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Pressure Effects on the Suyerconducting Transition Temperature of Pb
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McMillans theory of the transition temperature of strong-coupling superconductors is extended to
allow calculation of pressure effects on T, from measured shifts in the transverse and longitudinal peaks in

the phonon density of states. Using multiple-cutoB Lorentzians as a model for the phonon spectrum, we

show that the pressure dependence of n„m, the square of the electron-phonon coupling strength for the
phonon mode v, can be expressed largely in terms of pressure-induced shifts in the phonon peaks and that
the remaining dependence can be calculated using pseudopotential theory. The results are evaluated for
Pb using pressure data from two diferent electron-tunneling studies. When the data of Franck and Keeler
are applied to the theory, the results are in good agreement with experiment. However, data from the
work of Zavaritskii et al. yield a value of the pressure dependence of T, which divers by more than a factor
of 2 from that found experimentally. In addition to these results, we have used our pseudopotential calcula-
tion to evaluate a„2 and 6nd for Pb at,2=1.28 meV and aP=1.36 meV. These values compare favorably to
aP=1.11 meV and nP=1.34 meV which have been calculated directly from tunneling data by McMillan
and Rowell.

I. INTRODUCTION

'HE effect of pressure on the superconducting tran-
sition temperature has been studied experimen-

tally for a large'number of materials. ' One might hope
that the e6'ect could be explained from first principles
through direct examination of the self-energy equations
of strong-coupling superconductors. ' ' However, it is
generally appreciated that the equations themselves are
diflicult to solve, and that many trial solutions are re-

quired in order to sort out the relative significance of the
different properties of the normal state which enter the
theory.

The problem of calculating T, has been approached

by McMillan4 from a semiempirical point of view, and

he found that the transition temperature of a strong-

coupling superconductor can be approximated in closed

form as a relatively simple function of the Coulomb in-

teraction, the electron-phonon coupling strength, and

the phonon spectrum. Olsen, Andres, and Geballe' have
recently shown that McMillan's general results can
be used to estimate the pressure dependence of T,.
Their predictions are in qualitative agreement with

experiment for a number of non-transition-metal
superconductor s.

In this paper, we examine in some greater detail the
effects of pressure on McMillan's expression for T, and

apply these results to Pb using appropriate models for
the phonon spectrum and the electron-phonon interac-
tion. We show that the pressure dependence of n', the
strength of the electron-phonon interaction, can be ex-

pressed largely in terms of.pressure-induced shifts in

M. Levy and J. L. Olsen, in High Pressure Physics, edited by
by A. Van Itterbeek (North-Holland Publishing Co., Amsterdam,
1965).' V. Ambegaokar and L. Tewordt, Phys. Rev. 134, A805
(1964).

3 D. J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev. Let-
ters 14, 102 {1965).' W. L. McMillan, Phys. Rev. 167, 331 (1968).

' J.L. Olsen, K. Andres, and T. H. Geballe, Phys. Letters 26A,
239 (1968).
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the phonon spectrum, and that the remaining depend-
ence can be evaluated in terms of pseudopotential
theory. The pressure dependence of T, is evaluated for
Pb using experimental data for pressure-induced shifts
in the transverse and longitudinal peaks of the phonon
density of states. We also make use of our pseudopoten-
tial calculation to obtain an independent estimate of n'.

where ro, is the upper cutoff frequency (in units of 'K)
of the phonon density of states, and p* is the Morel and
Anderson' pseudopotential describing Coulomb cou-
pling. X is a dirnensionless electron-phonon coupljng
constant defined by

) =P)„=+2
&c dM

cr„s(co)F„(ro)—, (2)

where cr„(&o) is the strength of an average electron-
phonon interaction, and F„(ro) is the phonon density of
states for the phonon mode v.

