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The widely held belief that Hartree-Fock orbitals y~ behave asymptotically like exp[-(-2
&«z) r], where &i is the orbital energy of yi, is shown to be incorrect, with one exception:
atomic configurations consisting entirely of s orbitals. The correct asymptotic form of (pi
is a sum of terms like exp f- (-2E&) ~ r], in which all && appear. The former misconception
apparently resulted from too superficial a treatment of the exchange potential at large r.

I. INTRODUCTION

Theoretical treatments of physical processes
involving interacting systems, such as intermo-
lecular forces in a gas or energy transfer in a
crystal, need wave functions accurate at large
distances. It is remarkable that the long-range
behavior of a common approximate wave func-
tion, the Hartree-Fock wave function, appears
to be misunderstood. Many statements in the
literature' imply that the Hartree-Fock self-
consistent field potential goes like —1/r at large

As a consequence the long-range behavior of
a given Hartree-Foek spin orbital p~ wouM be
given by2

1 dV'
V2P (r) q 2

*(r')y1 (r') =0.
m= —1 m Ir- r'I m

The nuclear attraction term plus the Coulomb
terms (which have been written to include the
self-exchange term) in Eq. (2) behave asymp-
totically like r 'Pls(r), and are therefore negli-
gible comPared with —elsgls(r) at large r To.
find the asymptotic form of the exchange term,
we make the substitutions

(3)

(4)

where cz is the orbital energy of g~. With cer-
tain exceptions which are discussed later, the
asymptotic form (1) is incorrect. The correct
asymptotic form of tI()z is a sum of terms like the
right-hand side of Eq. (1) in which all the orbital
energies occur. First we show by example how
the long-range behavior of the exchange potentials
precludes the form (1), and then derive the cor-
rect long-range behavior of the Hartree-Fock
orbitals.

and use the asymptotic expansion for l r —r'I
for large r,

op

z
I=0m=- l

xy (e, q)1' (8', y'),
where the Ffm(8, p) denote spherical harmonics.
After the angular integrations, the exchange term

II. EXAMPLE: (1s) (2p) ATOMIC CONFIGURATION

This simple hypothetical example demonstrates
the incorrectness of the asymptotic form of Eq.
(1). [A slightly more complicated example is
neon (1s)'( 2s )(2p2)'. ] The Hartree-Fock equation
for the 1s orbital may be written

1
Z R2 (r)1'1 (g, e)l'1 (g, q)3 2p 1

x r ' f dr'r"R (r')R1 (r')

(r)/r',
2p, 1s 2p

where 02 1
= f drr'R2 (r)R (r) (8)

1
+2 Z ~y2 (r')~' —e1 ql (r)

m=-1 m

In any typical calculation, this integral will not
be zero. The asymptotic form of Eq. (2) there-
fore is
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III. THE ASYMPTOTIC HARTREE-POCK

EQUATIONS FOR CLOSED-SHELL SYSTEMS

Consider a closed-shell system with N doubly
occupied orthonormal Hartree-Fock orbitals pi,
i =1, 2, . .. , ¹ The Hartree-Pock equations
are

z
a

a a r- r'1

If Iei I & I e2& I, which is usual, Eq. (9) is
clearly not satisfied by the asymptotic forms
given in Eq. (1). Hence those forms cannot rep-
resent the correct asymptotic behavior. The
"rub" is that the effective local exchange po-
tential acting on &1s is

(p2 1 /r )It2 (r)/Itl (r), (10)

which, If Eq. (1) held, would behave like

—exp[(- 2e )'~2r- (-2e }'"r]--"as r-"ls 2p

i.e. , an exponential hole at ~ t It is apparent
that Eq. (2) could not be solved for a bound-state
orbital if the resultant local exchange potential
has this exponential dependence.

tion q *p is neutral. If the system is an atom,j -g.thenthe .i can be zero because of symmetry,
and the j2 in (15) can be of order r —~ —I with I
&1. For example j 3d and i 1s gives l=2.
For the case in which both i and j are s-type or-
bitals in an atom, the exchange terms vanish
much more strongly than O(r-2cpj). We discuss
this case in Sec. IV.

The general asymptotic form of the Hartree-
Fock equations (11) then becomes

e. q.(r)- Q K. .(r)q. (r),(
1 d2

y $ z jzj=l
(j &i)

(2=1,2, . . . , +) . (16)

The exchange terms on the right-hand side of
Eq. (16) cannot be dropped at this stage be-
cause we have no way of comparing yf(r) with

pj(r) for large r

IV. SINGLE ASYMPTOTIC EQUATIONS FOR
HARTREE-POCK ORBITALS

Equations (16}are not transparently solvable
because the p are coupled together. The X=2
case indicates how to uncouple them and yields
a single asymptotic equation for the pi.

