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Many-body perturbation theory is used to calculate the contributions to the hyperfine
structure of atomic oxygen from the orbital, spin-dipolar, and quadrupole interactions.
The resulting values for (r& ) and (r d ) are 4.56 a. u. and 5.170 a. u. , respectively,
which are in good agreement with those measured by Harvey. Our calculated value for
(r& ) is 4.216 a. u. , which together with Harvey's measured value for bt, leads to a

nuclear quadrupole moment for 0 of -0.0263 x 10 cm .

I. INTRODUCTION

In his interesting study of the hyperfine struc-
ture (hfs) of 0", Harvey' found that his experi-
mental results could not be characterized by a
single value of (x ') for a 2p electron. He found
that different values (xf ) and (red ') were re-
quired for the orbital and spin-dipolar parts, re-
spectively, of the his Hamiltonian. A third value
(x& ') is associated with the quadrupole hfs inter-
action. Bessis et a/. ' partially explained this ef-
fect by carrying out extensive configuration inter-
action calculations involving s s' and P P' ex-
citations; but they obtained values for (red ')/
(rf ') which, although in the correct direction,
were smaller than Harvey's result. This inter-
esting effect was then explained by Judd' who em-
phasized the importance of s -d excitations in
addition to 2p -p' excitations. Judd carried out
second-order calculations' and estimated the
small relativistic corrections to obtain a value of
1.12 for (red ')/(rf ') as compared with Harvey's
value' of 1.13.

Schaefer, Klem, and Harris4 have recently cal-
culated accurate configuration interaction wave
functions involving single excitations for the
ground states of B, C, N, 0, and F. They cal-
culated the hfs constants for these atoms and
found good agreement with experiment except for
spin densities at the nucleus, which were too
small.

In this paper, the many-body perturbation the-
ory of Brueckner' and Goldstone' is applied to the
calculation of the contribution to the hfs of oxygen
from orbital, spin-dipolar, and quadrupole
interactions. The contribution to the oxygen hfs
from the Fermi contact interaction was recently
calculated' by many-body theory and found to be
in good agreement with Harvey's experimental
result. ' A detailed discussion of perturbation
theory and hfs has been given by Sandars. ' In
order to apply the Brueckner-Goldstone perturba-
tion expansion to atoms, we use the methods de-
veloped previously. ' " Our methods for applying

many-body perturbation theory to atoms have also
been utilized recently by Das and coworkers. "~"

Following Trees'4 and Bessis et a/. , ' we write
the magnetic hyperfine constants A(J, J') in the
form

A( J, J)= 2P P [&f(&,&')&f

+X (J, J')o.„+) (J,J')o. ],s .,s

where P~ is the nuclear magnetic moment and Pe
is the Bohr magneton. We are using the notation
of Bessis, Lefebvre-Brion, and Moser. ' The re-
duced matrix elements for the orbital, spin-dipo-
lar, and Fermi contact interactions are given,
respectively, by

(2)

s. 3r.(s. ~ r.)
e = —(Ls Q. s — s IS),i y.' y.'

Z

and o' = (Ss/2)(LSIIZ. 5(~.)s. IILS).s Z

The electric quadrupole hfs constant

b&= —e'Qx (J,J)a,
where Q is the nuclear electric quadrupole mo-
ment, and

n = (LS((g. (3 cos'8. —1)/~.'((Ls) . (6)
Q" 2

The values for X for 'P states are given by Bessis
et al. .They also define the constants

a =(IJ) 'A(Z, Z),

and a,=I '(2Z —1) 'I'A(Z, J'- 1).

In calculating the hfs constants, one must cal-
culate the reduced matrix elements alai, ed, &s,
and e&. In this paper we evaluated the matrix
elements
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(LS,M =L, M =S Q —
~ LS)M =L, MS= S)

i=1 i

N 2s .C "&(8., $.)
(I.S,M =L, M =S r.'i=1 Z

x [LS,M =I., M =S)-=-, (r ') (1+y d), (10)

and

N C &2&(8. , y. )
(LS,M =L, M =S

i=1 i

x (LS,M =L, M =S) -=-5 (r ~) (1+y ), (ll)

C (8, y) = [«/(2@+ I)]'~'F (8, y),
(u)

or linked diagrams'~ ' which are first order in the
appropriate hyperfine interaction, but contain any
number of interactions with the Coulomb perturba-
tion go~&

—gVf, where V is the potential used to
calculate the single-particle states. In first order,
y~, ysd, and y& are zero, and we obtain the re-
stricted Hartree- Fock result.