We adopt the point of view that Eq. (1) is essentially
correct and examine the relationship between pressure-
induced changes in T„co„and ) „.Since the same value
of p,*=0.1 is appropriate to all the polyvalent metals, 4

we expect this parameter to be independent of pressure.
Taking the logarithmic derivative of Eq. (1) and sub-

6 This expression differs from Eq. (18) of Ref. 4 in that we have
used co. in place of Debye 8, this being closer in form to the original
theoretical solution Lace Kq. (15) ot Ref. 47.

r P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
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II. THEORY

By fitting to experimental data a theoretically moti-
vated form of an expression for T, for strong-coupling
superconductors, McMillan showed that a wide range
of metals and alloys obey the approximate relationship'

1.04(1+X)
T =

. exp
1.73 X—p, *(1+0.62K)
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stituting this value of p, *, we find

d lnT, d inca, 1.23 3 dX„~

~

(X—0.11)' ~ dP
(3)

1 1
F„((o)=A„

- 0)—GOy Mg COg G03

=0,

(a& —co,"~ (~,"

i
co —a&i"

i )coal" (4)

To proceed further requires a specific model of the
phonon spectrum. Thus, from this point onward we shall
restrict our discussion to the case of Pb. We obtain an
analytic expression for X. for Pb by assuming the
multiple-cutoff Lorentzian model of Scalapino, Schrief-
fer, and Wilkins' for the phonon density of states:

d lno. ,
dP dP

4n 'A, cog"

1
2 (g2 2

C03 COy" CO 3"

X — inl
-(~2m)2+(~ v)2 (~lv)2+(&g2~)2 k&gl~ ~ vp

1 (co,")'—((ug")') co,"-d 1n~oi"

~

arctan — — — (6)
M (M ) +(Mi:) I N dP

t'd inc„' d 1ncdi")

dP dP ) (7)

With the assumed values of cv„", the approximation
made in obtaining Eq. (7) from Eqs. (5) and (6) is ac-
curate to within 3%.

To calculate iE inn„~/dP, we examine the first moment
of n, '(co)F„(co), which can be evaluated in terms of our
phonon spectrum model

where

1 1 0) 07

A„=——arctan ——
&u (&a ) +(&s )—

Therefore,

n„'(~)F„(~)~Cko=n„'~i".

d inn„~ d lnI„d lnorq"

dP dP dP
(9)

normalizes F„(~); and a&i'=4.4 meV, ~i'=0.75 meV,
cv3'= 1.5 meV, cog'=8.5 meV, o)g'=0.5 meV, and co3'= 1.0
meV have been chosen to approximate the phonon spec-
trum. as determined by inelastic neutron scattering data
on Pb. ' If n„' is assumed to be independent of frequency,
then Eq. (2) can be integrated directly,

2', 'A„
2—arctan—

0) CO — CO GO

COy
—C03 ~

COy C03

(5)
CO CO CO

—
CO

Substituting values of o.,' derived from tunneling data'
(nP= 1.11 meV and nP= 1.34 meU), we find X,=0.51
and lii =0.32. The fact that we obtain Q„9,„=1.34 using
the tunneling 0.„"sand the cutoB Lorentzian model for
F,(co), as compared to X=1.33+0.02 calculated from
a'(co)F(~) derived wholly from tunneling data, " is an
indication that this phonon model is well suited to our
purposes.

To. determine the pressure dependence of P „, we make
the simplifying assumption that only 0,„' and the center
of the Lorentzian distribution co&" are shifted by pres-
sure. Then

D. J. Scalapino, J.. R. 'SchrieGer, and J.W. Wilkins, Phys. Rev.
148, 263 (j.966).' B.N:. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and A. D.
B. Woods, Phys. Rev. 128, j.099 (1962)."W. L. McMillan and J.M. Rowell, Phys. Rev. Letters 14, 108
(1965).

dP dP
(d lnI„d in~i"q

+ Z~, l

—-2 ~. (10)
P, —0.11)' ~ E dP dP J

The least accessible term in this expression is d InI„/
dP. McMillan has noted that I„is independent of pho-
non frequencies and can be expressed in terms of the
screened ionic pseudopotential

lV(0)
((e" q)')-

2M p

X ~(kp+qIzv~kp)~'pe
0

gdg, (11)

where'1V(0) is the electronic density of states per atom

Our motivation in relating n„ to I„is twofold. First, as
we shall see below, the pressure dependence of I„can be
calculated in a reasonably straightforward fashion from
pseudopotential theory. Second, from general arguments
presented in Sec. V of McMillan's paper, we expect I„to
be only weakly dependent on pressure, and our calcula-
tion in the Appendix bears this out. Thus, since d inn„ /
dP is determined largely by d in~i"/dP in Eq. (9),
errors introduced by approximations made in our
pseudopotential calculation of d lnI„/dP are of only
minor importance to our final result.

Substituting Eqs. (7) and (9) into Eq. (3) gives the
main result of this paper

d lnT, d ln(o,
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TmLE I. Comparison between values of n„' in meV calculated
from experiment and values calculated from various mathematical
models.

