
EPR OF NpOs'+ IN CssUOsCls AND CsUOs(NOs)s

c axis in the case of the doped CsUOs(NOs) s. gs is very
sensitive to the wave function of the ground state.
That is, small distortions in the sample give a large
distribution in the value of g~, and this will broaden
the resonance signals and eventually the signals will
fall below the limit of detection as Hz, is rotated away
from the c axis. For the doped Cs2U02C14 crystal the
parameter 2 is very sensitive to the wave function, and
Fig. 9 gives a plot of A versus the spin-orbit mixing
parameter 8~. A becomes important to the linewidth
of the EPR signals as B'~, is rotated toward the c axis.
Small distortions in the sample correspond to large
changes in A at 0~=118'. %hen the H~, is rotated
toward the Np-0 axis from the perpendicular position
of the Np-0 axis, the EPR signals broaden and eventu-
ally fall below the limit of detection due to large
deviations in A from small distortions of the sample.

CONCLUSION

The two values for the nuclear moment of Np"'
reported here are 2.90@,& and 2.1p,z. It is very diKcult
to estimate the error in these calculations. Eisenstein

and Pryce's estimation of &20'pro error due to the un-

certainty of the wave function seems to be reasonable.
This means that our measurements will be 2.9&0.6p,~
and 2.1&0.4p, ~. These two values are more or less in
agreement, and their average value also agrees with
the value of 2.7tttt reported by Hutchison and Wein-
stock. The ground-state wave functions used in the
two samples are not the same. For CsUOs(NOs)s, the
wave function has a large part of a nsg ——&~ state and
for Cs2U02C14, the important part of the wave function
is mg ——&~. A major remaining problem is that both
samples contain the Np02'+ complex, yet the ground
state changes from mJ ——&—', to mJ ——&~. This effect is
not understood by the authors. It is possible that a
wrong ground state has been chosen for the Cs2UO2Cl4,
or the bond distance of Np-0 has changed enough in the
two samples to give diferent ground states. The re-
ported U-0 distances vary from 1.6'7 As to 1.91 A.te"
It is quite possible that the Np-0 bond distances are
diferent in the two samples.

s D. T. Cromer and P. E. Harper, Acta Cryst. 8, 846 (1955).I W. H. Zachariasen, Acta Cryst 1, 277. (1948).
"W. H. Zachariasen, Acta Cryst. I, 281 (1948).
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Restricted self-consistent-field molecular-orbital calculations have been carried out for four states of the
octahedral cluster NiF6' As vecgo and with 38 point charges representing the perovskite lattice KNiFg. For
a contracted Gaussian-basis set with 15 more members than a minimal set, all integrals were computed. The
value found for the ligand Geld splitting, 4670 cm ', is 35% smaller than the observed value. The Racah
parameters do not reflect the expected decrease associated with cluster formation. The covalency estimates,
f.=0 18% and . f —1.26%, are three times smaller than the observed values. Thus, as measured by the
results, the calculation is neither significantly better nor significantly worse than previous calculations,
which, however, include many ill-understood assumptions. In addition, our calculations indicate that omis-
sion of the Madelung potential from next-nearest neighbors is not a grievous approximation; that free-ion
d orbitals suer only small distortions in the cluster; and that p~ bonding in states with partly open tying

orbitals is much smaller than po bonding. This calculation is to be regarded as a precursor. An attempt is
made to extract the implications so that selection of the least sensitive assumptions may be made for sub-
sequent calculations.

INTRODUCTION

'RANSITION metal-fluoride clusters in pre-
dominantly ionic crystal lattices are a particularly

useful substrate for testing erst-principles calculations
of electronic structure. The low-lying set of states
provide an unusually large number of accessible
experimental data. The observables are quite sensitive
to experimentally accessible changes in the local
environment. Since theories of the observables are

*Present address: Institut de Chimie, Strasbourg, France.

primarily associated with a small set of the electrons of
the cluster, their successes and deficiencies can be
assessed more readily than theories of grossly averaged
observables such as molecular polarizability. In partic-
ular, transferred hyperine interactions measure co-
valent electron transfer almost directly.

