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Fluctuating Cooper pairs contribute to the diamagnetic susceptibility in a superconductor above the
critical temperature. The eGect is the greatest in a clean metal where the extra susceptibility is about 10 '
)(PT,/(T T,)j'" i—n a bulk sample.

~ 'HE contribution of fluctuations of the Cooper-
pair density to the conductivity has been ob-

served by Glover' upon a suggestion by Schmidt. At
the same time, Aslamasov and Larkin' have developed
a microscopic theory and given results for the extra
conductivity as well as for the specific heat and ultra-
sonic attenuation in a superconductor. It remains to
discuss the diamagnetic properties due to Ructuating
Cooper pairs. ' This will be done here within the frame-
work of the Ginzburg-Landau theory, which not only
yields the same results as the microscopic theory' but
has the advantage of being a direct and more general
approach.

A qualitative understanding of the phenomenon can
be obtained as follows: Above T„droplets of Cooper
pairs will grow and decay as a result of thermodynamic
fluctuations. Their mean radius will be (approximately)
equal to the Ginzburg-Landau coherence length'
$oz, (T) =h(2m I cr

I ) zt'. Therefore, the energy'
ek'(rn$o&') 'I%'I'4sr/3)oz, ' is required to produce a
droplet. This energy has to be equal to the thermal
energy kT; therefore, I+Is= (1/sr) (tnt ')kT)oz, '. Con-
sider now the expression for the diamagnetic suscepti-
bility of atoms'

7(=—', (nc'/tnc')(r')

where we identify the mean square radius of the atoms
with &oz,', and the density rt of the atoms with IVI'.
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One obtains
x = (1/6zr) (e/hc)'kT, &oz„ (2)

where the quartic term has been omitted since I%'I' is
small. In the case of a homogeneous magnetic field 8,
the expression (3) can be written

Poz, Q I
C(g——,k,rt) I'I E(k,rt +-,')+

I
cr

I j, (4)

where

E(k I+-') =k'k'/2nt+(n+z')(2eh/ntc)B,
rt=O, 1, (5)

and C(g,k, rt) are the expansion coefIzcients of 4'(r) with
respect to the normalized eigenfunctions of a particle in
a magnetic Geld. '

We will proceed according to the following principle,
namely, that the Ginzburg-Landau free energy is
( kT) times th—e logarithm of a restricted partition
function in which the sum over states is restricted to
those states of the whole system in which the order
parameter takes on the values of a prescribed function
4'(r). Therefore, in order to obtain the unrestricted par-
tition function, we have to sum expl —(1/kT)Foz, j over
all possible %(r), i.e.,

mkT

Taking into account that the number of (single par-
ticle) states of energy E(k, rt+s) is 2eB/2srhc times the
cross section of the sample perpendicular to the mag-
netic 6eld, ' we obtain the following expression for the

J. M. Ziman, Principles of the Theory of Solids (Cambridge
University', Press, London, 1964), Chaps. 9.6 and 9./.
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which increases as
I T./(T —T.)jzts as T approaches

T'
We now derive relation (2) quantitatively starting

with the Ginzburg-Landau free-energy functional

1 ( 2ey
I

&~7/&+—A I+ +l~l I+I' (3)
2rN& c )
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(unrestricted) free energy':

2eB
Ii = —kT lnZ= —UkT

2mhc

xkTdk
x —Zi, , (/)

Z(k, ~+-,)+( ~

'

where t/' is the volume of the sample. Using Poisson's
sum formula, ' one finds

kTeB ~ dk
F=F&si V —Q —(—1)'

x'Ac it=& 2r

2eh i i
dg 0 ~ ~ Jg

site k'k'/2sts+ ( n ~

(2s.s)'
(10)

The rest can be done without difhculty; the result is

F=Ff'i+ ', V(1/6sr) (e-/hc)'k2'(o LB'.

Using' —(1/V)ri'F/itB'=x, one recovers relation (2).
Note the x is largest in a clean metal. The usual assump
tion that Quctuations are most important in metals of
short mean free path does not hold in this particular
case. Inserting for (oL its value in a clean metal, we

obtain

e'kg
Dl'(3)/12j" L& /(T —2' )j'"

i2x' tsc

= —10-'XP'./(& —&.)7". (12)

The expression in curly brackets is Landau's diamag-

netic susceptibility of free electrons. It should be pos-
sible to measure the temperature-dependent part of the
susceptibility (12); though, according to Eq. (9), the
applied magnetic field should be less than, say, 0.1 G.

Consider now a film of thickness d smaller than the
coherence length. If the magnetic field is perpendicular
to the surface of the film, Eq. (8) is still correct if we

replace' the integral

' In order to make this expression dehnite, one should introduce
a cuto8 such that E~ &Eo.

's Actually, —(1/V}it'P/88'= sr(1+4sg) '

hark T

dx ln cos2srxs. (8)
Z(k,x)+~ (

Here, F('& is the free energy in the absence of a magnetic
field. The integral over x will be integrated by parts
twice, and if

(1/2sr) (2ehB/tttc ~„n ~ ) = (1/sr) (2e/Ac) $oLsB&&1, (9)

the integral can be approximated by

by 1/d(k =0), and the susceptibility is found to be"

y = —(k 2'/3sr) (e/kc)'k T, ((oL'/d) .