Phonon
mode

Derived from Calculated by This work This work
tunneling SWS using using using

data' P=60' P=46.0 P=60

Transverse
Longitudinal

1.11
1.34

1.05
1.98

1.28
1.36

1.08
1 49

&Reference 10. b Reference 3. O In units of Ry (a. u. of volume).

at the Fermi surface, M is the ionic mass, k p is the Fermi
wave number, a„is the phonon polarization unit vector,
and (e,„ tl)' is averaged over the angular distribution of
ti. (kF+tl~ w~ kF) is the screened electron-ion pseudo-
potential form factor connecting two points on the
Fermi sphere. Calculation of the pressure dependence
of I„is shown in the Appendix, where we find d 1nI~/dP
= —0.1X10 ' bar ' and d lnIt/dP = 1.9X10 ' bar '

III. RESULTS AND DISCUSSION

The pressure dependence of the phonon density of
states in Pb can be obtained from the recent experi-
mental work of Franck and Keeler. Their data are par-
ticularly appropriate to this discussion, since they used
the same experimental apparatus to measure pressure-
induced shifts in both the phonon spectrum" and in T,"
of Pb films. Thus, any systematic error that may have
occurred in their determination of the pressure wilI

cancel in all terms of Eq. (10), except the term d lnI„/dP
which is small to begin with. Franck and Keeler's pho-
non results are d 1nco'/dP= (5.3+0.7) X 10 ' bar ' and
d in&a'/dP=(7. 0+0.7)X10 ' bar '. As pointed out by
these authors, "these data imply values of the tempera-
ture-dependent Gruneisen parameter which are in excel-
lent agreement with those derived from thermaI-expan-
sion and heat-capacity data by White. " The term
tf 1n&o./dP in Eq. (10) is evaluated by assuming that the
relative shift in or, is given by the relative shift in the
longitudinal peak. Equation (10) then predicts a pres-
sure-induced shift in the transition temperature
of d lnT, /dP= —5.0X10 ' bar '. This is to be com-

pared to Franck and Keeler's experimental value of

(—4.9+0.2)X10 ' bar '. Experimentally determined
values of d 1nT,/dP for bulk Pb are (—5.27&0.10)
&(10 ' bar ' as measured by Garfinkel and Mapother'4
and (—5.37+0.17)X10 ' bar ' as measured by Smith
and Chu. "

More recently, Zavaritskii, Itskevich, and Voronov-
skii" have published additional tunneling data on the

"J.P. I'ranck and %.J. Keeler, Phys. Letters 2SA, 624 (1967).
~~ J. P. Franck and W. J. Keeler, Phys. Rev. Letters 20, 379

(1968)."G.K. WhitePhil. M, ag. 7, 271 (1962).
'4M. Garfinkel and D. E. Mapother, Phys. Rev. 122, 459

(1961).
'~ T. F. Smith and C. W. Chu, Phys. Rev. 159, 353 (1967).
'6 N. V. Zavaritskii, E. S. Itskevich, and A. N. Voronovskii, Zh.

Eksperim. i Teor. Fiz. Pis'ma v Redaktsiyu 7, 271 (1968) /English
transl. :Soviet Phys. —JETP Letters 7, 211 (1968)j.

pressure dependence of the phonon peaks of Pb. They
found d 1nco'/dP= (10.1+1.4)X10-s bar-' d 1ntot/dP
=(7.05+0,7)X10 ' bar ' and d into, /dP=(7. 1&1.4)
&(10 ' bar '. The large discrepancy between their value
of d 1n&o'/dP and that found by Franck and Keeler is
not understood. Furthermore, Zavaritskii's data imply
a low-temperature Gruneisen parameter'6 which is
larger by a factor of 2 than that calculated from thermal-
expansion data. ""Using Zavaritskii's results in Eq.
(10), we find d lnT, /dP= —12.9X10 ' bar ' in poor
agreement with experiment.

We note that, in addition to its use in evaluating the
pressure dependence of 2'„Eq. (8) can be used to obtain
an independent theoretical estimate of o.„'.For this pur-
pose the "band structure" value' of E(0), obtained
from the electronic heat-capacity coefficient, is used in
the calculation of I, in the Appendix. We find a~'= 1.28
meV and n~'= 1.36 meV. These results are to be com-
pared to those calculated" from experimental tunneling
data noted earlier: n&'=1.11 meV and cx~'=1.34 meV.