Such clusters are intrinsically interesting because of
the large practical and theoretical importance of
magnetic-impurity eBects in crystals. They may also
be considered the "monomers" for extensively studied
ferromagnetic and antiferromagnetic lattices. Following
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the initial successes of crystal-field theory and para-
metric ligand-field theory, attention has been focused on
ab initio calculations of the ligand-field parameters. By
now, it is accepted that simplified theories of the
electronic interactions are qualitatively correct but not
adequate. Minor improvements in theory have been
known to result in poorer agreement with experiment.
Orbital overlap and covalency significantly affect most
observables for transition metal complexes. Since
theories of superexchange invariably involve estimates
of unpaired electron density on bridging anions between
interacting cations, it is important that covalent
behavior be understood better.

Partly for historical reasons, the nickel hexafiuoride
molecule-ion cluster NiF6' has become the prototype
for theoretical studies of the bonding in this class of
systems. It was one of the earliest for which a fairly
complete assignment of the optical d ~ d transitions
was available, ' and for which the transferred hyperfine
interactions were fully analyzed. ' The ground state and
two of the first three excited states can be represented
formally by single-determinant wave functions, so that
some trivial but tedious ligand-field algebra can be
avoided. A pioneering attempt' to account for the
observed parameters with the theory of linear combina-
tion of atomic orbitals (LCAO) of covalency accom-
panied the experimental observations. It was subse-
quently much criticized in several attempts' ' to remove
the most questionable approximations. In the earliest
work on first-principles description of transition-metal
ligand clusters, the objective was to calculate the cubic
ligand-field splitting 10 Dq. More recently, ' ' more
emphasis has been placed on transferred hyperfine
effects. Relatively little attention has been given to
electron-repulsion contributions to term separations.
Usually spin-orbit coupling and orbital contributions to
gyrornagnetic tensors are not treated, since they may
be regarded as finer effects which cannot be convincingly
addressed until the grosser features are resolved. It is
the objective of this paper to extend these studies by
as complete molecular-orbital calculations as are
presently feasible.

Until now, the extremely large number of electron-
repulsion integrals necessarily involved has precluded
the possibility of even approximate Hartree-Fock self-
consistent-Geld (SCF) calculations. In addition to
direct computational savings, minimal-basis-set estima-
tions are organizationally much simplified. For all

symmetries with only doubly occupied orbitals, orbital

~ K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130,
312 (1963).' R. G. Shulman and S. Sugano, Phys. Rev. 130, 506 (1963).' S. Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963).' R. K. Watson and A. J.Freeman, Phys. Rev. 134, 1526 (1964).' E. Simanek and Z. Sroubek, Phys. Status Solidi 4, 251 (1964).

S. Sugano and Y.Tanabe, J.Phys. Soc. Japan 20, 1155 (1965).
7 J. Hubbard, D. E. Rimmer, and F. R. A. Hopgood, Proc.

-ys. Soc. (London) 88, 13 (1966).
P. O. Oftenhartz, J. Chem. Phys. 47, 2951 (196'7).
This is reviewed by Shulman and Sugano (Ref, 3).

transformations exist so that it is correct to calculate on
the assumption of complete ionicity, if overlap eRects
are correctly accounted for." Since overlaps between
orbitals on different ligands are very small, they are
ignored and localized orbitals, taken as the free-ion
orbitals, may be substituted for cumbersome symmetry
orbitals. Independent of the choice between a molecular-
orbital or a Heitler-London (HL) approach, the formal
expression for the conventional covalency parameter
appears as a perturbation-type formula

(y fh[x) —s„„(x[hix)

(&I hI &) —(v I hI v )

