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The transition temperature T, of SrTi03, is calculated as a function of the electron concentration. The
effective electron-electron interaction has an attractive part caused by the intravalley exchange of soft
optical phonons that have been observed in the tetragonal phase with Raman scattering and neutron
diffraction. The Coulomb part is determined by the longitudinal dielectric constant for a degenerate polar
semiconductor. The deformation potential for the interaction between electrons and soft phonons of sym-
metry AI~ is used as an adjustable parameter to Gt T, at one experimental point.
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S UPERCONDUCTIVITY has been observed in a
number of degenerate semiconductors such as

GeTe, ' SnTe, ' InTe, ' SrTi03,' and Sr1,3a„Ti03
These substances have very special dielectric properties.
They are highly polar compounds which are almost
ferroelectric. ' Their static dielectric constant eo is of the
order of 10' to 104, whereas their high-frequency di-
electric constant e„ is only of the order 10.In Fig. 1, the
longitudinal dielectric constant is plotted which deter-
mines the Coulomb interaction between two excess
electrons in an insulator (see also Sec. III). The screen-
ing of the bare Coulomb interaction is due to the ion de-
formations and the ion displacements, both induced by
the excess electrons. In a degenerate semiconductor, the
conduction electrons cause additional screening, ' beyond
that provided by the ion lattice. However, the qualita-
tive picture of Fig. 1 remains valid in that at low fre-
quencies the Coulomb repulsion is almost absent,
whereas at higher frequencies the anomalous dispersion
occurs. For large electron concentrations, with the
Fermi energy E& much greater than the 10-phonon
energy or&, the anomalous dispersion can lead to a net
attractive interaction resulting in superconductivity. "

In SrTi03 „superconductivity is observed for
electron concentrations n such that EJ;(~I,. Although
the dielectric properties favor superconductivity, they
are to be complemented by an attractive mechanism

which outweighs the Coulomb repulsion near the Fermi
surface (FS). Since rt and N(0) are small, the BCS
parameter N(0) V for intravalley scattering of electrons
by acoustic phonons is smaller than in metals. This
observation led Cohen" to his theory of superconduc-
tivity in many-valley superconductors, in which the
attractive interaction arising from the exchange of
intravalley phonons can be larger than the Coulomb
repulsion. Koonce, Cohen, Schooley, Hosier, and
I'feiner" have applied this theory to SrTi03, to explain
the e dependence of T'.. Their work is based on the
many-valley structure of the cubic phase found by Kahn
and I,eyendecker. "Recently, Unoki and Sakudo" have
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FIG. 1. Longitudinal dielectric constant of an insulator and its
reciprocal. The dielectric constant for q=0 is given by

where eo and c are the static and the high-frequency dielectric
constant, respectively. Here co& is equal, to the unrenormalized
frequency of the LO phonons, 0&.
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established a phase transition from cubic (Os') to
tetragonal (D4s' ) at 110'K, with the help of ESR
measurements. The tetragonal unit cell is shown in
Fig. 2, together with the cubic unit cell. The phase
transition has been observed on reduced strontium
titanate, too, for electron concentrations as high as
3.6)(10" cm '." The transition cubic —+ tetragonal
reduces the symmetry of the 6rst Brillouin zone. There-
fore, it is not certain that a many-valley structure
similar to that for the cubic phase does also exist in the
tetragonal phase. The experimental results on transport
phenomena do not give a unique picture. Magneto-
resistance" and Schubnikov —de Haas measurements"
can be explained with a many-valley structure. Meas-
urements of the piezoresistance'~ and of the I-V tunnel-
ing characteristics" lead to a direct-gap structure with
the conduction-band minimum at the center of the
Brillouin zone. The different experimental results can
be reconciled with the reasonable assumption that both
zone center and edges are occupied at concentrations
e&10"cm '"

Of crucial importance for our discussion is the effect
of the phase transition cubic —+ tetragonal on the
phonon spectrum and on the electron-phonon inter-
action. Above the phase transition (cubic symmetry)
there is only one soft-phonon branch at q= 0. It consists
of a doubly degenerate TO branch whose frequency
changes as Les(T)g 'i'."This "ferroelectric mode" has
odd-symmetry character and it is neither Raman-active
nor does it scatter conduction electrons. ""As a result
of the phase transition cubic ~ tetragonal and the
increase of the unit cell, additional phonon branches are
introduced in the erst Brillouin zone. Thereby, the
frequencies of those g=0 phonons present before the
transition are not much affected, and also the dielectric
properties remain almost unchanged. '4 Below the phase
transition (tetragonal symmetry), two ecto soft phonons
with emcee-symmetry character have independently been

observed in Raman scattering" and in inelastic neutron
diGraction. '6 One of these modes has a g=0 displace-
ment Geld that transforms according to the identity
representation of the tetragonal point group. Therefore,
the corresponding electron-phonon matrix element is
finite, irsdepeederlt of the syrlmetry character of the
electron states. The matrix element is weakly screened
by other electrons because the optical modes are
associated with relative displacements of the ions in a
unit cell, and the corresponding short-range electron-
phonon interaction is not sensitive to screening eQ'ects.

