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Bounds are presented relating zero-field static isothermal magnetic susceptibilities to the mean-square
fluctuations of corresponding magnetization variables. The lower bounds contain the first frequency moment
of a spectral density. When this moment & approaches zero, the upper and lower bounds merge, and the
susceptibility is determined by the mean-square fluctuation. In particular, if the susceptibility diverges at
a temperature 7', and if the expectation of the double commutator appearing in & is finite at and near 7',
then the fluctuation and the susceptibility diverge in the same manner, and their critical exponents will be

identical.

INTRODUCTION

E present upper and lower bounds for the zero-
field isothermal magnetic susceptibility and for
a generalized wave-number-dependent susceptibility.
These are a generalization of equations between the
susceptibility and fluctuation beyond the case where
magnetization operators commute with the zero-field
Hamiltonian. The bounds are expressed in terms of the
mean-square fluctuations in the magnetization variables
and the first frequency moment of a spectral density.
When this moment & approaches zero, the upper and
lower bounds merge, and the susceptibility is deter-
mined by the mean-square fluctuation. In particular,
if the susceptibility diverges at a temperature 7, and
if the expectation of the double commutator appearing
in & is finite! at and near T, then the fluctuation and
the susceptibility diverge in the same manner and their
critical exponents? will be identical.

DEFINITIONS AND PRINCIPAL RESULTS

The zero-field isothermal magnetic susceptibility is
defined by the limit equation

Xr=0(M)n/0h| ns0+, 6

where the ensemble average of the magnetization is
defined by

(M= T M st 0 Tufe-senan],  (2)
and Ho—hM is the Hamiltonian for the system in an

external magnetic field 4.
These definitions yield? the following formula for X :

®)

1The work of N. D. Mermin and H. Wagner, [Phys. Rev.
Letters 17, 1133 (1966)7], establishes that the expectation of the
relevant double commutator is bounded for the class of one-,
two- , and three-dimensional, isotropic, spin-S Heisenberg models
with finite-range exchange interaction [} R R2[J(R)| finite].

2 We thank Professor M. E. Fisher for this statement of our
results following our summary of this work at the Yeshiva
University Statistical Mechanics Meeting on December 2, 1968.

3 See, e.g., H. Falk, Phys. Rev. 165, 602 (1968), especially
Sec. III.

8
Xrp= / ANAM (\AM Y,
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where

AM=M—(M)o; AM(N\)=eMAMeMo;

Bi=ksT. (4)

The zero-field expectation value is defined for a general
operator 4 by

{A)o=Tr(eFHo4)/TretHo, (5)

If M commutes with Ho, Eq. (3) shows that g~1Xy
=((AM)?)o, the mean-square fluctuation of the mag-
netization.

An extension of this result to the static susceptibility
for the spatial Fourier components 4 of an inhomog-
eneous disturbance is*

8
Xr(ApAN)= / AN(MOVAA e MAA )
0

=Xr(4:"41), (6)
where the notation of Eqgs. (4) and (5) has been used
and A4," is the Hermitian conjugate of 45.

Since Eq. (6) clearly reduces to Eq. (3) for the
special case where Ay is the Hermitian operator M,
we present our bounds for the more general quantity
Xp(AiT,Ag).

In terms of the anticommutator {-:-,---} define

SO=3({Ad1,A4,"})o. ()
The principal results derived here are
(1—exp[—36:])/366+ < (tanhgi) /i
@SSO Xr(414:N)<L, (8)

where @, the first moment of a spectral density, is
defined by

o= ([AAr,[Ho,A4:7 ] 1 )o/{({A41,A4:T} )0 (9)

and is non-negative; 7, is the (positive or negative)

4 See, e.g., H. Mori and K. Kawasaki, Progr. Theoret. Phys.
(Kyoto) 27, 529 (1962).
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root of the transcendental equation
(10)

Luttinger® and Josephson® have derived the upper
bound in Eq. (8), and for density-density correlations in
a fluid, Luttinger has also presented a weaker lower
bound analogous to the weaker lower bound in Eq. (8).
It is also noteworthy that Harris” has given an upper
bound for {{A4,4;"}) and by rearranging terms, one
obtains from it a lower bound for B'Xyp(A4;,A4:).
Harris’s lower bound approaches the stronger of the
lower bounds in this paper from below as Ba— 0.
For completeness, in Appendix A, we sketch a deriva-
tion of the upper bound and the weaker of the two
lower bounds in Eq. (8). In Appendix B, we derive our
stronger lower bound.

The bounds given in Eq. (8) provide quite general
upper and lower bounds for the isothermal suscepti-
bility at all temperatures. Of particular interest, is the
critical region where the wave-number-dependent
susceptibility is observed® to become very large for %
near zero (ferromagnets) and for % near ko (antiferro-
magnets). On the other hand, the numerator in Eq. (9)
has been shown! to be bounded for a large class of
systems with finite-range interaction. Thus the ratio
may be very close to zero in the critical region and the
bounds may merge. Fisher? has pointed out that the
merging of the bounds as 7'— T implies that the
critical exponents for the fluctuation and the suscepti-
bility will be identical.

The Heisenberg model provides an example for
which the numerator in Eq. (9) becomes zero at k=0,
since the total magnetization isconserved. Alternatively,
the numerator can be expressed as the (zero-time) rate
of change of correlation of fluctuation. The slowing
down of fluctuations near the critical temperature for
the Heisenberg Hamiltonian has been discussed by
other workers,* and suggests that the numerator in Eq.
(9) may become small as T'— T..

