

57-

56-
FIG. 1. The energy-level diagram shown in Part

a schematically depicts an ideal case. The crosses show

the true levels, the solid circles show the eigenvalues

@2 of QZ & Q2, and the open circles, together with the
vertical lines, show the upper and lower bounds BZ

It is stressed that these are not actual calcula-
tions, but merely indicate what couM be obtained with
a good trial function space QZ. Part b schematically
depicts a poor case. This too does not represent an
actual calculation, but is designed to show what could

happen with a very poor Q~ space, In particular, it
illustrates how the upper and lower bounds can indeed
bracket an energy level, as required by Theorems I
and II and yet not provide a lower bound to the lowest
energy level.
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Autoionizing levels in helium

66-

65-

Singlet P states Triplet P states

64-

63-

62-

61-

a

60 x

59-

58-

57-

56-
Legend

x—Experimental level

Elgenenergy of QT H QT
U ppe r a nd lower bounds

FIG. 2. The results of an actual calculation using
as a basis for Qy space the eight-state hydrogenic
product configurations listed in Sec. IV. The crosses
show the experimental levels, the solid circles show

the eigenvalues of Q~ & Q&, and the open circles, to-
gether with the vertical lines show the upper and lower
bounds 8 y +0 . It is seen that in actual calculations,
even with a relatively poor basis set, the conditions for
the applicability of Theorems III and IV are satisfied.
It is also seen here that the (T bounds provide a far more
sensitive test than does the energy criterion. The

levels shown here are the lowest three states in the odd

singlet & series and in the odd triplet & series.

Finally, we note that the weaker theorem on
bounds, Theorem II, does not involve Q space
at all. This is fortunate, on the one hand, be-
cause it permits us to obtain bounds on the ener-

project out, so that P=O. Of course Theorems
III and IV become identical in this case.

Figure 1a indicates schematically the ideal
situation when the conditions (28) apply and trial
function space Q& is good. Figure lb indicates
schematically what could happen, however, were
one to choose deliberately or by extreme mis-
fortune a very poor basis to define Q7 space.
Figure 2 shows the actual results obtained for
the first-three 'P and the first-three 'P auto-
ionizing states for helium using an eight func-
tion basis of product hydrogenic states of the
type suggested by Altick and Moore. These re-
sults will be discussed at greater length in Sec. IV.

B. Bound on the Lifetime

We now turn our attention to cd which will
supply us with an upper bound on the transi-
tion rate, corresponding to a lower bound on
the lifetime of an auto-ionizing state. In order
to make the physics more apparent, we will first
restrict ourselves to the simplest case of a single
open channel, such as helium below the n=2
threshold, despite the fact that the primary aim
of this paper is to provide a means for handling
more complicated cases.

Since P, being a linear operator, commutes
with any constant, and since Q& lies in Q space
[see Eq. (11)], we have

PS y =8 Py =O. (31)

Using this result, oP, as defined by Eq. (16a)
becomes

o =(PHy IPHy )=(y iHPH~y ) . (32)

We shall use vP, as given by Eq. (32), to es-
tablish an upper bound on the transition rate 1".
To facilitate this, it is convenient to introduce,
by analogy with Eqs. (19), a particular ortho-
normal basis set which spans P space; namely,
the eigenfunctions of PIIP.

PHP I v& ) = E„i v ), (33a)

where the normalization conditions (remembering
that the eigenspectrum of PHP is partly discrete

gy E even when it is not feasible to write down
the Q operator explicitly. However, we are led
to question whether the theorem breaks down if
Q space is extended in size beyond that which is
appropriate to define the auto-ionizing levels of
the atom in question. The answer to that ques-
tion is negative. The theorem remains valid,
but the relevance of the eigenenergies of QHQ to
the auto-ionizing levels breaks down. Were the
dimensionality of Q space indefinitely extended
so that Q-1 and P-O, more and more eigen-
energies of QHQ would appear in any given ener-
gy interval. As a consequence, it would become
trivially true that at least one eigenenergy of QHQ
would lie in an energy interval of 20'~' centered
about the eigenenergy ST of QTHQT. In the
limit Q= 1 there would be a continuous number of
eigenenergies of QHQ in this interval. Thus it is
clear that the theorem does not help us to define
a good Q space. It only gives us information
about the eigenenergies of QHQ if we have a Q&
space which is a subspace of an acceptable Q
space. The problem of how, in principle, to de-
fine a good Q space in the general case is de-
ferred to Sec. III.
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and partly continuous) are taken to be

discrete portion,

= 5(E& —E,), continuous portion. (33b)

Taken together, the eigenstates Iv~) of PKP
plus the eigenstates lgn) of QHQ form a com-
plete orthonormal basis set for the entire Hilbert
space. We will use this set to express both op
and the transition rate, I, so that they may more
readily be compared.