It is the purpose of this paper to present a theory of
superconductivity in SrTi03, based on the intravalley
exchange of soft phonons between conduction electrons.
For small energy transfers, these electrons experience a
weak Coulomb interaction, in virtue of the pseudoferro-
electric properties of strontium titanate. In other words,
in the important low-frequency range where soft pho-

O STAONTIUM

TITANIUM

Q VXYGfN

"C. K. Jones and D. K. Hulm, Phys. Letters 26Ap 182 (1968).
"H. P. R. Frederikse, W. R. Hosier, and W. R. Thurber, Phys.

Rev. 143, 648 (1966)."H. P. R. Frederikse, W. R. Thurber, W. R. Hosier, J. Babis-
kin, and P. Siebenmann, Phys. Rev. 158, 775 (1967).

"O. N. Tufte and E. L. Stelzer, Phys. Rev. 141, 675 (1966).' S. Shapiro, Phys. Rev. 140, A169 (1965).
"In the cubic phase, the FS may have the same shape as in

BaTi03, where it consists of three mutually orthogonal cigars
oriented along the three main directions and intersecting near the
zone center. See C. X. Berglund and W. S. Sacr, Phys. Rev. 157,
358 (1967).

"A. S. Barker, Phys. Rev. 145, 391 (1966)."E.Burstein, in 1966 Tokyo Summer Lectures in Theoretical
Physics, edited by R. Kubo (W. A. Benjamin, Inc. , New York,
1966)."J.M. Worlock and P. A. Fleury LPhys. Rev. Letters 19, 1176
(1967)j observe, however, electric-Geld-induced Raman scattering
by the ferroelectric mode."S. H. Wernple, A. Jayaraman, and M. DiDomenico, Jr. , LPhys.
Rev. Letters 17, 142 (1966)j find that the deformation of the cubic
crystal under pressure leads to scattering of conduction electrons
by the ferroelectric mode. In the undeformed cubic crystal, how-
ever, the matrix element for the interaction between electrons and
the q=0 ferroelectric mode vanishes."R.O. Bell and G. Rupprecht, Phys. Rev. 129, 90 (1963).

o STRONTIUM

TITANIUM

Q OXYGEN

(b)

Fxo. 2. (a) Unit cell for the tetragonal structure D4g's of SrTiOg
according to Unoki and Sakudo (Ref. 13).The cell contains four
molecular units and its dimensions are gu, go, c, where o and c
correspond to the tetragonal one molecular unit. The ratio c/a
=1.00062 at 4.2'K. (b) Unit cell for the cubic structure Oyg of
SrTiOg.
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nons provide an attractive interaction, the lattice
polarization can follow a conduction electron. "

This paper does not aim, however, for a rigorous
mathematical theory of superconductivity in a com-
pound as complex as SrTi03, . In order to find the
physical origin of superconductivity in this substance,
we use a simple electron-phonon model and make justi-
Ged approximations in describing the effective electron-
electron interaction. Since the interaction between
electrons and soft phonons of the tetragonal phase is
important for our discussion, a careful proof for the
existence of a finite matrix element is given in Ap-
pendix B.

II. ENERGY GAP AND TRANSITION
TEMPERATURE

The observable parameter is the transition tempera-
ture T, as a function of the electron concentration e.
Energy gap and transition temperature are related by
the BCS formula 26o=3.5k~T.. The gap is found by
employing the analytic method of Bogoliubov"" in
solving the integral equation given by

interest here, rs& 1019 cm ', Migdal's theorem also holds
for the interaction between electrons and optical
phonons. "

For the calculation of /5, s from Eq. (1), it is taken into
account that the pair condensation amplitude has a
narrow peak at Ep, so that it is useful to rewrite this
equation in the form

A(k) =E(k,k p)
~odk'

(e&s++12)1/s

Llt (k,k')a' —ll. (k,k,)a,j—,(2)
(e&2+Q&2)1/2

k pnt 4V3E p
h(k) = V(k, k p) As ln

2%2 Do

where E(k,k') = V(k,k')k"/4x'. In the second term, the
integrand vanishes at k'=kg and, therefore, 6' under
the square root may be set equal to zero if ho((E&. After
some integrations, one arrives at a linear inhomogeneous
equation given by

1
t1(k) =-

4m'

6'k"dk'
V(k, k')-

(g &2+ e&2) I/2

d k' —kp ik' —kpj
~

LZ(k, k)aj ~i 2 ~. (3)

where e'= e(k') = (k" kp')/—2tttb Here .ttts is the band
effective mass and Ds= d (k p); k p is the Fermi momen-
tum. The interaction kernel is of the form derived by
Eliashberga and by I.iu '; k and k' play the role of
convenient energy variables.