where 5« is the overlap integral between the central-ion
d orbital P, and a symmetrized ligand orbital X, and
where h is some effective Hamiltonian. The problem
reduces to choosing suitable orbitals and a suitable
effective Hamiltonian. The result is particularly sensi-
tive to the denominator of Eq. (1), which may be
interpreted as the excitation energy from a central-ion
orbital to a ligand orbital. Quite commonly, an ionic
Hamiltonian, which is viewed as the starting point of
an iterative seH-consistent calculation, is employed.
Watson and Freeman suggest in their analysis that "a
proper evaluation of covalent effects cannot be had
without inclusion of the overlap and covalent terms in
the Hamiltonian. "4 The issue is as much one of the
p/ausibility as the correctness of calculated results. To
advance beyond first-order theories by the previous
methods' ' would require an inordinate effort in the
evaluation of matrix elements, not only because of their
increased number, but because of severe numerical
differencing. Even the calculations with zeroth-order
Hamiltonians and minimal basis sets become quite
complicated, so that the influences of the many interac-
tions are dificult to trace. The approximations and
assumptions made are generally plausible and reason-
able. Nevertheless, it becomes obscure to what extent
the failure or success of such calculations to account for
the observed properties should be attributed to the
electronic-structure models adopted or to numerical
deficiencies introduced by specific secondary assump-
tions. With Hartree-Fock SCF calculations we are
able both to evaluate all matrix elements exactly
(within the accuracy implied by computer round-off
errors) and to maintain a simple enough model so that
its limitations can be readily analyzed. Since it has been
indicated that configuration interaction cannot be
ignored, ~ the present calculations might be considered a
precursor for Cl calculations including all integrals.

' Commonly such overlaps are tacitly ignored when a core-
potential assumption is made. Watson and Freeman (Ref. 4)
comment upon this approximation in some detail. For the atomic
SCF solutions quoted below, the overlap between the Ni~ 3s
function and the po. (a&g) symmetry orbital on the Quorides is
0.13—hardly negligible. That between per orbitals on adjacent
ligands is about 0.06.
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The NiF6' cluster has 86 electrons. An SCF calcula-
tion that approaches the Hartree-Fock limit would at
the moment be unreasonably costly. For a Gaussian-
type atomic-orbital basis, such a calculation would
involve at least (4X10s) repulsion integrals. While
this is probably feasible, it is an order of magnitude
larger than any single computation attempted in this
laboratory to date. With our limited information about
the probability of significant undetected arithmetic
errors in 10" computer operations, the risk of an
erroneous calculation presently seems too large. It was
thought that a limited calculation, with (3X10r)
repulsion integrals could be used to isolate some physical
trends and prepare the way for more elaborate future
calculations. It will be shown that a basis of this size, if
carefully chosen, can test several typical assumptions
involved in "chemical" reasoning and in the validity
of minimal-basis-set calculations. Since less complete
calculations than that reported in this paper will
continue to be valuable in the future, whatever trends
one can isolate may be of use in them and in qualitative
descriptions of paramagnetic clusters.

In this spirit, some points of inquiry are as
follows:

1. On the assumption that I.CAO theory with
minimal basis sets can provide an adequate qualitative
description, how do the atomic orbitals best suited for
such a description differ from free-ion orbitalsP Expan-
sion or contraction of the metal ion-radial functions has
been discussed, " but not settled. Experimental
evidence from term splittings, hyperfine interactions,
and neutron-diffraction form factors show only that a
simple scale change, without shape modification, is
unlikely.

2. It is well known that the Slater-Racah electron-
repulsion parameters 8 and C required to fit the optical
energy-level spacings are smaller for transition metal
ions in molecular clusters than they are for the free
ions. We do not anticipate that for the type of calcula-
tion reported we will obtain values which compare well
with experimental values. '2 However, comparison with
free-ion Hartree-Fock calculations with the atomic-
orbital basis corresponding to the cluster calculation
might be expected so show repulsion reduction, which
is associated with electron delocalization.

3. After several other contributions" are included,
the isotropic part of the hyperfine interactions is pro-
portional to the product of the fractional unpaired spin
density f, in a 2s orbital at the F site and the proba-
bility density t 3(r)$&, of the 2s orbital at that nucleus.
Similarly, the anisotropic part f f, involves the-
expectation of another singular operator (r ')so. Gen-
erally, these singular operators are estimated from

"W. Marshall and R. Stuart, Phys. Rev. 123, 2048 (1961).
"Hartree-Fock calculations by R. E. Watson /Phys. Rev. 118,

1036 (1960); 119,1934 (1960)g for free transition-metal ions yield
term splittings much larger than those observed. The discrepancy
ip ascribed t:o correlation cQ'ects.

free-ion wave functions. To what extent should molec-
ular estimates be changed) Of course, eventually it is
desirable to evaluate all matrix elements of these
operators within the cluster for accuracy. However,
at the moment, the orbital basis is not extensive enough
to expect much success with this procedure, and
computer programs are not available to accomplish
lt.