Perhaps it is worthwhile to comment on the differ-
ences between our results and previous values of o.~'

= 1.05 meV and n&'= 1.98 meV calculated by Scalapino,
Wada, and Swihart' (SWS). These authors also em-

ployed the pseudopotential approach, but in a some-
what different scheme in which they calculated n„s(co)

as a function of co. The results quoted are this function
evaluated at the frequencies of the respective peaks in
the phonon spectrum. A particularly significant diBer-
ence between the calculations is that SWS used a value
of P=60 Ry (a. u. of volume) in the point-ion model of
the bare ion pseudopotential Lsee Eq. (A7)j.This was
determined from early calculations by Harrison" of the
pseudopotential form factors for Pb. Our value of
/=46. 0 Ry (a.u. of volume) was also obtained by
Harrison, ' but by curve fitting to later and more de-
tailed calculations by Animalu and Heine. "In order to
investigate the sensitivity of our results to this param-
eter, we recalculated n„s using P= 60 Ry (a.u. of volume)
obtaining n&'= 1.08 meV and n~'= 1.49 meV. The differ-
ent results are summarized in Table I.
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APPENDIX: PRESSURE DEPENDENCE OF I,
We derive here the pressure dependence of I, prin-

cipally from consideration of the ionic pseudopotential. "
'r J.G. Collins and G. K. White in Progress iN Loto Temperature

Physics, edited by C. J. Gorter (North-Holland Publishing Co. ,
Amsterdam, 1964), Vol. 4.

'8 See Sec. IV of Ref. 4 for a discussion of this parameter.
"W. A. Harrison, Rev. Mod. Phys. 86, 256 (1964).
"W. A. Harrison, Pseudopotentiats in the Theory of Isfetals (W.

A. Benjamin, Inc. , New York, 1966), p. 57."A. O. E. Animalu and V. Heine, Phij Mag. 12, 1249 (1965).
"In this section we rely heavily on Ref. 20, Chap. 2.
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SURFACE OF CONSTANT=', 9',

NEAREST-NEIGHBOR
IMAGE-SPHERE

I'IG. 2. Relationship between the parameters used in
the calculation of (sin'q)„.

FIG. 1. Model of q space shovring first Brillouin zone and six of
the first nearest-neighbor image spheres.

Since kF appears as a natural pressure-dependent vari-
able in Eq. (11), we begin by relating d InI„/dI' to
changes in this parameter. Expressing kp in terms of the
volume of a unit cell Qp

((a„„21)'), to remain constant under changes in

pressure.
To evaluate the pseudopotential contribution to (A4),

we assume that the self-consistent screening of the ion

by the electron field is carried only to erst order, such
that the form factor can be written as a simple ratio

&kp+qltt lkp&=( p+ql~olkp&/", (A3)

where (kp+qlwslkp) is the bare ion pseudopotential,
and e, is the static Hartree dielectric function

we obtain
k p ——(32rsz/Qs) '~2, (A1)

22tses f'4 —tis 2+tf
ca=1+ I

ln — +1
l

~Asgskpk 4g 2

d lnI„1 d lnI„1 k~ dI„

dP 8 d lnQp 38 I, dkp
(A2)

%ithin the approximations to be given below,
((s„sf)2), is purely a geometric factor, independent of
the scale of the atomic lattice. Ke therefore expect

where 8 is the bulk modulus. For the purpose of evaluat-
ing the pressure dependence of I„, we assume that the
electronic density of states is given by its free-electron
value

1V(0)= 3ztt2/2hsk p' (A3)

where Z is the valence, and m is the electronic mass. In-
troducing this approximation and a change of the vari-
able of integration (21=q/k p) into Eq. (11) we obtain

3' 2

((a„n)'&- l &k p+ql to
I
k p& l

'nA (A4)
8MA' p

=1+f(tt)/k p (A6)

For the unscreened pseudopotential we use the point-ion
model in which the ionic forces are represented by a.

Coulomb attraction outside a 8-function hard core.'

up f
—4 Zes

(&~+el ~
I
&.) =

I

— +0) .
3tr2$ 4 ti2$ p2

(A7)

We take the value p= 46.0 Ry (a.u. of volume) for the
strength of the core repulsion for Pb. This result was
obtained by Harrison by 6tting the point-ion model to
more detailed calculations of the form factor by
Animalu and Heine. " From this work Harrison also
deduced that P is relatively insensitive to changes in
ionic density. We therefore take p to be independent of
pressure.