Decomposing the Hamiltonian H into two parts,

H=Hc+H', Hc=PHP+ QHQ, H'=PHQ+ QHP, (34)

it is seen that the eigenstates I v~) and I |jn) are
also eigenstates of H, . Thus, for example,

H lv ) =PHPlv ) +QHQlv )

=E lv )+O=E lv ) .

The set 14') contains the auto-ionizing states,
while the set lv~) contains the continuum into
which the former decay. Thus we regard the
auto-ionizing state I IIt„) as an eigenstate of H,
created at time t =0, which subsequently decays
into a packet of continuum eigenstates Ivy) of H,
through the interaction term H'. For the case
at hand, with the normalization (33b), the transi-
tion probability per unit time, F, is given, by
first-order time-dependent perturbation theory, '
as

have available, since QT space is the largest
subspace of Q space for which we are able to
obtain the eigenstates), we will replace P&
in (37) by $~ ..

oP=(Q~+ fdE~) l(v IH'Ig~) I'. (38)

a. Ordinary Case

If now we plot l(vy I H I k~) I
' as ordinate versus

Ey as abscissa, as is done in Fig. 3a, we see
from Eq. (38) that oP is merely the area under
the curve, provided we assign a rectangle with
unit base to each point in the discrete spectrum.
On the other hand, we see from Eq. (35) that
)f F/2v is just the height of the curve at abscissa
E~. Although there is no connection in general
between the area under a non-negative curve and
the height of the curve at a particular value of
abscissa, there is a connection in this particular
case, as is shown schematically in Figs. 3a and
b and demonstrated below. The important con-
sideration in this connection is that if the decay
from the initial state g~ to the ionized state is
to follow the exponential decay law, exp(- Ft), then
the very derivation of Eq. (35) from time depen-
dent perturbation theory requires that the quantity
l(vy I

H'
I P~) I

' must remain essentially constant
over an energy range which is no smaller than
O' F/2 on either side of the energy Ep =Elf. (This
will insure at least a recognizable portiori of the
Lorentzian line shape which is associated with the

F=(2v/h)l(v IH'I g ) I', (35)

where conservation of energy requires that E~
= EN.

We now turn our attention to o~. Using the
fact that the set Iv~) forms a basis set for P
space, we may write

Ol

A

X

V g P77I ~18

b. Extreme Case

Elf

P =Q I v& ) (v& I + fdE& I v& ) (v (38)

where we sum over the discrete portion of the
spectrum and integrate over the continuous por-
tion of the spectrum. Substituting (36) into (32),
we obtain

CV

A
C

o =(Q„+fdE )l(v )H)P ) I'

=(Q~+ JdE~)I(v~IPHQ IP ) I'

=(Z„+fdE )l(v IH'Iy ) I'. (37)

Remembering that PT is an approximation to the
auto-ionizing state which we have labeled by IIN
(by definition, it is the best approximation we

E

FIG. 3. Part a shows a schematic plot of 1(&tt, IH ltI's)1

as a function of &~ as would ordinarily be expected.
Unit base is here assigned to each discrete level. Part
b shows a schematic plot of I (v~IH'its)I as a function

of &~ with the same value of 0~ (i.e. , area) as Part a
but for the extreme case for which only those continuum

functions are in I' space which are in a narrow energy
band around E~.
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ArI(u IH'Ip )I'+o (39)

It follows, after elimination of I (&A I
H'

I g~) I
'

in Eq. (39) and Eq. (35), and recalling Eq. (17a),
that

m r(e r/2m) =a2r'/2m.
P (40)

It must be stressed that the result (40) is not a
proof. It is valid only so long as Q space is
properly chosen so that auto-ionizing states do in-
deed decay to the ionized state according to the
exponential decay law. Although this property is
customarily assumed without question, the point
is here being made that until it is rigorously
justified it remains an assumption. The most that
can be rigorously claimed, taking into account also
that g~ has been substituted for $7, is the follow-

ing:
Theorem V: If the auto-ionizing state under
consideration does decay exponentially in time
with a decay rate exp(- I t), then an upper bound

to a quantity I' exists and is given by

(41)

where I is the approximate transition rate that
would ordinarily be calculated in first-order
time-dependent perturbation theory using the best
available approximation to the initial state.