For metals, the validity of the Eliashberg kernel is
based on the generalization of Migdal's theorem from
the normal state to the pairing interaction in the super-
conducting state."For degenerate semiconductors there
exists no general proof of Migdal's theorem. For the
interaction between electrons and acoustic phonons, the
electron self-energy can be calculated to an accuracy of
order I/t/p, where tt is the sound velocity and t/p is the
Fermi velocity, if vertex corrections are ignored. " It
will be assumed that for the electron concentrations of

"The favorable dielectric properties of SrTi03 for super-
conductivity have been pointed out in earlier communications by
J. Appel, Phys. Rev. Letters 17, 1045 (1966); W. Klose and H.
Schuster, Solid State Commun. 6, 89 (1968). However, to find
T, versus n, the attractive interaction was attributed to intra-
valley exchange of acoustic phonons using the electron-phonon
coupling constant derived by P. Morel and P. W. Anderson LPhys.
Rev. 125, 1263 (1962)j for metals. It is shown in Appendix A that
this coupling constant, found from the jellium model, is larger than
that derived from the deformation-potential model.

'8 N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58 (1958)
LEnglish transl. : Soviet Phys. —JETP 7, 41 (1958)g.

'9 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, Eem
Method in the Theory of Snpereondnctieity (Consultants Bureau
Enterprises, Inc. , New York, 1958), p. 85.

"G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)
)English transl. : Soviet Phys. —JETP 11, 696 (1960)g.

3' S. H. Liu, Phys. Rev. 125, 1244 (1962).
3~ J.R. Schrieffer, Theory of Superconductivity (W. A. Benjamin,

Inc., New York, 1964), p. 164.
'e J. Appel (unpublished).

This equation can be transformed into an integral
equation for the function h(k) 1n(hs/4%3Ep)/Ds. "The
6rst iteration yields the solution in BCS form

where
~&

—J jx(o) v

/o =4%BEp exp
dk'

V(k p, k') V(k', k p) k" k' kp)—
(x

Vs m, kp fe'[ )

and

Xln 2 dk' (5)
kp

V= V(k p, k p), N(0) = k pt/tb/27rs

340n the other hand, in the one-electron problem for polar
crystals, vertex corrections must be taken into account in calcu-
lating the electron self-energy: J. Appel, in Solid State Physics,
edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic
Press Inc., New York, 1968), Vol. 21, p. 231.

The energy gap is given in terms of three parameters:
the eGective electron-electron interaction V at the FS,
the density of states N(0) at the FS, and the frequency
factor co. All three parameters depend on n. With the
help of Eq. (4) and the BCS relation between 6s and
T„we shall discuss T.(n). Equation (4) presents the
asymptotic solution of Eq. (1) for small N(0)V; for
SrTiOs „one has N(0) V(0.2.
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III. INTERACTION KERNEL V(krk')

The evaluation of 60 requires the eGective interaction
V(k, k') as a function of energy and momentum transfer.
An accurate evaluation of V(k, k') is a difiicult task for
several reasons. The validity of mathematical approxi-
mation such as the random-phase approximation for the
electron-phonon system and, in particular, the neglect
of electron-phonon vertex corrections has not been
studied for polar semiconductors. Furthermore, the
parameters that enter the coupled electron-phonon
system, e.g., matrix elements, are not well known.

Because of these dBBculties, a simple model will be
chosen to describe the electron-phonon system in
SrTi03,. In particular, the deformation-potential
constant for the interaction between electrons and
phonons of symmetry 2&, is taken as an adjustable
parameter, to fit T, versus n at one point. We shall find,
however, that this semiempirical deformation potential
has the correct magnitude, to be expected from the
tetragonal distortion of the cubic lattice.

The effective interaction is divided into two parts:

V(k,k') = Vt(k, k')+ Vs(k, k') . (7)

The first part accounts for the Coulomb interaction
between two electrons and depends on the longitudinal
dielectric constant. The second part is due to the ex-
change of soft phonons. A third part, namely, the ex-
change of acoustic phonons, plays no significant roles
here as is shown in Appendix A.