Define, for convenience,

&.=- ——,
' d '/dr ' —e . .

z Z

x 2 q7. r + cp. r —g. qP. r
j=1
(j~z)

q . (r) y."(r') y. {r'),
I

(g V2)

(a=1, 2, . . . , +) . (11)

When %=2, Eqs. (16) become

1+1 21+2

+2&2 &12&1

Operate on Eq. (18) with 4„
2 1+1 21 2+2+ ( 2 21 21 2)@2

Since

(is)

(19)

(20)

The angular parts of the kinetic energy, the nu-
clear attraction potential, and the Coulomb op-
erators are all negligible compared with e at
large r. The I r- r'I -' expansion [Eq. (5) ] can
be used to obtain the asymptotic form of the ex-
change term,

q . (r) fdV'I r —r'I 'y. '(r')q .(r')-j j i

=r 2!k . ~ rp. (r) . O+[r cp.2(r)], (12)
jz

1 2+1 21 2~2

With Eq. (19), Eq. (23) becomes

(23)

(~~„-K„~,)q,
= y, (- —,

' d '/dr 'K„)—(d/dr) y,(d/dr}K„, (2 i)
= O(r 'K„&2+2), (22)

the last term in Eq. (20) can be dropped to ob-
tain

=K. .(r)q .(r),ji j
where k. .= f Vd'q*. (r')r'p. (r')ji j z

and K. .= r ' k . . ~ r + O(r -')
ji jz

(15)

1 2+1 21 12+1

But K2,K,2y, = O(r «y, )

while 4,d2&, = O(p, )

so that 4,42&, -0 .

(24)

(25)

(26)

(27)

The orthogonality of the orbitals precludes the
l = 0 term in Eq. (5), i.e. , the charge distribu-

From the symmetry of Eqs. (18) and (19), y2
must satisfy the same equation. The solution of
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Eq. (27) is postponed until the next section.
The generalization. of Eq. (27) to the N orbital

case is that each of the N Hartree-Fock orbitals
pi satisfies the asymptotic equation

( —,'d'/—dr' —e )(—,'d—i/dr' —e )

x. . .(- -'d'/dr' e—)q.-0N

(i = 1, 2, . . . , N) .(28)

An inductive derivation of Eq. (28) is obtained
both from the N = 2 solution above and by reduc-
ing the N equations (16) to (N- 1) equations hav-
ing the same form. Operate on the first (Ã- 1)
of Eqs. (16) with 4N. For reasons like those
used to obtain Eq. (22), ignore (&NKj i +Ji+N)cpj
relative to Ej&ANy&, to obtain

where the f. .(r) are functions of r which behavejzless strongly than the exponentials at . As a
rule, none of the f&i(r) will be identically zero.
The "tail" of pi thus consists of a sum of N ex-
ponentials, one for each orbital energy rj. The
one case for which the f&i vanish identically when
i 4j is an atomic configuration consisting entirely
of s-type orbitals, e. g. , the ground state of Be.
For s orbitals, the exchange operators Kji(r)
[Eq. (13)] vanish exponentially, because all
multipole moments of a localized, spherically
symmetric charge distribution, which is over-
all neutral, vanish identically. Equation (16)
then permits the simpler solution given by Eq.
(1).

VI. DISCUSSION

N-1
K. .E y. +KzNz. . jzNj¹NNj=1

(j ~i)

(28)

Since EN& Kz@+z vanishes more strongly than
4z&N@z, and KNzK&N@j vanishes more strongly
than K 4~&, the last set of terms in Eq. (30)
can be dropped:

N-1
K. .b. y.,zNz. . jzNj'j= 1

(q ~i)
(i=1, 2, .. . ,N-1) . (31)

But Eqs. (31) are just Eqs. (16) with N replaced
by (N 1) and &pi by b~i. —Equations (28) then
follow by induction for i = 1, 2, .. . , (N 1), and-
by symmetry for i=¹

V. ASYMPTOTIC BEHAVIOR OF THE ORBITALS

Equation (28) is easily solved. The general so-
lution which vanishes at , and which gives the
asymptotic form of the Hartree-Pock orbitals, is

N

f. .(r) exp[- (- 2e )'I'r].
j=1

Substitute into Eq. (29) the last of Eqs. (16) for
a~N, to obtain

N=1 N-1
&.&NP. - Z K. .d P.+K . Q K.