Although Theorem V has so far been demon-
strated only for a single open channel, the theo-
rem is true even if the auto-ionizing state can
decay through many channels, as will be proven
shortly. Theorem V appears to be a highly

exponential decay in time. Actually, the matrix
element should not change appreciably over a much
broader energy range if the exponential time be-
havior is to persist over several decades. ) Under
this restriction, the largest value that the ordinate
I(&& IH'

I g~) I' can attain will occur when the
entire area represented by o& is located in the
interval 5 I' around E~, while maintaining the
ordinate constant in this interval as required by
the argument above. This extreme case, of
course, produces a rectangle with base Sl". This
is illustrated in Fig. 3b. The area in 3b is equal
to the area in 3a, i. e. , o& is the same for both.
However, by concentrating it all in the interval
N I' around E~ we have maximized the height.
(Note that in this Figure 5 I" has been taken to
be unduly large to make the point more trans-
parent. ) This extreme case can, in principle,
be achieved by placing unwanted states Iv,, ) in Q

space, as will be discussed in Sec. III below.
Since the extreme case represented by Fig. 3b

need not (and will, in general, not) apply for a
given Q space, the ordinate I(v& IH'I(&) I' satis-
fies the inequality

I' = (2&/h)I(v IH'
I g ) I'. (42)

n, K

The total transition rate F is given by the sum of
the individual channel rates,

r=Q r, (43)

since the various final states are all mutually
orthogonal, and the probabilities (which I" dt
represent) are additive. Clearly Eqs. (42 and
(43) are general and hold for arbitrary number of
open channels.

As in the discussion before Eq. (39), the deri-
vation of Eq. (42) from time-dependent perturba-
tion theory requires that the matrix el.ement for
each channel a does not vary appreciably over
the energy range Sr. (It must be remembered
that the lifetime of the auto-ionizing state and,
consequently, the energy width, is determined
by the over-all I". ) Consequently, op, which is
now a sum of integrals, one for each channel,
yields the upper bound

watered down assertion. Nevertheless, it yields
a good deal of information about the outcome of
calculations as they are actually done in practice.
In practice one never really has an exact expres-
sion for either the initial or final state. One
calculates the transition rate with approximations
to each. Theorem V yields an upper bound to the
transition rate that would be obtained with the best
approximation available to the initial state (which

p7 is, by definition) and with the correct final
state. Thus it is seen that the theorem is, in
reality, a useful result.

It now remains to extend the validity of Theo-
rem V to the more complicated cases which are
the primary concern of this work. The vast
majority of auto-ionizing states encountered in
practice are energetically able to decay via
several channels, not just one as in the very
specially selected case of helium below the n = 2

threshold. To take a very simple example of the
more complicated case, one need only consider
auto-ionizing states of helium below the n =3
threshold. After decay, the residual ion can be
in the 1s, the 2s, or the 2P states. The outgoing
electron will carry off the appropriate energy
and angular momentum required to conserve
these quantities. Thus there are, in this energy
range, three disjoint continua or "channels" in-
to which the auto-ionizing state can decay. The
final states now have to be labeled not only by
the energy continuum of the outgoing electron,
but also by the quantum numbers describing the
particular channel. These quantum numbers
will be denoted by n. Each channel has its own
independent transition rate, Fz, and, with the
normalization adopted for the continuum states,
unit density of final states. Thus
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o ~ZKI' )&v IH'lg
Q. , K

Remembering again that cr & oP, and substituting
for the absolute value square of the matrix ele-
ment from Eq. (42), we have, with the help of
(43),

(44)

o &a ~Q (hl')(hl' /2m)=N I '/2v, (45a)P e Q

or I'& (2vo )"'/k~ (2vo)'I'/5P (45 )

Thus Theorem V has been demonstrated even for
those auto-ionizing states which can decay through
many channels. This case, as has been pointed
out, is at once more common in practice and
more difficult to treat theoretically.