Because v&5)(10" cm ', the FS is so small that
umklapp processes can be ignored. "

Let us first determine the Coulomb part Vr(k, k'). To
find the Coulomb interaction in a degenerate semi-
conductor, we begin with the Coulomb interaction
between two excess electrons in the conduction band of
an insulator. This interaction is determined by the
longitudinal dielectric constant e; (or,q) shown in Fig. 1
for q=0. At low frequencies, co&cu~, e; is large, cor-
responding to a weak repulsion. At higher frequencies,
co&&co~co~, the anomalous dispersion occurs; e; is
negative and favors an attraction. Finally, at co%co&, the
displacement polarization can no longer follow an
electron; e; becomes positive again. In Fig. 1, the
transverse frequency cot, occurs as the parameter
(e„/ep)orr. The electrons do not interact with the trans-
verse phonons. The form of the dielectric constant
shown in Fig. 1 presumes only one group of optical
branches (one longitudinal and two degenerate trans-
verse branches), corresponding to two ions per unit cell.
This model can also be applied to SrTi03, where the
dielectric constant changes from its "static" value

2X104 to a value of the order 8 (which is close to
e„=5.2) after going through the first dispersion. The
dielectric constant is assumed to be real. Phonon damp-
ing introduces an imaginary part centered at co&,

' this
part is usually small.

"P.E. Seiden, Phys. Rev. 168, 403 (1968).

In degenerate semiconductors, the Coulomb inter-
action is also screened by conduction electrons. For our
simple phonon model, the dielectric constant se, (or, q)
has been derived by Gurevich, Larkin, and Firsov" and
by Appel. '~ The final result for the Coulomb interaction
between two electrons can be written

s(q)

ss, (or, q)

=tr(q)
1 1 1

(8)
s„(~,q) s„(or,q) ep(~, q)&or' orP—

Here tr(q) =47re'/q' and «„(or,q) = s„+tr(q)rr(or, q), where
rr(or, q) is the electron polarizability in the random-phase
approximation (RPA). From here on, the frequency or~

is the renormalized phonon frequency. The Eliashberg
kernel Vt(k, k') corresponding to 'Ut(or, q) is given by

Vt(k, k') =-,'sine d8 tr(q)

1 1
X I

— Qt(k', k)—
(s„(or,q) ep (or, q)

(9)
e~(or~q)-

where or =
I

e—s'
I

and q =
I
k' —k

I
are energy and

momentum transfer, respectively, and where

GOZ oui

Qt(k', k) =-', - - + (10)
«+I el+I "I « I

el+—
I "I~

where q is the value of the maximum phonon wave
vector. The Coulomb kernel, Eq. (9), consists of two
parts: (a) the optical-phonon-induced interaction
caused by the screened longitudinal displacement
polarization (first term), and (b) the direct interaction
screened by the conduction electrons and by the lattice
of polarizable ions (second term). This definition of the
Coulomb kernel follows from the definition of the
dielectric constant for a polar substance. The inte-
gration over 0 in Eq. (9) is readily carried out if one
uses the Thomas-Fermi approximation tr(q)rr(or, q)/e„
=kTp'/qsr where kTp= t 4rre'N*(0)/e„j'" here N*(0)
=2(me/m&)N(0) is the specific-heat density of states.
For electron concentrations 10"&n&10' cm ', this
approximation is well justified since the plasma fre-

3' V. L. Gurevich, A. I. Larkin, and Vu. A. Firsov, Fiz. Tverd.
Tela 4, 185 (1962) (English transl. : Soviet Phys. —Solid State 4,
151 (1962)g."J.Appel, Phys. Rev. Letters 17, 1045 (1966).

The maximum scattering angle 8 is for nonumklapp
scattering given by

cos8 = ~ —1, k'&g —k
= & (k'+k"—q~')/2kk' q„—k &k'&q~+k (11)

+1, q +k&k'
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quency co+)co&. The result of the integration is given by

mi, /m* — 1)
V,(kk)= a2ln 1+—

l

2X(0) a'3

e„ ( eo 1) ( 1——a'lnl 1+——
l Qi(k, k') —a'lnl 1+—,(12)

60 5 E~ a)- k a

where a'=kri'/4k''. In evaluating the coupling con-
stant in front of Qi(k', k), we assume that both initial
and 6nal state are on the Fermi surface.

The second part of the interaction kernel, V2(k, k'),
accounts for the attractive interaction between two
electrons that is caused by the exchange of virtual soft
phonons. It is crucial for our discussion that one of the
two soft optical phonons observed in Raman and neu-
tron scattering interacts with the conduction electrons.
At g= 0, the symmetry character of this phonon is A&„
corresponding to a displacement field that transforms
according to the identity representation of the tetrag-
onal point group. It is shown in Appendix 3 that at
q=0 a finite electron-phonon matrix element exists,
independent of the electronic structure. For simplicity,
we assume a parabolic energy band.