4. How good is the assumption that d+—d optical
spectra may be estimated without reference to the
crystal lattice beyond the nearest neighbors of the
central ion? Certainly EPR spectra are sensitive to
charge compensation in next-nearest-neighbor sites.

MOLECULAR-ORBITAL FORMALISM

'In the KNiF3 lattice, the Ni++ ion lies at the center
of an octahedron of F ions (Fig. 1). The nuclear
separation R is 20.07 nm. "The next shell of ions consist
of eight K+ ions located at the coordinates (&R, +R,
&R), six Ni++ ions at (&R, 0, 0) and the permutations
of this coordinate triple, and 24 F ions located at the
permutations of the triple (&R, R, 0). Below, we report
two SCF calculations: In that for the "unadorned
cluster" the NiF6' is treated without reference to the
host lattice; in the adorned-cluster calculation, the
next shell is represented by point charges at the nuclear
sites."Such representation is subject to the same type
of criticisms as those directed at point-charge crystal-
field theory. Clearly, if superexchange phenomena are
of interest its adequacy must be examined. In the
present case, since covalency is itself small, inaccuracy
in the second shell should be unimportant. Furthermore,
the assumption was self-checking; we found that
inclusion of the second shell made only insignificant
changes.

All the states of interest are derived from states of
the free Ni++ ion belonging to the d' configuration. It is
convenient to make the formal description in terms of a
d'-hole configuration. "Transitions are observed' from
the ground 'A~, state to the 'T~, state, to both 'T~,
states and to the lowest 'E, and 'T~, states of this
configuration. The spectrum is fairly well described by
three parameters, the cubic crystal-field splitting 10
Dq, and the Slater-Racah parameters 8 and C. For
comparison with experiment, hopefully enough states
to estimate these parameters will be calculated. Now,
the SCF procedure implemented in zero?."is applicable
only to systems for which the total energy may be

"A. Okazaki and Y. Suemene, J. Phys. Soc. Japan 16, 671
(1961).

"To represent more of the crystal in this fashion would exceed
the present limitation of the molecular-orbital computer program
to 50 nuclear centers."J.S. GrifEth, The Theory of Trasssitiors Metal Torse (Cambridge
University Press, London, 1964), p. 2451F."E.Clementi and D. R. Davis, . Comput. Phys. 2, 223 (195/);
A. Veillard, IBM Technical Report, 1968 (unpublished; available
upon request).
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written'~

E=Z» K"+Z Z»P'„(&~,A'.„—P~,&~;,„), (2)

where not more than one open shell of any symmetry
occurs. This expression is biquadratic in the expansion
coeKcients of the molecular orbitals in terms of sym-
metrized basis orbitals. The only energy minimization

permitted is by variation of the expansion coeS.cients
(which are implicit in the integrals H, J, and E).
Within the d2 configuration, only the degenerate states
'A2„'T2„and 'T&g arise once and once only. For each
of these, it is possible to choose a state that may be
written as a single determinant, from which the
occupation numbers and the vector coupling coeKcients
are easily evaluated. For the other states, which in
ligand-field theory require a diagonalization for deter-
mination of the energy, a parameter-free energy
expression cannot be written. However, it is possible to
calculate for a single-determinant state which is not an
eigenstate of the octahedral Hamiltonian. If the state is
"close" to an eigenstate, then the molecular orbitals
derived will be insignificantly distorted from those of
the eigenstate, and Racah parameters may be estimated.
For the comparison with experiment, we have used"

E('T2g) —E ('A 20) = 10Dq,
E('Tg )—E('T2g) =12B+2C, (3)

E('Tggte) —E('T,g) = 128.

Represented as determinants of holes in complete shells,
the corresponding wave functions, for which vector-
coupling coeflicients are easily written, are

[ One[
[eni'nf

Q Q

].ng n[.
For the concomitant atomic calculations, the compar-

ison with experiment can be made with

E('G) —E('F)=12B+2C,
F('Tgate) —E('F)= 128.

Here the cluster state denoted in Eq. (4) by 'T&,te has
80% 3P character and 20% 'F character. Although for
the free ion there is no diKculty in calculating the 'P
state directly, we have chosen to use the same state for
homogeneity in comparison with the cluster calculation.