HI. DEFINITION OF AUTO-IONIZING STATES

The work in the preceding section has all been
predicated on the existence of an adequate Q space
of which the trial function space, QT space, is a
subspace. This is a relatively simple task in the
case of helium, for which the projection opera-
tors are easily constructed. For more compli-
cated systems, however, this is not true. Only

Q~ space can be constructed. This section will
therefore be devoted to the definition, in princi-
ple, of the optimum Q space for a given auto-
ionizing state.

Before proceeding with this task, though, a
question of semantics must first be settled. It
has been noted, in the Introduction, that the ac-
tual location of a given resonance in a given
scattering process is independent of the particu-
lar set of Feshbach projection operators used to
treat the scattering process. The discrepancy
between the true location of the resonance and
the eigenenergy of QHQ is corrected by the level
shift ~. However, it must not be assumed that
the precise location of the resonance energy will
be the same for all collision processes (e.g. ,e- on He+, hv on He, etc. ). Consequently, in
this work an auto-ionizing state of energy E will
be defined to be the eigenstate of QHQ, where
the projection operator Q is the one which pro-
jects into the maximal subspace of Hilbert space
which excludes only the true ionized states at
energy E, i.e. , the continuum states into which
the auto-ionizing state actually decays. This
definition will be discussed in detail below. It
must, however, be stressed that this is not a
practical definition from the standpoint of com-
putational convenience. It is an in principal
definition designed to permit further mathematical
development. It must also be stressed that,
semantically, this is just a definition; the pre-
cise location of all resonances in any scattering
experiment will still require a level shift, ~.

However, this level shift will presumably be
very small. It will correct only for the small
differences in the exact locations of resonances
for different scattering processes, and not for
inadequacies in the basis set used to define Q
space.

In the above definition it will be noted that
allowance is made for the fact that the auto-
ionizing level will, in general, be degenerate
with many true ionized states, not just one as
in the case of helium below the n =2 limit. It
must also be noted that the Q operators are only
implicitly defined by the above definition. Before
one can remove from Hilbert space all ionized
states at energy E, one must know the value of
E and the line width of the state under considera-
tion. Clearly, a different maximal Q space is
required for each auto-ionizing level. The best
Q space that can be constructed to yield a set of
auto-ionizing states is the intersection of the
separate Q spaces associated with each of the
states in the set. Thus it is obvious that if a
maximal Q space is desired that will yield an
entire set of auto-ionizing levels, it is smaller
than the maximal Q space for any individual level
in the set and will therefore give somewhat poorer
results. In practice, even smaller Q spaces
are used which remove all ionized stakes over a
broad range of energies which is certain to in-
clude E (and, in the case of a finite basis set,
much more) in order to obtain usable projection
operators.

The starting point in the definition of Q space
is the selection of QT space, which, for the sake
of simplicity, we will take to be a single dimen-
sional subspace of function space. This one-
dimensional subspace is denoted by QT. In prac-
tice, PT will probably be selected as one of the
solutions of a multidimensional diagonalization or
variational procedure, but this is not necessary.
Since QZ space is one dimensional, we must
clearly have

where

P -=1 —Q =P+R
0 2' (47)

This will be done by an iteration process. We
first find the eigenfunctions and eigenvalues of

(1 —Q )H(1 —Q ) =POHPO

This can in principle be done because the opera-
tors H and QT are both known. By (47) these

(46b)

The complementary space, denoted by Po, must
somehow be decomposed into two disjoint sub-
spaces, P space and 8 space:
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eigenfunctions span the combined space P+R.
From this basis set, all those which belong to

' eigenvalues of PQP, within an interval

5Z = [1+—', (2v)'"]v'" (4

on either side of 8T are placed in P, space; all
the remaining eigenfunctions are placed in R,
space. Thus g& is in P, space, i.e. ,

Eigenspectro of
H g HQ PHP, R(HRi QHQ,

P v =v, Q v =R v =0,1e &' Te 1&
lf P HP p

0 c

where 8 —5E & «g + (ET T

(49a)

(49b)

(49c)

Here 6E is a quantity which we know, by Theo-
rems II and 7, to be larger than the difference
between the exact energy E and the trial energy
gT plus the half-width of this state. As a conse-
quence, the ionized state has definitely been in-
cluded in P, space.