In terms of the deformation-potential constant 8 for
soft phonons, the bare matrix element is given by
(Appendix B)

g
"i (q) = il 1/2MiVGl (q)O'I'Kh q&(K (13)

where M is the ionic mass per unit cell, Ã is the number
of unit cells per unit volume, and E is 2x times a vector
of the reciprocal lattice. The screening of g'o'(q) by
conduction electrons is described by the static Hartree-
Fock approximation (co~))cv.):

g(q) =g (q)/(1+k-/K)
In the denominator occurs K, and not q, since we are
dealing with a short-range interaction. The soft zone-
center phonon of the tetragonal phase arises from a
(111)zone-boundary phonon of the cubic phase.

The electron-electron interaction due to phonon ex-
change can be written

2k g'

pe
&eP(q) (u, (0)(u, (2k p)

The average given by Eq. (18) plays the role of BCS
coupling parameter. The interaction kernel is now
given b

sin9 deQ, (k,k') . (20)

Kith the eRective electron-electron interaction con-
sisting of the Coulomb part, Eq. (12), and the attractive
part due to the exchange of soft phonons, Eq. (20), the
transition temperature will be calculated in Sec. IV.

IV. TRANSITION TEMPERATURE T, (n)

According to Eq (4) f.or the energy gap Do and the
BCS relation between Ao and T., the transition tern-
perature is

0 57~e—r/x(0) (vI+vm) (21)

The frequency cv is given by Eqs. (5), (12), and (20);
Vi and V~ are the values of the interaction kernels at
the FS. All three parameters co, V~, and V~ depend on
the electron concentration n.

The BCS formula (21) will be used to discuss the
concentration dependence of 7,. In this formula,
renormalization eRects are apparently neglected. Let
us keep in mind, however, that the deformation-
potential constant h is an adjustable parameter. A value
will be taken for 8 that gives a T, near the experimental
T, for a given concentration.

The values of Vi and V2 are found from Eqs. (12) and
(20) in the form

its angular average over the FS. The matrix element

g(q) is given by Eq. (14) and the dispersion has the
form cu, (q) =co,(0)+b,q'. Then one 6nds

2lg(q) l
1 Ka

(18)
(o, (q) is M1V(a, (0)(u, (2k p) 1+kTp'/K'

taking into account

The corresponding Eliashberg kernel is given by

1 „' o(k )i
1V(0)Vi= —— —ln 1+

2 m* ~o(kF)
(22)

V2(k', k) =-',

where q=
l
lt' —kl and

E(0) K
&(0)V, =

MX(o, (0)(o,(2ki ) (1+k.2/K9

for the Coulomb interaction, and2lg(q) I' ~ ~

7 7-.(q)

(23)

Q (l,k') =ll +
&~*(q)+I~I+I "I ~.(q) —iI+I "l~

(1i)

with e= e(k). At this point we make an approximation
and replace the coupling parameter 2lg(q) l'/co, (q) by

for the attractive interaction. Let us discuss the param-
eters occurring in Eqs. (22) and (23).

(a) Density of states 1V(0). The band density of states
for one spin direction, N(0) =k~mi/2n', is not known
for the tetragonal phase. The screening density of states
is proportional to m~; specific-heat measurements yield
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m*=5.2mb." We assume m*=m~ to determine the
deformation-potential constant 8. Thereby, electron-
phonon renormalization effects are neglected and it is
assumed that the FS is connected. If a many-valley
model applies, then mb=m*/v't' and kv=3. 1(u/v)'t'
cm ', where 7 is the number of valleys. In this case 8
increases by a factor 7'". Since b is an adjustable
parameter, the shape T, versus e curve is almost inde-
pendent of the electronic structure.

(b) Coulomb interaction: e„, eo(q), co~, ~~(q). The high-
frequency dielectric constant is e„=5.2 and the low-
frequency dielectric constant is eo(q=0)=2X10'.3' In
the Coulomb interaction occurs also the longitudinal
frequency co&

——5.45X10" cps." The frequency of the
transverse "ferroelectric mode, " co&(q) turns away
sharply from q=0 (see Fig. 3). Therefore, the static
dielectric constant depends on q. In the cubic phase,
this dependence has near g

=0 the form

«(q)

LONGITUDINAL

"FERROELECTRIC"
TRANSVERSE

SOF&

where co&; and co&, are the frequencies of the higher
optical branches at the zone center. For q=0, Eq. (24)
goes into the I.yddane-Sachs- Teller relation for SrTi03.'0
For small q, it presents a good approximation for eo(q)
and accounts for the rapid decrease of lattice screening
as q increases from zero. This effect is taken into account
in the Coulomb interaction at the FS by writing
&o= 60(k+) in Eq. (12). The dispersion of the "ferro-
electric mode" co&(q)=~&(0)+4.2X10 'q' cps is found
from the neutron diGraction measurements of Cowley, ~
using ra~(0) =1.9X10" cps. This value of a&~(0) is ob-
tained from the Lyddane-Sachs- Teller relation with the
static dielectric constant to(0) =2X10'.

