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Susceptibility and Fluctuation
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Bounds are presented relating zero-Geld static isothermal magnetic susceptibilities to the mean-square
Quctuations of corresponding magnetization variables. The lower bounds contain the Qrst frequency moment
of a spectral density. When this moment or approaches zero, the upper and lower bounds merge, and the
susceptibility is determined by the mean-square Quctuation. In particular, if the susceptibility diverges at
a temperature T„and if the expectation of the double commutator appearing in co is Qnite at and near T„
then the Auctuation and the susceptibility diverge in the same manner, and their critical exponents will be
identical.

INTRODUCTION

~

~

E present upper and lower bounds for the zero-
Geld isothermal magnetic susceptibility and for

a generalized wave-number-dependent susceptibility.
These are a generalization of equations between the
susceptibility and Quctuation beyond the case where
magnetization operators commute with the zero-field
Hamiltonian. The bounds are expressed in terms of the
mean-square fluctuations in the magnetization variables
and the first frequency moment of a spectral density.
VVhen this moment ~ approaches zero, the upper and
lower bounds merge, and the susceptibility is deter-
mined by the mean-square Quctuation. In particular,
if the susceptibility diverges at a temperature T., and
if the expectation of the double commutator appearing
in co is Qnite at and near T„ then the Quctuation and
the susceptibility diverge in the same manner and their
critical exponents' will be identical.

where

Xr(A(,A (') = d), (e"H oAA pe
—"H ohA l,t)()

=Xr(A pt, A p), (6)

f3M=M (M)p, —ZM())=e"HoQMe "Ho.

P '=keT. (4)

The zero-field expectation value is defined for a general
operator A by

(A)p ——Tr(e eHoA)/Tre eHo (5)

If M commutes with IIp, Eq. (3) shows that t3 'Xr
=((6M)')p, the mean-square fluctuation of the mag-
netization.

An extension of this result to the static susceptibility
for the spatial Fourier components AI, of an inhomog-
eneous disturbance is'

DEFINITIONS AND PRINCIPAL RESULTS
where the notation of Eqs. (4) and (5) has been used
and A~~ is the Hermitian conjugate of A~.

Since Eq. (6) clear1y reduces to Eq. (3) for the
special case where A~ is the Hermitian operator M,
we present our bounds for the more general quantity
Xr(Al, t,A(,).

In terms of the anticomrnutator i .
, ) define

S"'=—,'(it),Al„hA p"))p.

The principal results derived here are

(1—exp [—-',P(o&])/-', Poop & (tanhy„)/yg
&&(PS(P)) 'Xr(A p, Apt) ~& I, (g)Xr = dx(AM()1)dM)p, (3)

The zero-held isothermal magnetic susceptibility is
defined by the limit equation

Xr=()(M)s/()his p+, (I)
where the ensemble average of the magnetization is
deGned by

(M)„—Tr[Me t) (Ho A)ol) g/Tr[e —e(Ho -Ass)
g (2—)—

and IIO—hM is the Hamiltonian for the system in an
external magnetic 6eM h.

These definitions yield3 the following formula for X&.

'The work of N. D. Mermin and H. Wagner, fPhys. Rev.
Letters 17, 1133 (1966)g, establishes that the expectation of the
relevant double commutator is bounded for the class of one-,
two-, and three-dimensional, isotropic, spin-S Heisenberg models
with finite-range exchange interaction f+R i|'o(J(R) i finite.

' We thank Professor M. E. Fisher for this statement of our
results following our summary of this work at the Yeshiva
University Statistical Mechanics Meeting on December 2, 1968.

' See, e.g. , H. Falk, Phys. Rev, 165, 602 (1968), especially
Sec. III.
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where cvI„ the first moment of a spectral density, is
defined by

(op ([i)A p, [HphA—s—tg ] )p/((AA p, hAlt)) p (9)

alld ls lloll-llcgatlvc ' tie ls thc (posltlvc ol' negative)

4 See, e.g., H. Mori and K. Kawasaki, Progr. Theoret. Phys.
(Kyoto) 27, 529 (1962).
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root of the transcendental equation

Yo tanh. yg:= -oP(dg;.

Luttinger' and Josephsono have derived the upper
bound in Eq. (8), and for density-density correlations in
a Quid, Luttinger has also presented a weaker lower
bound analogous to the weaker lower bound in Eq. (8).
It is also noteworthy that Harris' has given an upper
bound for ((Ak, Apt))o and by rearranging terms, one
obtains from it a lower bound for P 'Xr(AI„A~t).
Harris's lower bound approaches the stronger of the
lower bounds in this paper from below as Poop —+0.
For completeness, in Appendix A, we sketch a deriva-
tion of the upper bound and the weaker of the two
lower bounds in Eq. (8). In Appendix B, we derive our
stronger lower bound.

The bounds given in Eq. (8) provide quite general
upper and lower bounds for the isothermal suscepti-
bility at all temperatures. Of particular interest, is the
critical region where the wave-number-dependent
susceptibility is observed' to become very large for k
near zero (ferromagnets) and for k near kp (antiferro-
magnets). On the other hand, the numerator in Eq. (9)
has been shown' to be bounded for a large class of
systems with finite-range interaction. Thus the ratio
may be very close to zero in the critical region and the
bounds may merge. Fisher' has pointed out that the
merging of the bounds as T~ T, implies that the
critical exponents for the Quctuation and the suscepti-
bility will be identical.

The Heisenberg model provides an example for
which the numerator in Eq. (9) becomes zero at k=0,
since the total magnetization is conserved. Alternatively,
the numerator can be expressed as the (zero-time) rate
of change of correlation of Quctuation. The slowing
down of Quctuations near the critical temperature for
the Heisenberg Hamiltonian has been discussed by
other workers, 4 and suggests that the numerator in Eq.
(9) may become small as T +T,. —

In conclusion, we mention that the technique applied
by Wilcox to obtain off-diagonal tensor generalizations
of diagonal susceptibility bounds, would also apply to
the results given here.