Here o, by the same reasoning as that used to
derive Eqs. (15) and (16), is given by

o = v(q~) + v(P0), (50a)

where

(Q )=&q ( —& )Q y Iq ( —@ )q y )=-o,

(50b)
because QTQT is an eigenstate of QTHQT. We
now define

(50c)

which, together with P, as defined by (49), con-
stitute a complementary pair of projection opera-
tors satisfying the conditions expressed by Eqs.
(3). The subscripts 1 on these operators signify
that Q, is not the maximal Q space for the auto-
ionizing state under consideration, but only the
first iteration in the process, Qz being the zeroth
iteration.

It will be proven in the Appendix that the eigen-
spectrum of Q,HQ, has the same "window" in the
continuous part of the spectrum as does B,HBy,
and has one, and only one, discrete level in the
energy range

8 —OE-E-8 +aE .T T

This energy eigenspectrum is illustrated in Fig.
4 along with the eigenspectra of the other opera-
tors that are pertinent to the discussion.

If we now denote by 8, the energy, and by Q,
the state function, of the single discrete level of
Q,HQ, in the energy range

—eE&E&8 +eET T

(these are the first iterated corrections to the

sothat OE &6E &OE »" gE
n

(52b)

The iteration process just described must not,
however, make 6E arbitrarily small, because
in insisting that the ionized state must always
be in P space, we must not reduce P space be-
yond the point where the equality holds in Eq.
(45a). Let us say that this occurs at the nth iter-
ation:

v(P ) =n'r'/2v .
n

But r=p r
n

(53a)

=(2v/I')Q l(v IP HQ lp ) I' (53b)

so that

v(P ) =2m+I(v IP HQ lg ) I')'. (53c)n ~E . n n

It should be noted that even the first iteration,
Q„ is larger than the Q space of Hahn, O' Malley,
and Spruch. This is so because Q, includes prod-
uct states not only of the form I 1s, nP), but also
I ls, kP) for all k outside of a relatively narrow

FIG. 4. Eigenspectra of several operators of interest.

original trial values), we may begin the process
all over again, treating 8, and Q, as we previous
ly treated hz and QT. The one important differ-
ence is that v will now be much smaller, because
P, space is a subspace of P, space by (47). This
can be seen from Eg. (37); as we remove states
from P space, we reduce o(P) with each state re-
moved. This will make 5E smaller in the next
iteration, and further reduce P space by subdi-
viding P, space into P, +R„etc.,

o (P0))v(P1 ))v(P2) )' ' ' )v(P ), (52a)
n
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energy band. The significance of the Q space of
Hahn, O' Malley, and Spruch can be ascertained by
recalling that an acceptable Q space for several
auto-ionizing states is the intersection of the ac-
ceptable Q space for the individual states. It is
therefore clear that the Q space of Hahn, O' Malley,
and Spruch is only the largest Q space that will
yield all auto-ionizing states of helium below the
n = 2 threshold without advance knowledge of the
precise locations of these levels.

IV. NUMElUCAL RESULTS

To summarize the content of the last section,
we have demonstrated that it is possible, in prin-
ciple, to define a Q space such that if Q is an
eigenstate of QHQ, then the equalities hold in Eq.
(45a):

a= o =O' F'/2nP
In actual practice, of course, the iteration pro-
cedure outlined therein cannot be carried out.
However, the theorems of Sec. II do provide a
criterion to discriminate between the quality of
alternative trial function spaces that have been
proposed, with a test that is far more sensitive
than is the lowest energy criterion of the usual
variational test. This is illustrated very clearly
by the results presented below, using as trial
function space, QT, an eight-dimensional sub-
space of the Q space of Hahn, O' Malley, and
Spruch, spanned by the eight hydrogenic product
configurations listed in Table I. These configura-
tions are the only significant contributors, from
the 55-state basis of Ref. 3, to the three lowest
odd parity singlet and triplet auto-ionizing P
states.