In conclusion, we mention that the technique applied
by Wilcox? to obtain off-diagonal tensor generalizations
of diagonal susceptibility bounds, would also apply to
the results given here.

vy tanh yi=3Bw;.
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APPENDIX A
Define the function
K(\)=3{e"oAAd e MoAA L,

+%(e"H°AA k*e"‘H“AA k>0 . (Al)
The susceptibility can then be written
8 B/2
Xp(Adit) = / K () =2 / KN, (A2)
0 0

In the range of integration 0SA<B/2, K (M) has a nega-
tive first derivative and a positive second derivative.
Its maximum value is at A=0. This last property
establishes the upper bound

BX (41, Ax1) <F{AALAALT} 0. (A3)

To obtain the weaker lower bound in Eq. (8), an
expression for X in terms of a spectral density is used?:

Xr(ArA kT) =/w doSi(w)(1—e %) /w
. (A0
=/ dwSp(w)(1—eBe2)/1e,

Using eigenstates of Hy, one obtains for the spectral
density

Si(w)= 3 Zij d[w— (Ei—E;)](|(¢| A4dk] 7)|?

+[ (1| A44T] 7} 2)ePEi/TrePHo  (AS)
and it has an integral
/ dw Sk(w) =3({AA,AA4'})o. (A6)

The quantity (1—e¥)/y is a convex, nonincreasing,
non-negative function of y; the convexity yields a
lower bound for an average of the function

(e _ﬂ“/z)/%ﬁw><k>5[fw d“’s’“(w)(_l:;ili/zJ/

o 38w
/ d'Si(w) > (1—ePa412) /348G, (AT)

The frequency & is defined as the first frequency
moment of Sy (w)

== [ s / / LS (@)

—00

= ([AA k)[HO)AA kT]—]->0/<{ A4 kJAA kT} >0
—d InK (\)/d\| rmo.

10 W. Brenig, Z. Physik 206, 212 (1967); his Eq. (11) is
used to obtain the final equality in (A4).

(A8)
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The weaker lower bound in Eq. (8) then follows by
use of Egs. (A4)-(A8). The non-negative property of @
may be verified by expanding the commutators in
eigenstates of H,.

APPENDIX B
Moment Problem for the Spectral Function
Given two moments of the spectral function S (),

0

SO = dwS (), (B1)
@SO=50 = dowS () , (B2)

the problem is to find the extreme values of
Xr= doS(W)[(1—e*9)/w]. (B3)

—0

The spectral function is to be non-negative and is to
satisfy the symmetry relation

S(—w)=eFS ().

X7t will be calculated for a trial spectral function
[compare with the general expression Eq. (A5)]

S;(w) =Bé (w)+21 A 1[6 (w——x,v)—i—e"’é (w+xz)] .

The sum may contain any number of terms and energies
are now given in units of k7. It is convenient to
change the non-negative coefficients 4; to new non-
negative variables a;:

(B4)

(BS)

a;=Axi(1—e ). (B6)
Then Egs. (B1)-(B3) become
S®=B+3%"; a;(cothdx;)/x;, (B7)
WSO=3";a;, (B8)
B X pt=B+423; a2, (BY)

With a new non-negative variable B defined as B=B/
S® and positive weight factors p; defined by

pi=ai/2;a;, (B10)

Eqgs. (B7)-(B9) reduce to a pair of equations
1=B+& Xi pi(cothyx;)/x;, (B11)
(BSOY X pt=B+25 X: pawi?.  (B12)
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The problem is thus to find the distribution of p; and
x; which extremizes Eq. (B12) with B non-negative.
Equation (B12) becomes

(ﬂS(O))_lXTt= 1+%C_0 Z,’ pz-g(Z/xi) . (313)
The function g(z) is defined for positive z by
g(z)=22—z coth(1/2), (B14)

and is a negative, monotonically decreasing function
of z. Since the second derivative of g(z) is non-negative,
convexity theorems yield

BSOY Xt > 14+20g(2 3-; pi/x:).  (B1S)
Since B is non-negative, Eq. (B11) yields
1230 22 pif(2/%:). (B16)
The function f(z) is defined for positive z by
f(@)=2zcoth(1/z), (B17)

and is non-negative, monotonically increasing, and of
positive second derivative. The convexity yields

123612 s pi/%s)- (B18)
If a variable v, is defined by
1/y:=2 2i pa/%:, (B19)

Eq. (B18) shows that y; may be no smaller than the
solution y of the equation

(B20)

In Eq. (B1S), the function g(1/v;) can be no more
negative than its value g(1/y). Therefore, a lower
bound for Xr is

Xr|w=(BS®)3ay~2=pS® (tanhy)/y.

This is in fact the greatest lower bound, since Xt
attains this value for a trial function .S; with one value
of x; (equal to y) and with B equal to zero.

The least upper bound is

Xr|uw=BS®.

This was shown to be an upper bound in Eq. (A3).
X7t may be made to approach it arbitrarily closely by
using a trial function .S; with only one term in the ¢ sum
nonzero. The value of «x; is taken arbitrarily large;
A; is adjusted to satisfy Eq. (B2), and B approaches
SO,

The lower bound obtained from the work of Harris’
corresponds to the linear expansion of Eq. (B21) at
small @.

y tanhy=130.

(B21)

(B22)