z . . ji N j Ni . . jN j
(q ~i)

(30)

%'e have shown that the Hartree-Pock orbitals
&pi do not go asymptotically like exp[- (- 2ei)'~'r],
where e is the orbital energy, as is the common

z
belief, except in the case of an atom, ic configura-
tion having only s-type orbitals. The correct
asymptotic behavior is given by a sum of terms
like exp[- (- 2e&)'~'r], where every orbital en-
ergy enters each orbital. As a consequence, the
ultimate long-range behavior of all Hartree-
Fock orbitals, independently of the symmetry
type, is the same, dominated by the smallest
(in magnitude) orbital energy, i. e. , exp[- (- 2
x e allest)'~'r]. These results have obvious
implications for the process of calculating the
Hartree- Fock orbitals, numerically or analyti-
cally. In particular, the practice' of neglecting
exchange when z is very large seems suspect.
We are unsure whether this unexpected long-
range behavior has physical significance or is
just an artifact of the Hartree-Fock method.
The uniform behavior is a consequence of the
long range of the exchange potentials, and any
modification of the Hartree-Fock equations
which alters these, can alter the long-range be-
havior of the orbitals. For instance, if all the
exchange potentials are computed with
r» 'exp[- l l(or, ' +')r] instead of with r» ', or
alternatively with the use of Slater's average ex-
change potential, ' then each Hartree-Fock or-
bital has the long-range behavior specified by
its own orbital energy. A method to force this
behavior in an analytical basis has been devised
and will be published elsewhere. '
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Thouless, The Quantum Mechanics of Many-Body
Systems (Academic Press Inc. , New York, 1961), p. 18.
There are, moreover, many papers which note this
"(-1/r) asymptotic behavior" while discussing approxi-

mate ways of treating exchange. See, e.g. , F. Herman
and S. Skillman, Atomic Structure Calculations (Prentice-
Hall, Inc. , Englewood, New Jersey, 1963), p. 1-8.

We use atomic units. The unit of length is the Bohr
radius, ao 0.53 A, and the unit of energy is e /ao 27.2
eV.
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The experimental values of the fine and hyperfine energies of the metastable autoionizing
(1s2s2p) P states of Li are used to definitively identify the transitions responsible for the
multiplets at 2934 and 3714 A in the optical spectrum of Li. It is found that the optical lines
are due to the radiative decay to the P state of the lowest-lying states with symmetries
4S and 4Pe. The intervals between the quartet states and the fine and hyperfine splittings
of these states are derived from an analysis of the multiplet structures.

I. INTRODUCTION

On the basis of our recent determination' of the
fine and hyperfine structure of the metastable
autoionizing (1s2s2P)4Po state of Li, we have
identified as rb lines' the 2934 and 3714 A multi-
plets observed in the course of studies' ' on the
Li~ rr spectrum. These lines cannot be classified
in the spectrum of the singly excited atom or ion.
Our work confirms the tentative assignments' of
these lines which are based solely on calculations
of the energies of the quartet levels of Li. In the
present paper we discuss the calculations of the
multiplet structures and intensity profiles for
these lines and the effect of hfs in markedly al-
tering the relative line intensities in the case of
Li7. The fine structure of the (ls2P') P~ state is
determined from an analysis of the 3714 A multi-
plet.

II. METASTABLE LEVELS AND THE
Li QUARTET SPECTRUM

The first direct observation of doubly excited
states in lithium, which are metastable against

both autoionization and radiative decay, was
made by Feldman and Novick in 1963.' The meta-
stability results from the spin selection rule &S
= 0 for Coulomb autoionization since there are no
quartet states in the continuum adjacent to the
lowest-lying discrete quartet states. The lowest
excitation threshold observed was at 57.3 +0.3 eV,
which was identified as corresponding to the
(ls2s2p)4P», level. Several secondary thresholds
were also observed and were assumed to result
from the radiative cascade to the 4Po state from
other quartet states which are metastable against
autoionization.

The configuration (ls2s2p) has the lowest ener-
gy of those odd-parity quartet states which do not
couple via the Coulomb interaction to adjacent
continuum states. Holgfien and Geltmans have
shown that the lowest lying of such 4I'0 states can
be classified as

l ls, 2n s) = 2 '~'(Ils, 2snp) + lls, 2pns) ),

since the configurations (1s2snp) and (ls2pns) are
nearly degenerate (for small n) when the interac-
tion bebveen configurations is neglected. This


