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negative at room temperature and changes sign in the
vicinity of 170°K, i.e., quite remote from 106°K.

The E and G moduli of polycrystalline Sm are shown
in Fig. 7. Their temperature dependence is strikingly
similar to that of the elastic moduli and ultrasonic
attenuations of Pr (Figs. 1-3). The appearance of a
lattice softening in both Pr and Sm is probably due to
a common mechanism.

With decreasing temperature, from the ambient, the
elastic moduli of Sm (Fig. 7) increase in a normal
manner and subsequently form a broad maximum. In
this temperature region, K, (Fig. 8) develops a rather
wide hump peaked at 109°K. With further decrease in
temperature, K, exhibits a dip at 70°K. The peak in
K, at 109°K is consistent with the occurrence of anom-
alies in the vicinity of this temperature in the electrical
resistivity,!® heat capacity,? and other physical proper-
ties. The nature of these anomalies was not firmly
established.*? Additional evidence for the similarity
in behavior of the elastic moduli in both Pr and Sm is
the temperature variation of the a; and a; wave attenua-
tions. In Sm (Fig. 9), as in Pr (Fig. 3), o; displays a
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peak, whereas a; shows a smooth behavior in the temp-
erature region in which the adiabatic compressibilities
(Figs. 2 and 8) are anomalous. As was speculated for
Pr, these anomalies and the accompanying lattice
softening in Sm may be due to an electron-type transi-
tion or to temperature-dependent crystallographic
change.

The sharp minimum in the elastic moduli of Sm
(Fig. 7) at 14°K and the corresponding anomalies
observed in the compressibility (Fig. 8) and ultrasonic
attenuations (Fig. 9) are characteristic of a magnetic-
ordering point. This is in agreement with the behavior of
other physical properties of Sm.?152

The temperature dependence of @p of Sm is shown
in Fig. 8. The limiting @p, at absolute zero, for the
antiferromagnetic phase is 169°K.
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Moment-Conserving Decoupling Procedure for Many-Body Problems
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A new, well-defined procedure for linearizing double-time, statistical Green’s functions is proposed. The
resultant spectral function automatically conserves the first several frequency moments. This compares very
favorably with the usual mean-field decoupling results, which conserve only the first (and, rarely, up to

three) frequency moments.

HE Green’s function method has been widely used

in the study of equilibrium as well as nonequi-
librium properties of interacting many-body systems.!
Since exact solutions to these problems (except for a few
one- and two-dimensional cases) can in general not be
obtained, approximations have to be introduced. The
approximation procedures fall into two distinct cate-
gories: (i) The first is the diagrammatic expansion,?
which aims at calculating the spectral function to any
desired accuracy whenever a perturbation approxima-
tion is meaningful; or which are designed to sum a
selected subset of the total set of diagrams to many (and
possibly infinite) orders when perturbation approxima-
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tion itself is not appropriate. (ii) The second category is
the Green function or equation of motion decoupling
procedure. This consists of self-consistent mean-field
approximations, which can often (especially for fermion
or boson systems) be interpreted in terms of diagrams
but the primary motivation for which is provided by
their heuristic simplicity.

The difficulty with the usual decoupling procedures is
that they are crude and often they do not lead to a very
accurate description of the elementary excitation spec-
trum of the system. As the structure of the elementary
excitation spectrum is embodied in the frequency-wave-
vector dependence of the spectral function, the simple
decouplings do not lead to accurate representation of the
spectral function. Consequently, the frequency mo-
ments of the spectral function calculated via the usual
mean-field decoupling procedures are not accurately
reproduced.

To improve on this situation, we propose a new
decoupling scheme which is well defined and which
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automatically preserves the first several (or more, if

desired) moments of the spectral function. The method

is best illustrated by considering simple examples.
Consider first the spin-} Ising model with Hamiltonian

=3 X I(fif)Ss2Spi—u 2 S, (1)

f1 f2 s

Il

3

Here I(ff)=0. In the usual notation' the equation of
motion of the commutator-retarded Green’s function of
S,F() and S,~(¢) is

(E—w)G(E)=(¢/m)+T(E), @
I'(E)=; I(fe){(SsSa*; Sq N 3)
The usual random-phase-approximation (RPA) de-

coupling is to ignore the fluctuations of S;* around its
statistical average o, i.e.,

I'(E) sz(E)Zfl I(fg)=0J (0)G(E). 4)

G(E) is now readily found, and its spectral function
F(w)is

F(w) =~ 208(w—wo), )

RPA

—+o0
P(w)e =" dw,

wo=p+aJ(0). (6)

The (n-+1)th frequency moments of the spectral func-
tions, i.e.,

() 5025

o0
=[ F(w)wrdw=ao", (7)

-0

CSH®,S () 1=

—

lim
t=t’

are now easily calculated from the equations of motion
of S,* and the exact results as well as the RPA predic-
tion using Eq. (5) are

#=20, @*=2(atuo), &*=2(b+2uatu), ©
wt=2[c+3ub+3ptatpo], @t = 20(wo)",
a=21 (fe)XS %S5, -
b=§ % I(f1)I (f2)(S 11*S 12"S %) » ©
c=% % 2/2 IT(f1)I (f2)I (f38)S 778 1275 15°S o) -

Thus, the RPA gives only the first moment cor-
rectly. To achieve a more accurate F(w) we propose to
proceed as follows: Find the equation of motion of the
Green’s function on the right-hand side of the original
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equation of motion for G(¢—?), i.e.,
[E—uIT(E)=a/n+T®(E), (10)
re (E)=; ; I(H I (f20)US 1S r"Sets S Nemy- (11)

Now require that I'® (E) be represented in terms of the
two lower-order Green’s functions G(E) and I'(E), i.e.,

I'®(E)=AG(E)+BI'(E). (12)

Choose the coefficients 4 and B so as to preserve the
first two frequency moments of the spectral function
for TW(E). This gives

b=Ao+Ba, (ub+c)=A4(uo+a)+Buat+b). (13)

These conditions completely specify the unknowns 4
and B.