Calculations of the terms in the perturbation ex-
pansion were carried out by use of the methods
described previously. ' " The sums over bound
states were carried out explicitly to a large value
of the principal quantum number (usually about
ten), and the remaining bound states were included
by the n ' rule. " Sums over continuum states
were carried out by numerical integration.

Diagrams corresponding to the second-order
perturbation terms are given in Fig. 1(a)-(c).
The crossed interaction in Fig. 1(c) represents
the net effect of interactions with the passive un-
excited states and with the potential —P. In the
usual many-body notation, ' the crossed interaction
represents only interaction with -V. Diagram 1
(d) shows an insertion on the hole line due to the

and (r ') -= f (P '/~')dr,
HF 0 2p

(»)

with P2p(r) being the restricted Hartree-Fock 2p
orbital (times r). We note that Co "&(8, P) = /~2
xcos'8- 1). The corrections yf, ysd, and yq are
then the corrections due to use of a restricted
Hartree-Pock wave function.

In the case of the spin-dipolar interaction of
Eq. (10), the s component is actually given by"

Is, 2s i/kd

(o)

2p)i i)kp, kf

l s, 2SI skd

(b)

s Sr(r ~ s) 10'+
1, q

9'z~ 0'2

xC &'&(8, P)(iq 2q I1210). (14)

Since in Eq. (10) we are calculating the diagonal
matrix element of the interaction and since we
have a well defined ML, and Mg, there is no con-
tribution from the terms s(1, +1) of Eq. (14).
The Clebsch-Gordan coefficient" (1020 l 1210)
= —(2/5)'~'„and we obtain the simplified form of
the spin-dipolar operator used in Eq. (10). Using
the Wigner-Eckart theorem'5 the redut ed matrix
elements of Eqs. (2), (3), and (6) may be readily
obtained from the matrix elements of Eqs. (9)-
(11). In the following section results are given

y~, ysd, and y&. The resultfor ns was p
sented previously. '

II. NUMERICAL RESULTS

As discussed in our previous hyperfine calcu-
lation, ' the matrix elements of Eqs. (9)-(11)may
be evaluated by calculating all linked energy terms

(c)

FIG. 1. (a), (b), and (c) are Brueckner-Goldstone
diagrams contributing to the second-order hfs result.
The triangular symbol indicates the hf s interaction.
In diagram (c), the crossed interaction represents the
net effect of interactions with passive unexcited states
and with —V. (d) Third-order diagram which modifies
the second-order results. The interaction may also
occur on the particle line. All above diagrams also
occur inverted.

net interaction with the passive unexcited states
and with —V. There are also diagrams with sim-
ilar insertions on the particle line. Inclusion of
all these diagrams yield what we call the shifted
second-order results. The inclusion of these
interactions on the 1s hole line sifts the &1 to
become very nearly the Hartree-Fock value; this
shifted &1s ls used for our second-order results
and in all our calculations. This technique is
discussed in detail in Ref. 10. The triangular
interaction in Fig. 1 represents interaction with
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one of the hyperfine operators listed in Eqs. (9)-
(11). The operator is chosen according to which
matrix element we are calculating.

Results due to the second-order diagrams of
Fig. 1(a)-(c) are listed in Table i. We note that
the relation between &r ') and y is given by

0
IS,2S~i kd

iS,28 d' kd

(o}

i s,2S) ~k'd

(b)

s'dJ~ ih2s, Is

TABLE I. Second-order results. Bound and con-
- tinuum excited states are included. In the calculations,
the value used for &1 is the shifted value given in
Ref. 7 which includes the effects of Pig. 1{d) on the 1s
hole line.

ISq28if 2pfikd Is, 2s)

(e)

, a ij
2p i kp, kf

2s kda

2s kdb

ls kda
1s-adb
2p ~kp
2p kf
Total

0.000 00
0.000 00
0.000 00
0.000 00

-0.046 03
0.000 00

-0.046 03

a@rom diagram of Fig. 1(a).