(c) Attractive itsteractiou: cu, (q), E, B. The dispersion
of the soft mode has the form &o, (q) =s&,(0)+b,q'; this
dispersion has not yet been measured. We take b,
= 1.1X10 ' in order to 6t the shape of the experimental
T,(n) curve. A pertinent parameter is co,(0) in Eq. (23).
The value for co, (0)= 1.38X10" cps (or 0.0057 eV) is
accurately known from Raman and neutron scatter-
ing. ' ' For K we take the corner R of the cubic Bril-
louin zone, IC =E„=IC,=v/a, where a=3.9X10 ' cm.
The soft g=0 phonons of the tetragonal phase result
from the condensation of a triply degenerate phonon of
odd symmetry at E. At the transition temperature
T, (= 110'K for SrTi03), the E-phonon symmetry 1'25

is broken and two new q= 0 phonons of even symmetry,
A~, and E„arise. Below the transition temperature, E
becomes a lattice point in wave-vector space. The
deformation potential for the A~, phonon is taken as
8=0.99 eV, so that T, becomes 0.275 K at m=1020
cm 3.

"E.Ambler, J. H. Colwell, W. R. Hosier, and J. F. Schooley,
Phys. Rev. 148, 220 (1966).

9 H. E. Weaver, J. Phys. Chem. Solids 11, 274 (1959)."R.A. Cowley, Phys. Rev. 134, A981 (1964).
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Under (a)—(c) are clearly stated the values of the
parameters used to determine the eGective electron-
electron interaction. Two of these parameters —8 and
the dispersion term b,q' of the A~, phonon —are not
known from either theory or experiment. We find,
however, that the experimental T.(n) curve is obtained
with a reasonable choice of both parameters. The dis-
persion of the soft phonon must be characterized by
b,&0. Furthermore, our value b, =1.1X10 ' is of a
magnitude comparable with those found from Cowley's
curves for the soft-phonon branches (see Fig. 8 of Ref.
40). Our deformation-potential constant is small,
8=0.99 eV, for the following reason: Above the tem-
perature T, the electron-phonon matrix element for the
E corner (F25) vanishes. Below T, the matrix element
for the zone-center phonon (A„) is given by

crystal
~f~(r) I'bV(r, A~,)dr=const q, (25)

where q ~ (T, T)'t2 is the order param—eter for the
second-order phase transition4', at T'=0, y 0.037.

4'H. Thomas and K. A. Muller, Phys. Rev. Letters 21, 1256
(1960).

q (IO cm)

FIG. 3. Dispersion of the optical-phonon frequencies char-
acterizing the efFective electron-electron interaction; ca)7 is the LO
phonon frequency, co&(q) is the TO phonon frequency, and co, (q) is
the soft-phonon frequency. Parameter values characterizing the
dispersion curves are given in Sec. IV.
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Therefore, we expect our deformation potential to be
smaller by a factor of the order p than ordinary de-
formation potentials for optical phonons in polar
crystals.

The Coulomb interaction and the attractive inter-
action are shown in Fig. 4 as a function of n. The
Coulomb interaction increases with n because the
decrease of lattice screening outweighs the increase of
electron screening in this concentration range. The
attractive interaction first increases due to E(0). After
reaching a maximum, it decreases, since in Eq. (23) the
change of co, (2k') and of the screening function become
dominant.

Finally, the frequency factor co must be known as a
function of n. For metals, (cl = 2NDbyes and for degenerate
semiconductors where acoustic phonons provide the

0.3

0.2
VI-

0.]

Io'9 2 ~020

FIG. 5. Transition temperature as a function
of the electron concentration.

~ S. C. Hunter and F. R. N. Nabarro, Proc. Roy. Soc. (1.orfdon)
A220, 542 (1953l.

ELECTRON CONCENTRATION n(cm )

FIG. 4. Electron-concentration dependence of the coupling
parameters N(0) Vy and N(0) V2 which determine the Coulomb
interaction and the attractive interaction, respectively.

attractive interaction, cv~2co(2k'). ' From an inte-
gration of Eq. (5), we find ~ 2cu, (2k&); numerical
values are given in Table I. The Coulomb interaction
has been neglected in calculating co, since it is much
smaller than the attractive interaction.