In the extraction of covalency estimates from our
wave functions, the argument of Watson and Feeeman4
as to the distinction between antibonding electrons and
unpaired bonding electrons is irrelevent, since we

"Here h and p denote symmetry classi6cations. The integrals
H, J, and X are the usual one-electron, Coulomb, and exchange
contributions evaluated on molecular orbitals i and j.Each vector
coupling coefficients uz„or bz„is unity if either )i or pj refers to a
doubly occupied orbital. Ez; is the orbital occupation number."See Ref. 15, p. 410.

constrain the wave function to strict spin pairing. It is
also pertinent to note that the concept of bonding-
antibonding pairing begins to lose its relevance as the
basis set becomes larger than minimal. The point may
be otherwise demonstrated by noting that in a spin-
pairing wave function, the algebraic form of the
unpaired-antibonding orbitals is identical to that of
their unoccupied counterparts, in terms of which
covalency may validly be estimated. 4 It may, of course,
be better to remove the spin-pairing constraint. The
arguments in favor of unrestricted Hartree-Fock theory
are well known. This alternative was not presently
available, so that such a calculation has been deferred.

BASIS FUNCTIONS

As has already been mentioned, a major concern in
the present calculation was the selection of a set of
basis orbitals Qexible enough to provide preliminary
illumination of some of the questions posed, but not so
large that unreasonable costs were incurred. To
approach the SCF energy limit with Gaussian orbitals
would require at least a (13s, 9p, 4d) basis to represent
the nickel ion and a (10s, 6P) basis for each fluorine ion
(232 orbitals and 3.6)&10' integrals). Instead, the
limited calculation undertaken has (8s, 4p, 3d) and
(6s, 3p) bases (128 orbitals and 3&&10~ integrals). In
calculations of this magnitude, one should also consider
cumulation of round-oG errors. The internal arithmetic
of each integral has been calculated with double pre-
cision, so that an accuracy of 10 ' a.u. is attained.
Numerical experiments with long lists of integrals have
shown us that the correct SCF energies are attained if
the accuracy on the integrals is greater than 10 ' a.u.
This insures that the results reported here are significant.

It is common knowledge that Gaussian orbitals,
particularly s-type ones, are ill adapted to representa-
tion of orbital singularities near their nuclear center.
This difliculty may be overcome by including in the set
many basis orbitals with large orbital exponents. We
have made no attempt in this direction, but in fact
somewhat deemphasized accuracy near the nucleus in
favor of accuracy near the "bonding region" of the
function. Details of the optimization of the atomic
Gaussian basis appear in Appendix 8, together with
the wave functions.

The approach has several possible adverse con-
sequences:

1. Total energies do not approach Hartree-Fock
limits, nor is the virial theorem accurately satisfied. It
is hoped that the present results are insensitive to these
difhculties, since only small redistributions of probabil-
ity of the electron density differentiate the excited
states of interest.

2. The present calculations cannot be used to
estimate orbital expectations (8(r)) and (r '). It will be
necessary to adopt the usual stratagem of estimation of
these integrals from separate atomic SCF calculations.
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TABLE I. Contracted SCF calculation for Ni++(sF).

Basis functions' (normalized)

S=0.06803si+0.32505sg+0.49577$3+0.25450$4
S'=s5
S"=sgS"'=0.61649$7+0.42625ss
2'=0.34953pg+0.77191pg
P'=p'

gtf p
D =0.34340dg+0.80073'
D'=d3

389

1$
—306.1102

0.99834
0.00267
0.00241—0.00103

2$
—38.3952
—0.44570

0.77278
0.41656—0.05457

Orbital energies and eigenvectors

3$ 2P
—5.5248 —33.2340

0.17665 0.94038—0.48270 0.14148—0.55133 —0.03047
1.45175

3P
—3.8929
—0.37185

0.45502
0.65706

3d
—1.3421

0.71880
0.46820

a Subscripts refer to Gaussian orbital numbers in Table X.

This is implicit if we accept as "experimental" data the
conventional covalency parameters, since the experi-
Inents measure normalized products of these singular
operators with the covalency parameter (if one has
accepted a LCAO picture).

3. The most troublesome difhculty is that single-
electron atomic-orbital energies may be inaccurate. In
perturbation theories of covalency (see above) such
orbital energies have a first-order eGect. One may hope
that, if the inaccuracies of the Ni++ atomic orbitals are
similar to those for F, this problem will be minimized.
However, this happy possibility is unlikely, because d
orbitals are less sensitive to this source of error than p
or s orbitals.