—0.016 87
0.01543

—0.05146
0.028 32

-0.082 86
—0.01308
—0.120 52

0.000 00
0.01543
0.000 00
0.028 32
0.009 21
0.013 08
0.047 63
bFrom diagram of Fig. 1{b).

is, 2S~ «piLks

2p kp, kf

2p ])k'p; k'f

FIG. 2. Typical third-order polarization diagrams.
These involve one interaction with passive unexcited
states or with —V.

and &r ')=&r ') (1+y ).
q HF q

Through second-order, we obtain (in a. u. )

&~f
' =&4V46, &r d

')=5.212,
stf

(i5) with -p. Results of the polarization diagrams are
listed in the first row of Table II. The diagrams
of Fig. 3 are correlation diagrams in which one
of the hole states is 1s or 2s, and one of the ex-
cited states is 2p (0 or —1 ).

Exchange diagrams are not shown but were in-
cluded in the calculations. The contribution of the
diagrams of Fig. 3 to y~, ysy, and y& are listed
in Table II.

In Fig. 4 are shown the rema, ining types of
third-order diagrams and their contributions are
listed in Table II. Again, the exchange diagrams

We have used &r ')HF = 4.9V50 a.u. which resulted
from our restricted Hartree-Pock calculation.
Harvey's experimental result' for &rf '& = 4.58 and
for &rsvp ') = 5.19. Our second-order result for
&rsvp

') is in excellent agreement with experiment,
but our second-order value for &rf & is only in
fair agreement with experiment. Approximately
one-third of the contributions from 2s and 2P ex-
citations was from bound excited states. Diagram
1(a) contributes only to y&, and yf is determined
(in second order) by diagram l(c) with kp excita-
tions only.

Since we only include one hyperfine interaction,
in the next order of perturbation theory we con-
sider terms with two interactions with the Coulomb
perturbation /vs&

—g Vf in addition to the hfs inter-
action. Typical third-order diagrams are shown
in Figs. 2-4. However, all third-order diagrams
were calculated. The diagrams of Fig. 2 are re-
ferred to as polarization diagrams. They contain
one interaction with passive unexcited states or

2p
mls, 2

2p
h2s I.—h--c]

kd~ 2p

(b)

I s,2s
kd

h-CI"j
k'd

'
)~ ihsd ]--h~ is, as

(e)

kp

is, 2s
i2p

�

k S~ ~2p

h2s i-h~

(g)

PIG. 3. Additional third-order diagrams which in-
volve correlations. Exchange diagrams are also in-
cluded in the calculations. Diagrams {g) and {i) also
occur inverted.
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are included in the calculations although not drawn
in Fig. 4. In Fig. 4(a) the k, k' excitations do not
include the 2p excited states since these were in-
cluded in the diagrams of Fig. 3. Also, the hyper-
fine interaction may occur on the particle lines k
or 0'. Similarly, in 4(b) the hfs interaction may
occur on the other hole line or on the particle
lines. Diagrams (c) to (g) also occur inverted.
Diagrams (e) and (f) were found to be individually
large, but are of opposite sign, and the sum listed
in Table II is rather small. We note that 4(f) is
an exclusion-principle-violating (EPV) diagram.
Diagrams 4(h)-(I} each in;olve two crossed inter-
actions, the crossed interaction representing the
net i»teraction with the passive unexcited states
and with —V. The diagrams of the type shown in
Fig. 1(d) also contribute to the third-order results.
However, we consider them separately since many
of these diagrams are accounted for by calculating
the second-order results with a shifted energy
denominator. " We are then also including some
effects from fourth and higher orders.

If we now consider the second-order results of
Table I and the third-order results of Table II, we
obtain: (rf ')=4.577, (rsvp ')=5.089, and (r&-')
= 4.152. The value for (rf ') is now in close
agreement with experiment, but (rsd ') does not
agree as well with experiment as in second order.

In Table III are listed the "modified" second-
order results. These results include the contri-
butions from second-order diagrams, and also
the diagrams like Fig. 1(d) and higher-order dia-
grams of this type. Table 111 also contains a
summary of the third-order results and estimated
and calculated results of ma, ny higher-order dia-
grams.