A= (ac—b?)/(a®—bo), B=(ab—co)/(a®—bs). (14)

Insert the decoupling Eq. (12) into Egs. (2) and (10)
and find G(E)

1 o(E—u—B)+a
G(E)=- )
7 (E—p)(E—u—B)—A

(15)

The spectral function given by Eq. (15) is found to
yield the first four moments correctly.

Before proceeding to the study of another physical
system (with more interesting time-dependent proper-
ties), two things should be emphasized. Firstly, with the
above approach we have been able to construct a more
accurate Green’s function (or equivalently, the spectral
function) given the knowledge of the first few frequency
moments, which are in themselves time-independent
quantities. [Note, that in fact we do find two inde-
pendent relations between the four unknowns g, @, b,
and ¢ from Eqs. (15) and (2). Therefore, we need to
calculate (by conventional methods, such as the high-
temperature or the low-temperature series expansions,
etc.) only two additional relations for these four
quantities. ]

For our next example, we choose the case of a system
of correlated electrons forming a narrow s band.? In the
notation of Ref. 3, the Green’s function equations of
motion are

5,
EGM"<E)=—2—”+2; T,1Grp(E)+IT,,7(E), (16)
v
Ne—s
Papd(E)[E_I_ TO]——5o.p
27

=3 Taf«”a—vcf o Cod' e
f#g

+Zf: Tyy [«Ca—vfcf—vcgai CLMT»E

- «Cf—wTCg-an} CZWT>>E] .
3 J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).

(17
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Here, for convenience we shall put 7,,=7,=0.
Hubbard?® approximated the terms on the right-hand
side of Eq. (17) by #_. >_ s T, ;G s,°(E). This approxi-
mation is reasonable [i.e., much better than the Hartree-
Fock approximation, I'y,’(E)~¢G,,°(E)], and it con-
serves the first three frequency moments of the spectral
function for the Green’s function G,,°(E). However,
because of the inherent two-level nature of the problem,
i.e., for arbitrary I, the fourth moment is important for
determining the dispersion relation and the spectral
weights of the elementary excitations.

Following our procedure, we represent the right-hand
side of Eq. (17) as

=AGy," (E)+CT 7 (E)
+; [BosG sy (E)+Dy T sy (E)].  (18)

Let us determine the first two frequency moments of the
spectral functions of the Green’s functions, multiply
them by the appropriate functions 4, B, C, and D as
given in Eq. (18) above, and require that these mo-
ments be identical with the corresponding moments of
the actual sum of the Green’s functions, including their
appropriate coefficients, occurring on the right-hand
side of Eq. (17). This procedure completely determines
4, B, C, and D.

=—Cn_p=(1—n_,)!

X; T”[KC/._,TC”_, ¢! _”ga»

—(Co—o'Crsttge)], (19)
n_gDgs=n_oTg;—Bgs= (1—n_o) " Tos[{ns—ot7-0)
—1_?+H{C16'C1—oC—s'Cy0)
F{Css'Cs_s1CyeCys)]. (20)

Now replacing the terms on the right-hand side of Eq.

(17) by those given in Eq. (18) and using Egs. (19) and

(20) we get

221G (E)=[E—I(1—n_o)+Ax"]
XE=I+A)(E—To)—In_o(Ti+A:) T, (21)

where #_,A,;°=A8,, ;—n_.Dys. The Green’s function

(21) gives the correct fourth moment for its spectral
function. Moreover, it reduces to the correct result in
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both the exactly soluble limits, i.e., (i) T,;=0 and
(i) I=0.

A more interesting limiting case is that of infinitely
strong intra-atomic correlation, i.e., I—x. To the

leading order in the ratio (7/I) we get

(272G (E) Jr—e
=1=n_o)[E—Tr(1—n_q)+n_oAr’ 1. (22)

It should be noted that in this limit, for #n,+#_,<1, the
terms

<C a—vTCf—«” w> ,

must become vanishingly small (because they are
directly proportional to the statistical weights of situa-
tions requiring the arrival of two electrons, or two holes,
simultaneously at one spatial location—a happening
which is energetically very unfavorable).

The pole of the Green’s function, although not com-
plex for the case /= «, occurs at a different energy from
the corresponding noninteracting case, i.e., Tx. The
renormalization of the spectrum is only partly as pre-
dicted by the Hubbard RPA, i.e., like (1—#n_,).
Rather, there is an additional energy shift, —#n_,A;°.
Note also that the energy shift is partly k-independent,
i.e., equal to — A, (such shifts are sometimes called the
band shifts?). This band shift arises because of the
electron correlations and is obtained self-consistently in
terms of the higher moments of the spectral function.
Therefore, it has an entirely different origin than that
given by Beeby.* Indeed, in this strong correlation
limit, the present result is identical to the infinite 7
elementary excitation spectrum calculated by Harris
and Lange.b

In conclusion it may be noted that while we have
demonstrated the use of the moment-conserving de-
coupling procedure by applying it only to the second
time derivative of the Green’s function of interest, the
same method can also be used either at a later stage
(when the decoupling must be made in terms of all the
preceding Green’s functions, thus enabling the con-
servation of even higher number of frequency moments)
or at an earlier stage (in which case it simply reduces to
the Hartree-Fock type of approximation).

(Cro'Costiys), (Cr—o'CyoC1s'C o)
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Eq. (6.9).