The computational time required for the transforma-
tion to symmetry orbitals increases at least linearly with
the length of the integral list and at least linearly with
the length of the, [transformed-integral list. Much
economy is possible by replacing the individual Gaus-
sians in the orbital lists with appropriate linear combina-
tions of Gaussians, called "contracted" Gaussians. "If
the contraction coefficients are carefully chosen, the set
of contracted orbitals can be abnost as good as the

original set of Gaussians as a basis for the atomic SCF
computation, even though there are fewer degrees of
freedom. A method for choosing contractions suggests
itself naturaIly. Because of orthogonality constraints,
certain ratios of expansion coefBcients in the atomic
wavefunctions are similar. For instance, in the F
function in Appendix B, the ratio of the first two
coeQicients in the 1s function is 3.96; for the 2s function
the corresponding ratio is 4.3'7. These functions con-
tribute much more to the 1s orbital than to the 2s
orbital, so that the former ratio is adopted. The
contracted functions used, and the atomic ground-state
wave functions on these bases, are presented for Ni++
in Table I and F in Table II. Besides the economy of
transformation on contracted orbitals, their advantages
over direct use of Gaussian orbitals are that 2&(10'
integrals can be stored on a single reel of magnetic tape
but 3)& 10~ cannot, and that final qualitative interpreta-
tion of the wave functions is far more readily performed.

In Table III there are listed, for comparison with
Hartree-Fock limit calculations, orbital and total
energies for contracted and uncontracted bases used in

ALE III. Atomic-orbital energies.

Basis functions' (normalized)

S=0.21665si+0.85761s2
S'=0.79983s3+0.28201s4S"=0.58568s5+0.48031se
P=0.21865pg+0.54245P2+0.50526ps

Orbital energies and eigenvectors

2$
—1.0992
—0.12582—0.24807

1.09032

1$
—25.7625

0.50255
0.61980—0.06502

2P
—0.17351

1.0

Tmr.E II. Contracted SCF calculation for F .

1$
2$
2P
3$
3P
3d

Total Z

1$
2$
2P

Total 8

Hartree-Fock
limit'

—306.3316—38.6182—33.6460—5.5854—3.9873—1.4177
—1506.0286

—25.8294—1.0744—0.1808
—99.4594

"Uncontracted"
Ni~('F)
—306.2291—39.0190—33.1988—5.6557—3.8888—1.3360

—1494.5022

F ('S)
—25.7157—1.0925—0.1557
—98.5884

"Contracted"

—306.1102—38.3952—33.2340—5.5248—3.8929—1.3421
—1492.9448

—25.7625—1.0992—0.1735
—98.5219

& Subscripts refer to Gaussian orbital numbers in Table XI.
"E Clementi, Che. m. Rev. 68, 341 (1968). a Hartree-Fock limit from Ref. 25.
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TABLE V. SCF energies (in a.u.).

Ni+++6F Cluster
NiF64

Adorned cluster

—2084.0659

3Tg (te) —2083.9947
'G —2083.9489

'A gg
—2084.4339

3T,g —2084.4117
'T~, (te) —2084.3418
'Tg —2084.2970

—2093.1803—2093.1590—2093.0890—2093.0441

FrG. 1. NiF6' cluster showing numbering scheme.

TABLE IV. Symmetry orbitals.

Degrees Number
Symmetry of of basis

type freedom functions Orbitals

this calculation. It is seen that the quality of the solu-
tions for the two ions as measured by the relative errors
in the total energy is uniform, and that contraction has
relatively little effect on the total energies. The orbital
energies are quite close to those of the Hartree-Fock
limits. In particular, the excitation from a free-ion Ni++
d orbital to a F p orbital is only 7% diferent from the
Hartree-Fock limit result. This excitation represents the
Koopman's theorem energy for the process Ni++F
Ni+F in the limit of in6nite internuclear separation.

Thus it does not seem that limitation of the basis set
will seriously affect the covalency estimate through the
mechanism of orbital energy inaccuracy.