In Fig. 5 are shown some of the typical higher-
order terms which were considered. These same
types of diagrams were found important in the cal-
culation of the contact interaction. ' Diagrams 5(a)
and (b) are fourth-order polarization diagrams.
Contributions from fourth- and higher-order po-
larization diagrams were estimated and are listed
in Table III. The effects of three-body and higher
diagrams were also considered. A typical three-
body diagram is shown in Fig. 5(c). Three-body
diagrams were calculated in our previous oxygen
hfs contact calculation. ' Results of that calcula-
tion have been used to estimate the effects of
three-body and higher diagrams for the present
work. This estimated contribution is listed in
Table III.

In Ref. 7, the diagrams we called "renormal-

TABLE II. Third-order results. All exchange dia-
grams are also included. Diagrams of Fig. 1(d) are
considered separately.

(k 2k y[k k'

2p

2p

kd

I s, 2s

(0) (b) (c)

2s

&kd,
2p k'd 2p

2p )~

2p 2p

(e)

2s/i
k' k"

2p

kp, kf
2p

(g)

I s,2s
kd, ks

k'd

X

I s, 2S)i
I s, 2si

&&kd

FIG. 4. Additional third-order diagrams. Calcula-
tions also include exchange diagrams. (a) does not in-
clude 2p excited states since these are given explicitly
in Fig. 3. Interactions may also occur on the particle
lines. (b) Interactions may occur on the other hole line
and on the particle lines. (c) through {g) also occur in-
verted. (c) includes the 2p excited states. (f) is an
EPV diagram according to Ref. 9.

0.000 94
-6.00644

- 6.006 00
—0.000 16
-6.003 19

Polarization -0.01789 -0.006 75 -0.021 75
diagrams
Diagrams 3 (a) -{f) -0.008 82 -6.009 25 -0.61175
plus exchange
Diagram 3(g)b 0.600 86 0.001 14
Diagram 3(h) —0.00044 -0.006 62
Diagram 3(i) 0.060 11 —0.000 13
Diagram 4(a) —0.000 44 —0.000 44
Diagram 4(b) —0.00156 —0.002 47
(u'=2p)
Diagra, m 4(b) —0.003 59 —0.064 26 —0.006 76
(no excited
2p states)
Diagram 4(c) 0.006 00 —0.662 47 -0.002 53
Diagram 4(d) 0.000 00 0.000 65 0.001 27
Diagrams 4 (e) +4(f) 0.006 15 0.000 15 0.000 15
Diagram 4(g) 0.000 00 6.000 03 —0.000 22
Diagrams 4(h) +4{i) —0.000 94 -6.60143 -0.60044
Diagrams 4(j), 6,006 06 0.000 08 —0.000 33
{h), (1)
Total —6.033 94 —0.024 66 —0.044 88

~Typical polarization diagrams are shown in Fig. 2.
All third-order polarization diagrams are included in
this result.

The inverted diagram is also included in numerical
results.
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TABLE III. Inclusion of higher-order diagrams.

Diagrams

Modified
second-ordera
Third-order
Higher
polarizationc
Three-body
Renormalizatione
Total

—0.050 48 0.043 54 —0.123 46

-0.033 94 -0.024 67 —0.044 88
—0.01140 0.002 10 —0.003 80

0.005 20
0.004 50

-0.086 12

0.006 50 0.007 60
0.002 80 0.009 80
0.030 26 —0.154 74

(a) (b) (c)

(e)

FIG. 5. Typical higher-order diagrams contributing
to hyperfine structure. Diagrams (a) and (b) are fourth-
order polarization diagrams. (c) Typical three-body
diagram. The hfs interaction may also occur on the
other hole lines or on the particle lines. (d), (e), and

(f) are renormalization diagrams which modify the
basic diagrams of Fig. 1.

ization" diagrams were found to be quite impor-
tant. Several of the renormalization diagrams
are shown in Fig. 5(d)-(f); and they are all listed
in Fig. 5 of Ref. 7. These diagrams modify the
basic second-order diagrams of Fig. 1. Our val-
ue for the contribution from the renormalization
diagrams is given in Table III, and they are not so
important as in Ref. 7. At the bottom of Table III
are our final values for yl, yzd, and y& before the
inclusion of relativistic corrections.