The comparison of T, with experimental data is
shown in Fig. 5. The initial increase of T, is due to
E(0) and, to a small extent, to &o. The final decrease of
T, is due to cv, (2k') in the denominator of the matrix
element, the screening of the matrix element by con-
duction electrons, and the increase of the Coulomb
interaction caused by a decrease of lattice screening.

V. SUMMARY

For degenerate semiconductors, a T, formula is
derived by using Bogoliubov's asymptotic method. This
formula is applied to calculate the electron-concentra-
tion dependence of T, for strontium titanate. The result
is shown in Fig. 5. The maximum in the T, versus n
curve is due to a maximum in the attractive electron-
electron interaction which is caused by the intravalley
exchange of soft phonons of symmetry character A&, .
At low concentrations, the attractive interaction in-
creases as the density of states at the FS. At high con-
centrations, the interaction decreases because of the
increase of the phonon frequency ra, (2k&) and because
of the enhanced screening of the electron-phonon
interaction. Furthermore, at high concentrations the
enhancement of the Coulomb repulsion due to the
declining lattice screening of this repulsion contributes
to a rapid decrease of the total electron-electron
interaction.

Note added im proof In a recent. paper on supercon-
ducting semiconductors, C. S. Koonce and M. L. Cohen
(KC) [Phys. Rev. 177, 707 (1969)] claim that the
Coulomb interaction given by Eq. (8) and derived
earlier $J. Appel, Phys. Rev. Letters 17, 1045 (1966)]
is incorrect. However, it can be shown that Eq. (A16)
of KC is iderttica/ with our Eq. (8). To this end, it is
convenient to write the square ratio between the re-
normalized and unrenormalized LO phonon frequencies
in the form

a)p/Qp = (e„/eo)

Leo�(oi,

q)/e„((u, q)].

Inserting this expression into Eq. (A17) of KC, we
find with some algebra our Eq. (8).
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APPENDIX A: BCS COUPLING PARAMETER
FOR ACOUSTIC PHONONS

In an insulator the bare matrix element for intra-
valley scattering of electrons by acoustic phonons is
given by

(A1)g(o) ((l) = i(1/2MlV(o(o) ((ogk/'(()D

where D is the deformation-potential constant and
(o(o)((l) is the acoustic-phonon frequency. In a degen-
erate semiconductor, the matrix element becomes~

1/2
p + rt2

~
/p ~2

g((7) =il —+ D
~

11+
(2kqN (q) (2N(0) kpp' / ( kpp')

(A2)

where kTF ' is the screening radius and(o(g) =Nq is the
renormalized phonon frequency. The BCS coupling
parameter is given by the FS average of the quantity

2~ g(q) ~'lV(0) 1 I 2oEN/' kTF' )' 3 q' D
I

1+-
(q) 2 N kqpp'(k '+q'/ 2 k' ppN)

(A3)

Q

0
0 80;: 120
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i 60 200 220

FiG. 6. Temperature dependence of the soft modes in SrTi03,
according to Raman scattering measurements by Fleury, Scott,
and Worlock (Ref. 25} and neutron diffraction measurements by
Shirane and Yamada (Ref. 26).

In particular, two new soft phonons of epee symmetry
have been found experimentally. The symmetries are
A ~, or I'~ and E, or F5 in the notation for representations
of molecular vibrations or of crystal phonons, respec-
tively. The crucial question is: Do these soft optical
phonons interact with the conduction electronsP The
answer is given by the selection rules for intravalley
scattering which depend on the symmetry character of
both the phonons and electrons involved in these
processes.

The unscreened matrix element for the interaction
between a conduction electron in state k and a phonon
with wave vector q and branch index j is given by

Here it is taken into account that n/2E(0) = o2EN, if one
assumes that m*= m&. The average is given by

g"'(q j)=
rystal

lp)qp %perk (qg)2(tp)qdr .