Table II lists the matrix elements of x» ' and

r» ' needed to calculate a. Starting from Eq. (14)
and using the fact that

&T =&AT ~Q+QT~ AT&=&AT~If ~ 4T&,

o can be simplified to

o=&QTJ~I QF&-&/TIKI QT&'

Writing P =Q a
Q Q Q

TABLE I. Ordering of the states. The quantum num-
ber & denotes singlet states and triplet states.

g, (' = (2s, 2p) P
y (x) (2 3p) P
y, (") = (3s, 2p)"P

() =(2s,'4p) P
y, (~) = (4s, 2p)"P
j,( ) (2p 3d) P
y, ( ) (2p 4d) P

(") = {2p,'5d) P

(where the listing presented in Table I is em-
ployed),

=Q a '(e '+2e V +(V') )

+2+ a a [(e +e )V +(V')

&eTtrfieP=Z a '(8 +V )

+2+ aaV
where e, = —2[n '+(n') '],

Sp Ã

and (V ) =&& t~12 tg &

These are just the energies of the hydrogenic
product configurations and the matrix elements
listed in Table II. Finally, Table III lists the co-
efficients a~ for each of the states, and the value
of o in a. u. ' for each state.

Also listed in Table III, for convenience, is the
value of o'~' in eV. These results are plotted in
Fig. 2. The crosses show the experimental val-
ues, while the closed circles show the theoretical
values obtained for the energies, using this eight-
dimensional QT space. As is already well
known, the eigenenergies of QTffQT are in excel-
lent agreement with the experimental results for
those states which have so far been excited ex-
perimentally. (Transitions to 'P states are for-
bidden for photon absorption and are less likely
than 'P states for electron impact, so that only
the first member in the triplet series has so far
been measured. )

Clearly, with such good agreement in energies,
using even a small basis set, the energy discrep-
ancies do not furnish a sensitive criterion for
evaluating the quality of a given trial function
space. On the other hand, the quantities 8&
a g'~' (where o'I is taken from Table III),are rep-
resented, for each state, by the open circles. It
is seen that o' ' varies from - 0.67 to - 3.3 eV.
This is to be compared with values of 5.6&& 10 '
eV to 0.017 eV for RF/(2v)'~' which follow from
the results of Burke and McVicar' for these two
cases, respectively. It is seen that the o'~'
index to the quality of these approximations to the
respective auto-ionizing states happily leaves
room for improvement by factors of 200 to 104.
This improvement must ultimately come from
a better choice of the correlations at small in-
terelectron separations which must be included
in the wave functions. These are, of course,
very poorly represented by small sets of products
of bound- state hydrogenic orbitals. To achieve
correlations at small interelectron separations,
packets of continuum hydrogenic states must also
be included. These high-energy components con-
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TABLE II. Matrix elements of r~2 and r&2 for singlet and triplet states.

State
designations

0. P ( Il~» 'll @) ($) lr 'l0 (@)

Singlet matrix elements

(& l~ 'llI I+) g (+l~» 'Ilp(+)

Triplet matrix elements

1 1
2 2

3 3
4

5 5
6 6

7 7

8 8

1 2

1 3
1 4
1 5

1 6

1 7

1 8

2 3
2 4
2 5

2 6

2 7

2 8

3 4
3 5

3 6

3 7
3 8

4 5

0.191406 24
O. 092 843 32
0.089 896 65
0.054 971 77
O. Q53 481 90
0 ~ 121 852 75
0.065 573 67
0.041 302 99
0.020 583 72

0.033 529 33
0.Q08 503 54
0.017 19919
0.039 073 94
0.022 712 20
0.015 365 16
0.019757 20
0.022 158 19
0.009 397 34

—0.011462 17
0.002 798 20
0.003 13147
0.007 103 90
0.022 509 83
0.004 387 50
0.005 616 41
0.004 373 17
0.007 750 32

—0.005 220 29
-0 ~ 005 07630
—0.000 355 09

0.002 053 28
0 ~ 001 841 97
0.001 923 83
0 ~ 031 968 82
0.018 415 11
0.020 83169

0.058 333 33
0.014 61157
0.015 378 68
0.006 051 81
0.006 413 35
0.028 001 14
0.010 998 96
0.005 473 63
0.011697 87

0.018 439 53
0.005 362 56
0.010 291 07
0.023 89168
0.015 103 57
O. 010 567 14
0.008 702 30
0.006 71925
0.005 14958

—0.000 586 54
0.001 91999
0.001 823 93
0,004 314 19
0.007 590 14
0.005 702 07
0.004 741 10
0.003 594 70
0,003 136 28