In Table IV are listed the results for (rf '),
(rsd '), and (x& '). The third row contains our

aIncludes diag"ams like Fig. 1(d) and higher-order
diagrams of this type in addition to second-order diagrams.

bA11 third-order diagrams except for those of Fig. 1
(d).

Estimated contribution from fourth-order and higher-
order polarization diagrams; examples shown in Fig. 5

(a) and (b).
dEstimated contribution from correlation diagrams

with three or more different hole states. Typical dia-
gram shown in Fig. 5(c) .

TABLE IV. Results for (r ) in a.u. (Our calculated
restricted Hartree-Fock value is 4. 9750 a.u. ).

(rf '& (rsd &

Second order
From Table III.
This work with
relativistic corrections 4.563
Schaefer et al. 4.613
Bessis et ol. 4.68
Experiment 4.58
(Harvey )

4.746 5.212
4.547 5.126

5.170
5.125
4.89
5.19

(rq '&

4.375
4.205

4.216
4.334
4.56

aCorrectiou factors of 1.0035 aud 1.0086 for (rf )
aud (rsd &, respectively, are taken from B. R. Judd,
Ref. 3. An approximate correction of 1.0027 for (r&
has been taken from Ref. 16.

Reference 4. Relativistic corrections not included.
Configuration interaction result of Ref. 2. Rela-

tivistic corrections not included.

results for (r-s) multiplied by relativistic correc-
tions. For (rf ') and (rsd '), we have multiplied
by the factors 1.0035 and 1.0086, respectively,
which were taken from Judd. ' For (r& '), an ap-
proximate relativistic correction of 1.0027 was
obtained from Kopfermann. " In Table IV our re-
sults are compared with those of Schaefer et al. ,4
with those of Bessis et al. , ' and with Harvey's
experimental results. ' Our results are quite
close to those of Schaefer et al. Since the results
of Schaefer et al. 4 and of Bessis et al. ' do not in-
clude relativistic corrections, they should be com-
pared with our results before the relativistic cor-
rections are included. Bessis et al. ' have calcu-
lated the (r ') values by various approximations
and it is their CI (configuration interaction) result
which is listed in Table IV.

In Table V we have listed our calculated values
for a, and a„and we compare with the results of
Schaefer et al. and with experiment. '& ' Our val-
ues for the nuclear magnetic dipole moments are
taken from Fuller and Cohen. " In the 0' experi-
ment, Commins and Feldman" give only a result
for a, . In calculating a, and a„ the value of (r s)
with relativistic corrections were taken from Ta-
ble IV. The value for the Fermi contact term e~
was taken from Ref. 7 and was reduced by a rel-
ativistic correction of two percent as suggested
by Judd. 3 The constants a, ' and a, ' have also been
calculated in this work to be —128.04 Mc/sec and
—87.5 Mc/sec, respectively, as compared with
the experimental values —127.5 +2 Mc/sec and
—91.7 a 7.2 Mc/sec.

We have also calculated the nuclear quadrupole
moment Q using the value for (rq ') of 4.216 a. u.
from Table IV and m&ing use of Harvey's' value
5, = —10.438 Mc/sec. Our resulting value for Q
for 0" is —0.02634&10 ' cm'.
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TABLE V. Hyperfine constants in Mc/sec.

a, {o")a, {o")
—220.075
—212.966
—219.61c + 0.05

a, {O") a, {o")

This worka 4.105 417.73 —7.792
Schaefer et aE. 9.257 404.24 —17.571
Experiment 4.738 + 0.036 414.87d

Ne have used our previous value for I g {0)I calculated in Ref. 7 and then used a two percent relativisitc
correction as estimated by Judd in Ref. 3.

bTaken from Ref. 4. If the relativistic corrections are applied, these results are brought into closer
agreement with experiment.

cFrom Ref. 1. This value corrected by Harvey for a slight breakdown of L 8 coupling.
From Ref. 17. No result for a~ for 0 is given.