Prior to the SCF calculation, symmetry orbitals must
be constructed as the basis for a representation of the
octahedral group. These are indicated in Table IV,
which is supplemented by Fig. 1 to indicate the number-
ing and axis system. The phases of the ligand functions
have been chosen so that overlaps with the central-ion
orbitals are all positive. In Table IV, the degrees of
freedom give the difference between the number of
basis orbitals and the number of occupied orbitals in
the ground state. Since the d ~ d transitions move
electrons from filled to half-6lled orbitals, the number
of degrees of freedom does not change for excited states.
Except for the nonbonding orbitals, we have arranged
that each symmetry type has at least one degree of
freedom. Clearly, it is only appropriate to make as
many deductions about the functions as there are
degrees of freedom.

RESULTS

ego

epc

t&„y

ty&Z

tying

t2~x
t~~y
t2„Z

Sg+S2+Sg+S4+S;+S6
Sp—Zg+Z6 —Xj+X2—F3+Y4

2S5+2S6—Sy —Sg—Sa—S4—2zg+2Z6+Xg —Xg+ Yg —F4
i2z' —x'—Hl p

Sy+Sp —S3—S4—Xg+X2+F3—F4
(xm —F ).
zl —z4+ F5—F6
(Fz},
X5—X6+Zg —Zp
(xz),
X3—X4—Fg+ F2
(XF)p

Si—S~—Xg —Xg
Xe+X4+Xg+X6
Xp
S3—S4—F3—F4
Fg+ F2+Fg+ F6
Fp
S5—S6

Z5 Z6
Zg+Z2+Za+Z4
ZQ
—Y5—Z4+ Ye+Z3
X~—Zg —Xp+Z2
Fg —X3—Fg+X4—X3—X4+Xg+X6—-F~—F2+F5+F6

zg Zg+Z3+Z4

TABLE VI. Comparison with experiment.

Cluster
NiF64

Adorned cluster Expt. (Ref. 2)

10Dq 4870 cm '
1280
4910

1300
5020

4670 cm '
1280
5040

Qj++

7250 cm '
955

4234

1030
4850

The total energy calculations, given in Table V, are
analyzed into the ligand-field parameters in Table VI.
10 Dq, although of the correct sign, is —', too small. As is
found for SCF calculations of free ions, the repulsion
integrals 8 and C are too large for all of the calculations.
The larger part of the error may be ascribed to correla-
tion effects. The experimental trend, that the repulsion
should be decreased in the cluster system over that of
the free ion, is not refIected in our SCF calculations.
This suggests that the calculated d functions are insuK-
ciently delocalized. Inclusion of effects from the next
shell of ions slightly decreases the crystal-field splitting.

The expansion coefIicients for the wave functions are
reported in Table VII. Orbitals belonging to degenerate
rows of irreducible representations are omitted. In-
cluded on the right for convenience are indications of
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TABLE VII. 3A2g wave functions for NiFg4 .

Symmetry

Clg
+lg
Big
~1p
+lp
Sip
e,
eg
ep

e,
g2p

~le
~1u

~lgg

Ag
g2

0.00004
0.50257—0.00034—0.12480
0.00901
0.50243—0.12601
0.00022
0.00941
0.85647—0.51922

0.50252
0.00156—0.12570
0.00439—0.00304
1.0
1.0

—0.00035
0.61956—0.00114—0.24661
0.01723
0.62034-0.24857
0.00021
0.01728
0.33593
0.62745—0.00028
0.61986
0.00418—0.24808
0.00832—0.00595

0.00060—0.06473
0.00437
1.08778—0.08031—0.06605
1.08977
0.00023—0.08016
0.22474
0.42258
0.00046—0.00651—0.01690
1.08988—0.03845
0.02826