-0.001 016 13
-0,000 182 27

0.000 332 71
0.002 924 72
0.002 385 23

0.001 887 43
0.013 817 99
0.009 023 14
O. 006 715 58

0, 132 812 50
0.08718100
0.083 615 03
0.053 014 82
0.051 320 90
0.105 658 54
0.060 18121
0.038 793 12
0.021 244 92

0.019514 70
0.01111101
0.009 937 99
0.013 239 26
0.007 624 78
0.005 163 07-0.003 720 28

0.018 991 02
—0.000 160 03

—0.011152 03

0.001 869 45
0.002 184 96
0.001 396 76
0,018 879 49
0.005 266 75
0.001 271 38
0.000 649 70

—0,002 701 25

—0.004 053 89
—0.004 982 63
—0.000 471 41

0.002 584 56
0.001 627 76
0.000 652 97
0.022 867 08
0.012 362 40
0.017 168 77

0.022 61905
0.010537 10
0.009 544 11
0.004 562 89
0.004 243 50
0.014 579 37
0.005 829 59
0.002 935 02
0.006 847 62

0.006 289 94
0.003 903 27
0.003 491 19
0.003 636 44
0.002 272 06
0.001 588 58
0.000 485 51
0.004 355 53
0.000 476 39

—0.002 266 86
0.000 11146
0 00033671
0.000 777 75
0.004 070 45
0.001 908 11
0,000 732 12
0.000 432 07
0.000 06932

—0.001 14160
—0.000 698 17
—0.000 164 96

0.001 072 91
0.000 583 12
0.000 325 45
0.005 650 13
0.003 408 93
0.003 105 06

tribute much more strongly to o(S&) than they do
to 8& itself, because the calculation of o involves
the square of the energy difference (b& —e )'
whereas S~ involves only the first power of 8&
—ez, e~ being the energy of the ith configuration.
Thus it is seen why the variational upper bound to
the energy is so good whereas the cr-dependent
lower bound is so poor. At present, investiga-
tions to calculate o for alternative basis sets
(e.g. , the Hy11eraas set of Bhatia, Temkin, and
Perkins) which should incorporate improved in-
terelectron correlation are under way.

It should be pointed out that, notwithstanding the
fact that the lower bounds with this basis set are

poor, these results nonetheless establish lower
bounds which bracket two as yet unobserved levels.
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TABLE III. Coefficients of the first-three P and P states in helium and the values of o' for these configurations.

This table gives the coefficients a~ as required in Kq. (1) for the lowest three odd parity singlet P auto-ionizing states
(which are labeled S~, S2, S~I and the lowest three odd parity triplet P auto-ionizing states (which are labeled T&, T2, TB) .
These coefficients were taken from Lipsky and Russek. It must be noted, however, that the basis states used here

are the hydrogenic product configurations, and not the Cooper, Pano, and Prats combination used in Lipsky and

Itussek. Also given in this table are the values of o for these six states, where o is defined by o = (g I (H-E) I P)
= (plH I g) —(qb IHI @)', E= (@IHI @).

Product
hydrogenic

configuration

Singlet states

S2

Coefficient of each configuration
Triplet states

T2

2s 2p
2s 3p
3s 2p

2s 4P
4s 2p

2p 3d

2p 4d

2p 5d
0 (in a.u. )