III. DISCUSSION AND CONCLUSIONS

These calculations illustrate the utility of many-
body perturbation theory in correcting Hartree-
Fock wave functions. Although our second-order
results are reasonable, we have found significant
contributions from higher-order terms. In ob-
taining our final results, we estimated the effects
of three-body and higher terms as shown in Fig.
5(c). Our estimated contributions are believed
to be fairly reliable since these terms were ex-
plicitly calculated in the Fermi contact calcula-
tion. ' As a result of estimating these terms and
also the higher-order polarization terms as
shown in Fig. 5(a) and (b), our final results for
y~, y~d, and y in Table III are probably accurate
to about 90%. The resulting uncertainty in (rf ')
is less than 1%; for (rsd '), it is approximately
0.3%; and for (r& '), it is approximately 1.5%.
Our value for Q(O")= —0.0263x10 '4 cm' is
rather close to the value —0.0256 x10 cm ob-
tained by Schaefer et al. Previous results for
Q(O") include the values —0.024x10 "cm' ob-
tained by Bessis' et al. , —0.026x10 ' cm' ob-
tained by Stevenson and Townes, " and —0.0265
x10 '4 cm' obtained by Kamper, Lea, and Lus-
tig. " The result by Kamper, Lea, and Lustig, '
contains the Sternheimer correction" for polar-
ization of the inner electrons. The present many-
body calculation includes the Sternheimer correc-
tions in the second-order terms.

In comparing with the results of Schaefer,
Klemm, and Harris, 4 their values for (rf ') and

(rsd ') are essentially as close to experiment' as
those of this calculation, particularly if the rela-
tivistic corrections are applied to their results.

Our closer agreement with the experimental hfs
constants given in Table V is mostly due to our
improved value for l P(0) I'. Although Schaefer
et al. state that they have only included single ex-
citations, it appears that, in our terminology,
they have also included double excitations in which
one of the excited states is a 2P (0 or —1 ) ex-
cited state. They have then included such corre-
lation terms as are shown in Fig. 3 or Fig. 4(b)
when 4 or k'equals 2p. This is also checked by
noting that the amount of correlation energy ob-
tained by Schaefer et al. is very close to that ob-
tained in Ref. 7 from 2s2P -2P(0, —1 )kd ex-
citations. The present calculation also contains
many terms and effects not included by Schaefer
et al. , but it is interesting to note that in this
case there has been much cancellation among these
higher-order terms and our results are close to
those of Schaefer et a/. 4 This, however, is not
true in the case of the contact interaction. '

Many-body perturbation theory appears to be
useful in calculating hyperfine structure as well
as other properties. There always remains the
problem of calculating higher-order terms to
greater accuracy; and the three-body and higher
diagrams may be of increasing importance in
larger atoms. These and other problems will be
investigated in future work.
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Intensity and Gain Measurements on the Stimulated Raman Emission
in Liquid Q, and N, &
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In liquid 02 and N2 the threshold for stimulated Raman emission is found to be much lower
than for other nonlinear processes. Thus it is possible to make reliable measurements of the
intensity of Raman emission over a large range of incident laser power by using a simple
longitudinal geometry. Several distinct regions of emission were investigated, including
normal Raman scattering, exponential gain, onset of oscillation, and saturation. There is
good agreement with theory.

INTRODUCTION

It is well known' ' that the comparison of theo-
retical and experimental values of intensity and
gain in stimulated Raman emission is complicated
by several competing processes such as self-
focusing, and Brillouin and Rayleigh scattering,
all of which may have similar appearance thres-
holds. Thus, anomalous intensity behavior in
many liquids and even in gases4 ' and solids'
appears to be the rule rather than the exception.
One important consequence is that the premature
onset of oscillation has precluded the observation
of the expected exponential gain in most materials,
with the exception of gaseous hydrogen, liquid

acetone, and carbon tetrachloride. ' Bloember jjn
and I.allemand'&6 have overcome some of these
difficulties by the use of a Raman amplifier and
have demonstrated its importance in obtaining
reliable values of the Raman gain. Other useful
experimental arrangements in such studies include
the transverse resonator of Dennis and Tannenwald, '

the off-axis resonator of Jennings and Takuma, '
and the diffusely pumped amplifier of Bortfeld and
Sooy. " More recently, Shapiro, Giordmaine, and
Wecht, "Bret and Weber, " and Kaiser and Maier"
have shown that with picosecond and subnanosecond
laser pulses stimulated Raman scattering is the
dominant nonlinear scattering process in sev-
eral liquids, and thus have obtained good agreement