There is an advantage in that x exhibits a stronger tem-
perature dependence T,/(T B„)—. Iio,wever, it will be
dificult to measure a small susceptibility with a sample
of very small volume.

It is perhaps worth mentioning that there exists a
uniform treatment of susceptibility and conductivity
induced by Ructuating Cooper pairs in the framework
of the Ginzburg-Landau theory. This is shown in the
Appendix. The key point is that one has to supplement
the time-dependent Ginzburg-Landau equations" by a
random force in order to include the changes in 4'(r, t)
because of thermodynamic fluctuations"; the resulting
equation has to be considered as a generalized Langevin
equation of 4(r, t).

Finally, we note that the result (2) for the suscepti-
bility can also be obtained by calculating the most
singular contribution of the diagrams considered in
Ref. 2. The advantage of the method discussed above is
that one obtains the estimate (9) of the linear region,
and going a step further, a correction factor (1—(21/5)
X (e/hc)'$oLsB'$ by which the right-hand side of Eq. (2)
has to be multiplied.
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Dr. H. Meissner for valuable comments and R. Rocke-
feller for carefully reading the manuscript. Furthermore,
I appreciate gratefully the hospitality extended to me
by the Physics Department of Stevens Institute of
Technology, Hoboken, N. J.

APPENDIX

We propose the following generalized Langevin equa-
tion of the order parameter %(r,t):
ALA(ct/ct t) —2ie V]%

= —{1/2sttg ihr/+2e/cA)'+
)
—n

) )4+f(r,t) . (A1)

Apart from the random force f(r, t), Eq. (A1) is the
linearized form of the time-dependent Ginzburg-Landau
equation, "which holds in the gapless regime, andgar-
ticularly, for T)T.. A is the vector potential and t/' the
electrochemical potential. The random force f(r, t)
shaB be completely uncorrelated in space and time, i.e.,

(f*(r,t)f(r', t')) =ah(r —r')$(t —t'), (A2)

where ( ) denotes the ensemble average. The ron
stant u has to be chosen such that in a stationary case,

"Qualitatively, this result can also be found on the basis of
Eq. (1).
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(IVI') assumes the same value which one derives from
the probability distribution of I+l', which is propor-
tional to exp) —(1/kT)FoL7. This leads to

a = V2IzykT. (A3)

Ke consider now the case where a constant homo-
geneous electric 6eld E is switched on at time t =0. We
chose

A(t)=0, if «0
cEt—, if t)0

kq =by+ eE(t+t'),
t'= u+t, t"= ,' (u-u—')+t (A9)

In the limit of a thin film, d«)oL, and for t —& pe, one
obtains

sum is only conditionally convergent, '4 and we will see
from the 6nal results" that the chosen procedure is the
correct one. Introducing simultaneously a new time
variable, we substitute altogether as follows:

and U=O. Introducing the Fourier components
e2

(j)= E
16hd T—T,

dx exp(xL1+~'(E/Ep)'3}

%,(t) =U ' d'r%'(r, t) exp( iq—r),

we find

hy4~p= —((1/2m)Lkq+(2c/c)A]'+ Inl }4p+fp(t),
(A5)

(A10)

This is the usual result' apart from the expression in the
curly brackets, which measures the departure from
linearity as found and discussed by Smith et al."The
characteristic field Eo is given by

where
(f"q(t)fq'(t')) =2/iykTb, , 8(t—t'). (A6)

In order to find the mean value of the current density

Ep = (1643/s') (kT /e&oL) (T T /T ), —(A11)

which varies f(T T.)/T, )~—'. Again, the Ginzburg-
Landau approach gives additional information on the
departure from a linear response.

The general case of arbitrary electromagnetic fields
E(r, t) and $(r, t) can only be treated in linear approxi-
mation. The fields are conveniently represented by a
vector potential A (r, t) =Ap exp( —upt+ikr). In the low-

frequency, long-wavelength limit one finds' an Ohmic
current corresponding to the linear form of Eq. (A10),
and a diamagnetic current of the form

2e 2e-
(j(t))= —U '2 —&q+—A (I+p(t) I'), (A7)

~ m c

we have to determine (I+s(t) I') from Eqs. (A5) and
(A6). The result is

2kT 2 ' 1
dt' exp —— dt"

I

(A12)
hazy g 2m

js ———cxk&& (k)&A),
2e

X kq+ A(t ) +Irrl (AS) where X is given by Eq. (2).

Inserting (AS) in (A7) and considering the case where
t is very large, one will find it convenient to shift the
domain of the tl summation such that kq =E(t+t') is the
new center. At 6rst, this might seem to be irrelevant
since the summation extends over all q. However, the

'4 See Ref. 9.
"For example, the absence of London (accelerated) currents.

Looking at this matter from a different point of view, one could
say that, in general, a cuto8 prescription (Ref. 9) is not gauge-
invariant.

~6 R. 0. Smith, B. Serin, and E. Abrahams, Phys. Letters 28A,
224 (2968)."Care has to be taken in the sense of Ref. 15.