Xr(A&,At.t) = dX E(X) =2 dX EP,) . (A2)

In the range of integration 0 &&X&~P/2, E (X) has a nega-
tive first derivative and a positive second derivative.
Its maximum value is at X=O. This last property
establishes the upper bound

P- X,(A„A, ) &-,'({»„~A,')), . (A3)

To obtain the weaker lower bound in Eq. (8), an
expression for X in terms of a spectral density is used":

Xr(Ao, Aot) = d(AS(, (a))(1—e ~ )/(o

d(uSo (oo) (1—e ~"Is)/-'(u.

(A4)

Using eigenstates of EXO, one obtains for the spectral
density

and it has an integral

da) So(oo) =-', ((»o,hAot))p. (A6)

The quantity (1—e &)/y is a convex, nonincreasing,
non-negative function of y; the convexity yields a
lower bound for an average of the function

((1-e '"")/lP )
(1 e—eco/2/)—

dooSo ((v)

APPENDIX A

Begone the function

E(A)= s'(—e"~o»&e "~o»ot) p

+~~(e"~o»ote "~o»o)p. (A1)

The susceptibility can then be written
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o)'So((v') ~ ( e" ')/ —'po)o (A-7).

~a=(~)&o& = dcoSo (M)oo dQ) So(co )

The frequency coj, is defined as the first frequency
moment of So(co)

5 J. M. Luttinger, Progr. Theoret. Phys. (Kyoto) Suppl. 37,
35 (1966).' B. D. Iosephson, Proc. Phys. Soc. (London) 92, 269 (1967).' A. B. Harris, J. Math. Phys. 8, 1044 (1967), Eq. (20b).

M. K. Fisher, Rept. Progr. Phys. 3Q, 615 (1967); P. Heller,
ibid. 30, 731 (1967).' R. M. Wilcox, Phys. Rev. 174, 6Z4 (1968l.

=(PAo, l &o,aAa"j t—)o/((»~, aAo'))o (A8)

=d inE(P)/dXly=p.

' W. Brenig, Z. Physik 2Q6, 212 (1967); his Eq. (11) is
used. to obtain the final equality in (A4).
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APPENDIX B

Moment Problem for the Syectral Function

Given two moments of the spectral function S(o&),

S(0) do&S (o&) (81)

The weaker lower bound in Eq. (8) then follows by
use of Eqs. (A4)—(AS). The non-negative property of o&i

may be verihed by expanding the commutators in
eigenstates of B0.

The problem is thus to 6nd the distribution of p, and
x; which extremizes Eq. (812) with 8 non-negative.
Equation (812) becomes

(PS"&) 'Xr'= 1+s~2' p'g(2/x')

The function g(s) is defined for positive s by

g(s) =s'—s coth(1/s),

(813)

and is a negative, monotonically decreasing function
of s. Since the second derivative of g(s) is non-negative,
convexity theorems yield

(PS"&) 'Xr'&&1+-',o&g(2 Q; p~/x, ) . (815'j

~s«'=—s&» = do&o&S (o&), (82)
Since 8 is non-negative, Eq. (811) yields

1& 2~ 2' p'f(2/x'). (816)

the probl. em is to find the extreme values of The function f(s) is defined for positive s by

f(s) = s coth(1/s), (817)
Xp= do)S(o&) L(1—e

—e")/o&]. (83) and is non-negative, monotonically increasing, and of
positive second derivative. The convexity yields

S(—o&)=e e"S(o&). (84)

The spectral function is to be non-negative and is to
satisfy the symmetry relation

1&-',o&f(2 Q; p;/x;).

If a variable y& is de6ned by

1/y, =2 P; p;/x;,

(318)

(819)
X~' will be calculated for a trial spectral function

Lcompare with the general expression Eq. (A5)$ Eq. (318) shows that y, may be no smaller than the
solution y of the equation

S (o&) =BR(o&)+P A P(o&—x;)+e"8(o&+x;)$. (85)
y tanhy = —,'co. (820)

The sum may contain any number of terms and energies
are now given in units of k~T. It is convenient to
change the non-negative coefFicients A; to new non-
negative variables a;:

1n Eq. (815), the function g(1/y&) can be no more
negative than its value g(1/y). Therefore, a lower
bound for Xz is

a =A x;(1—e **).

Then Eqs. (81)—(83) become

S&'& =8++;a;(coth-'. x;)/x, ,

o&Si'&=+; u;,

(86)

(87)

Xr
~

ib= (PS "&)-',o&y
—'=PS('& (tanhy)/y. (821)

This is in fact the greatest lower bound, since X~'
attains this value for a trial function 8& with one value
of x; (equal to y) and with 8 equal to zero.

The least upper bound is

P 'Xz'= 8+2 P; a;x; '. (39)

p'=~'/2 ~J,

Eqs. (8'7)—(39) reduce to a pair of equations

1=8+o& g, p, (coth-', x;)/x;,

(pS&'&) 'Xr' 8+2o& Q; p,x; '. ——

(810)

(811)

(312)

With a new non-negative variable 8 defined as B=B/
S"& and positive weight factors p; defined by

Xri „b=tiS'0&. (822)

This was shown to be an upper bound in Eq. (A3).
X&' may be made to approach it arbitrarily closely by
using a trial function 5& with only one term in the i sum
nonzero. The value of x; is taken arbitrarily large;
A; is adjusted to satisfy Eq. (82), and 8 approaches
S(0)

The lower bound obtained from the work of Harris'
corresponds to the linear expansion of Eq. (821) at
small co.