0.877 39
—0.186 73
—0.304 51
—0.027 72
—0.056 52
—0.30144
—0.074 21
—0.047 28

0.014 84
3.318

—0.008 46
0.647 88

-0.626 63
—0.257 10

0.235 96
0.21942

—0.129 71
—0.027 29

0.000 61
0.672

—0.190 14
—0.338 97
—0.420 33

0.386 86
0.585 05

—0.15149
0.395 97

—0.023 57
0.002 75
1.428

0.955 72
—0.194 79
—0.173 82
—0.056 06
—0.047 99
—0.10648
—0.033 30
—0.023 26

0.007 36
2.334

0.168 87
0.529 67
0.564 71

—0.403 73
—0.400 91

0.130 08
—0.175 55
—0.023 35

0.003 37
1.578

—0.026 96
—0.488 65

0,590 56
0.247 50

—0.33048
—0.393 16

0.292 84
0.029 98
0.000 70
0.721

VI. APPENDIX

It will now be shown that the eigenspectrum of
Q,HQ, has the same "window" in the continuous
part of the spectrum [Eq. (49c)] as does R,HR, .
Reference to Fig. 4 will make the derivation
easier to follow. We assume that H has no true
discrete stationary states embedded in the con-
tinuum (i.e. , that any levels experimentally ob-
served in the continuum of B are quasistationary,
or auto-ionizing states). Thus the eigenspectrum
of H consists of a set of discrete levels below the
first ionization energy. Above this is the continu-
um spectrum which, in some energy regions, is
multiply degenerate. On the other hand, the
eigenspectrum of @THAT consists, by hypothe-
sis, of a single point 8&, while the eigenspectrum
of (1 —QT)H(1 —QT ) will be in a one-to-one cor-
respondence with the eigenspectrum of H. This
can be established by a simple extension of the
arguments presented below, but is not pertinent
to our development. All that is required is that
(1 —QT )H(1 —.QT ) possesses a continuum spec-
trum degenerate with 8~. And this must, of
course, be true if the state pT decays to an
ionized state. As mentioned before, those states
in the continuum spectrum in the energy region

g QE(g(g
T T

are placed in P, space by definition. They are
eigenfunctions of PyHPy as well. To establish
this we write

(1 —Q )H(l —Q ) = (P +R )H(P +R ). (54)
1

Letting vz be any eigenstate of (54) placed in P,

space, we have

(P +R )H(P +R )v = ev

Since R 1p —0 we have

(55)

(P +R )HP v =sv (58)

Finally, multiplication of both sides of (53) by P,
yields

PHP v =ev
1 e (57)

which is the desired result.
It now remains to establish that the eigenspectrum

of Q,HQ„where QI = QT +Rl, has one and only one
level in the energy interval

Q,HQ, w = ew . (58)

Now u can be represented as a linear combination
of some element v in R, space plus gT .

g gE~g «g +gg
T 1 T

Theorem II immediately proves that there is one
level in this energy range, since it holds that any
extension of QT space must have a level in this
range. Finally, it must be shown that configura-
tion interaction between any v& placed in R, space
with p& will not perturb s to move it into the ener-
gy range included in P, space. In fact we will
prove more than that. We will show that the con-
tinuum spectrum of Q,HQ, is identical with that of
R,HR, .

To this end we consider a continuum eigenfunc-
tion of Q,HQ, belonging to eigenvalue s:



18 RUSS EK, WU, AND OWENS 180

w=v+aP, R v=v, vanish as O(x, 't, ') . It therefore follows that
asymptotically

Qr~r ~r Qr" "-I~r '
Substituting (59) into (58) we obtain RHR v =6v, as x, or r, -~. (62)

Q HQ w=(Q +R )H(Q +R )(v+aP ).
T

= e(v+ay ) . (60)

Equation (62) is not an eigenvalue equation; it is
only an asymptotic relationship. However, writing
down an eigenvalue equation for a continuum eigen-
function of R,HR, ,

Multiplying first by Q& and then by R, and using
the property that Q&R =0, Eq. (60) is decom-
posed into two coupled equations:

aQ HQ p + Q HR v = sap&,

aR HQ P +R HR v=ev.

(61a)

(61b)

Since u has infinite norm, by hypothesis, while

PT is a normalized function, it follows that v

must also have infinite norm. Moreover, as
either ry or f'2 approaches infinity, the first
term on the left-hand side of Eq. (61b) must
vanish asymptotically. This is so because Q&,
and hence HP&, have finite norm. The pro-
jection operator R, which postmultiplies this
term can only decrease the norm. Consequently,
RIHQT Q& has finite norm and must therefore

R,HR, (v+u) = e'(v+u), (63)

(64)

and that u and RyHRyu each vanish asymptotically
as O(r, 'x, ') In ot.her words, u is just a nor-
malizable packet constructed from elements of
R

y space. Thus it has been shown that any con-
tinuum eigenvalue of R,HR, is also a continuum
eigenvalue of Q,HQ, . Clearly, this same argu-
ment can be used to demonstrate that any con-
tinuum eigenvalue of (1 —Q&)H(1 —QT) must al-
so be a continuum eigenvalue of H by simply re-
placing Q, in the above argument by unity.

and requiring that the asymptotic limit of (63) re-
duces to (62), yields
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