I, can now be written explicitly in terms of kp by
using Eqs. (A5)—{A7) in {A4):

mk p4

I„=
24m 4MA'Z p

' ( 42re2/tls+k 'p)'——((e g)'& tldtt.
L&p+f(~) j'

(AS)

mkl. "

dk p 12m 4MA2Z

2 [Pp+2f(tt) j( 42rZe2/t72+PpsP—)2+2yp2PPp+f(y/)]( 4trZe / i2+2ytp2P—)((„~)&.d. . (A9)
[kp+ f(ti)]'

These integrals can be numerically integrated quite able to evaluate ((s„„2f)2&, . From the orthonormal
easily on a computer if, for every value of

l sfl, we are properties of e„„we note that if q is the angle between
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as shown in Fig. 1. One of these points is taken as the
origin, and the sphere centered on it is the FBZ. All
other spheres are labeled as nth nearest-neighbor image-
spheres (each is an image of the FBZ translated by the
reciprocal lattice vector connecting the origin to its
center). For rf falling within a given image sphere, pp is
simply the angle between g measured from the origin
and g measured from the center of that sphere, as shown
ln Flg. 2.

The average of sin'q, for some value of
~
rf ~, is taken

over those portions of a spherical surface of radius
~
sf

~

which lie within image spheres

0 I I I t

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
if'= )9[/K~

Q„X„J'sins' dQ„
(sins'), =

Q„X„J'dQ
(A12)

Flu. 3. sin'y averaged over the ~rf ~
=constant surface as a func-

tion of ~sf ~. The contribution from below the discontinuity at
~rf ~

=(-',)'" is due to overlap of first nearest-neighbor image
spheres into the FBZ. The discontinuity itself is due to a change in
normalization upon leaving the FBZ.

a„~ and q, then,

(A10)

(A11)

and our problem is reduced to one -of evaluating
(Sill P)av

To calculate (sin'p), we make two major simplifica-
tions. First, we assume that e„~ lies in a direction parallel
to sf reduced to the first Brillouin zone (FBZ). That is
to say that only longitudinal phonons couple to electrons
via normal scattering processes. Then p becomes simply
the angle between q and (sf+ K), where K is the recipro-
cal lattice vector necessary to reduce p to the FBZ.
Since Pb is a fcc structure in real space, its lattice in
reciprocal space is bcc, and K must be some translation
vector of this structure. The length b of one edge of the
unit cell in reciprocal space is determined in reduced
units by noting that the volume of the cell, which con-
tains four electronic states per atom, is equal to that of
the Fermi sea of Pb, which has a valence of 2=4. Thus
b= (-,'rr) "s in units of g/kr. As our second approxima-
tion, we replace the FBZ by a sphere of equivalent vol-
ume in phase space. Since the FBZ occupies half of the
unit cell, the radius of this sphere is just rp (—,)"' in-—
reduced units.

These simplihcations provide a simple model which
determines the mechanics of the calculation. We envi-
sion in g space a set of slightly overlapping spheres of
radius rp centered on the lattice points of a bcc lattice

where X„is the number of nth nearest-neighbor lattice
points in the bcc structure, and dQ„ is an element of the
solid angle bounded by the intersection of the surface of
constant

~
sf

~
with an nth nearest-neighbor image sphere.

This approximation amounts to counting twice those
points in q space enclosed by two spheres (the overlap)
and neglecting points not enclosed by any sphere.

Using only simple geometric relationships, we hand

sin'q dQ„

=2zE„2
sin'8 d8

E„'+rl' —2E„ri cos9

+-'L(E +li)'+2(E '+rf') —rp')

f
~max

dQ„=2' sin8 d8=
0

where E„ is the length of the nth nearest-neighbor
reciprocal lattice vector. Using these forms, (sin'pp), „
is readily evaluated, and the results are plotted as a
function of

~
sf

~
in Fig. 3.

Equations (A8) and (A9) can now be integrated nu-
merically for substitution into (A2). Using White's
value of the bulk modulus (8=4.88X10' bar) calcu-
lated from elastic-constant data, we find d lnIl/dP
= —0.1X10 ' bar ' and d 1nIl/dP=1. 9X10—s bar '