~(0) 2/q)2

1V(0)V=
2kp p

2lg(V) I'
/de

~(v)

The perturbation of the periodic potential caused by the:
phonon qj is given by

e -', EN 3 D i'1 a'
1+

lV DIN' 4a'Ep) 21+a'
(A4)

iXp 2(q j)=P u„(lk() V „VI r—R(k)j, (82)
L

where a'=kFT'/4k/, o. With a deformation-potential
constant of 15 eV and the parameters for SrTi03,
(u=7&&10' cm/sec, EN=7.2X10 "I"' eV), the BCS
coupling parameter 1V(0)V~10 ' for as= 10'" cm '
(a'=4).

where u„(l/q) is the displacement vector of the /(th atom
in the lth unit cell; R(l/r) is th'e position of the displaced
atom. The displacement vector u~; can be written in
terms of the eigenvector e(N~q j):

(lq() = (/lf/V)
—

/oe(/(~q j)e'(o.a'«) —~;(o)2) (Q3)

APPENDIX B: MATRIX ELEMENT FOR THE
ELECTRON-SOFT-PHONON INTERACTION

In SrTi03, the phase transition cubic —+ tetragonal
(ON2 —+ D4/, ko) leads to an increase of the size of the unit
cell. Therefore, more phonon branches occur in the
tetragonal Brillouin zone. In Raman scattering and
neutron diAraction, several new zone-center phonons
are observed (see Fig. 6). Furthermore, it is found that
the phase transition does not aBect the frequencies of
those zone-center phonons present before the transition.

where M is the ionic mass in a unit cell and E is the
number of cells per unit volume; R'(l) is the origin of
the 1th unit cell. The time-dependent factor is un-
important and is set equal to unity.

To find the selection rules for the matrix element
g") (q j), one must know the transformation properties
of the phonon eigenvectors e(a~q j) under a symmetry
operation that sends the undistorted crystal into itself,
leaving the coordinate system fixed. To formulate these
transformation properties, the degeneracy of the phonon
frequencies must, bc taken into account. Therefore,
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where
crystal

&P&;*Xper& (z
~

ql&)&P&,dr
& (34)

Xymt (K
~
qX) = e (~

~
qX)

(MN)'t'

'P V»~&, VLr —R(lg))e'&' '('&. (3$)
l

Under a symmetry operation that leaves q invariant,
the perturbations X~„,(~~qX) with X=1, , f, are
transformed into linear combinations of one another.
The transformation is described by an f;dimensional
matrix. This matrix is the same as that describing the
transformation of the eigenvectors e(~

~
qX). The sum in

Eq. (35) is invariant under a symmetry transformation
because

V,„VLr—R (l~))= —V', VLr —R'(Ac)) . (36)

In summary: X'(»:~qX) and e(a~ql&, ) have the same
transformation properties; they transform according to
the same representation of the group of q.

The matrix element g(qX) WO, provided that the inner
Kronecker product of the representations of Pq and &Pq

contains the representation according to which the
e(~ ~qX) transforms. 44 In the special case q=0, the matrix

4'A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40,
2 (1968).

44 J. L. Birman, M. Lax, and R. Loudon, Phys. Rev. 145, 620
(1966).

Maradudin and Vosko, 4' in their work on -phonon
symmetries, replace the branch index j by a double
index OA, where 0 labels the distinct frequency values
for a given q, and X (=1, 2, , f,) labels the inde-
pendent eigenvectors associated with the eigenvalue
co,'(q). The index a is here incorporated into q. In terms
of the eigenvector e(~

~
qX), the matrix element has the

form

element is 6nite if the symmetric Kronecker product
between the representations of ltl, contains the q=0
phonon symmetry. The symmetry of the q= 0 displace-
ment field is higher than that for any 6nite g. Conse-
quently, if the matrix element is finite for g=0, it will
also be finite near q=0.

In the case of strontium titanate, the symmetries of
the new soft phonons at q= 0 are even and are given by
the representations A~, (1'~) and E,(1'~) of the tetra-
hedal point group. For the first case, the matrix element is
knite because the symmetric Kronecher product between

t7oo representations of a finite group contains the identity
A~, . For the second case, the matrix element vanishes
for k=k'=0, since the symmetric Kronecker products
between the possible representations for &P&,=0 do not
contain the two-dimensional representation E,.

According to Eq. (34), the matrix element for the
~~, phonon has the form

g~') (0)=iL1/2MEcu, (0))Kh, (37)

where 8 is the deformation-potential constant and
K= ( &r/a, &r/ap /a). The constant h is proportional to
the order parameter p for the phase transition cubic +

tetragonal and vanishes at the transition temperature
T . The values of h depends on the displacement 6eld
of the A~, phonon and on the electronic structure. The
displacement field consists of a rotation of oxygen ions
around the tetragonal axis accompanied by a small
dilatation of all ions in the direction of the axis. The
wave functions of the conduction electrons have a large
amplitude at the Ti+++ ions and a small amplitude at
the 0 ions. The motion of the conduction electrons is
affected by the 3&, phonon for two reasons. First, even
a small dilatation along the tetragonal axis has a large
effect, because a longitudinal polarization interacts
strongly with the conduction electrons. Second, the
motion of the 0 ions is important, since their long-
range Coulomb potentials have a large effect on the
energy of an electron at a neighbor Ti+++ site.