0.99835—0.44567—0.00011
0.17653—0.00493—0.01573—0.0023"'
0.01484
0.98590—0.19493

0.00121—0.00024—0.02384
0.01717
0.82259
0.57513

Orbital
5

0.00267
0.77256
0.00073—0.48234—0.01449
0.04469—0.00185
0.01089
0.05939
0.72910

0.00029
0.00157—0.00635
0.00738
0.52172—0.85614

0.00242
0.41720—0.00237-0.55086
0.01401
0.06280
0.00615
0.00882
0.04562
0.46019

0.94035
0.00033
0.37109
0.01241
0.02816
0.00873

—0.00104—0.05527
0.00263
1.45025—0.04586—0.1894/

0.14163—0.00121—0.45383—0.01779—0.04053-0.11682

0.00004
0.00242
0.00196
0.00739
0.03208
1.00847

—0.03067
0.00202—0.65560—0.02001—0.05697-0.02130

Classi6cation¹i1s
Ni 2s
F 1s¹i3s
F 2s
F po.
F)s
F 2s
F po.¹id

bonding
antibonding

Ni 2p
F 1s
Ni 2p
F 2s
F po'
F pm

the primary atomic-orbital contributions. In the inter-
pretation of these wave functions, it must not be
overlooked that linear normalized transformations of
doubly occupied orbitals do not change the wave
function. Within a symmetry type, such rearrangement
does not introduce any extra expansion coefficients.
Thus, the po. contribution in the tabulated t~ (Fg,) or-
bital can be eliminated; t&„(F„,) and t~„(F„,) can be
rearranged to separate the 0. and x orbitals. It can be
shown that when orbitals of diGerent syDUnetries are
also combined, the wave functions can be written in
terms of localized orbitals which are the atomic orbitals.
Only small nonlocal contributions enter. These can be
interpreted largely as orthogonality contributions. In
particular, the doubly occupied t2, orbitals may be
written as entirely localized and nonbonding functions.

It is appropriate to comment on the wave functions
within the degrees of freedom permitted. The com-
mentary is made by direct examination of the functions.

1. u&, .The Ni++ orbitals are not significantly changed
from those of the free ion. Except for orthogonality
contributions, the fluoride po orbitals do not bond.

2. e,. For comparison with the observed superhyper-
Qne interaction, half-Glled orbitals may be written
approximately as

q,—0.195',—0.079x, .

Here y, is the Ni++ d orbital, X. is the symmetrized F
po orbital, and x, the symrnetrized F 2s orbital. The
overlap and covalency contributions almost cancel,
so that the function (6) is normalized when g, is the
normalized d orbital. Thus the two calculated spin
densities

f,'= 1.26'Po and f;=0.18% (7)

are both about three times smaller than the values
reported by Shulman and Sugano. ' The d-orbital contri-

bution to the e, orbital is slightly contracted from the
corresponding free-ion orbital.

3. t2, . In these orbitals, the d-orbital contribution is
slightly expanded from the corresponding free-ion
orbital.

4. ti„.The two degrees of freedom for this symmetry
may be expended in the comments that neither the
Ni 3p orbital nor the symmetrized F 2s orbital is
significantly changed from that in the free ion.

For the 'T2, state, the closed-shell wave functions are
not very di8erent from those of the ground state, and
are therefore not tabulated. The half-611ed orbitals are

e,0=0.0094(2Sg+25g —Sq —So 53 S4)
+0.0173(25g'+25g' —Sg S2 Sg' —S4')
—0.0801 (2Sg "+2Sg"—Sg"—Sg"—Sg"—S4")
—0.1951(—2Ze —2Zg+Xl —Xg—Fg+ F4)

+0.7288 (2Z' —X'—Y')o

+0.4606(2Z"—X")o (8)

tool'(2) = —0.0925(Xg—X4—Yg+ F2)
+0.7208(XY)o+0.4666(X&)o' (9)

In both open orbitals, the d function is slightly con-
tracted from the free-ion function. For the closed
orbitals, the d function is slightly expanded. The
occupation of the ps orbital in tool'(2) is more nearly
similar to that of the ligand s orbital in e,8(2) than of
the po orbital.

Inspection of the orbitals of the 'Tj, and 'T», state
confirms the trends already indicated. For open shells,
the d function is slightly contracted; for closed shells,
slightly expanded from the free-ion functions. The open-
shell wave functions are substantially similar to those
given. Inspection of the adorned-cluster wave functions
does not reveal signidcant changes in the wave functions
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Ter.E VIII. Gross atomic populations.

T2p

Tlp

¹i
Fi, F2
F3, F4
FS, F6

Ni
F1, F2
F3, F4
FS, F6

Ni
Fi) F2
F3, F4
F5, F6

Ni
Fi, F2
F3, F4
FS, F6

6.0000
3.9995
3.9995
3.9995

6.0000
3.9998
3.9998
3.9995

6.0000
3.9996
3.9996
4.0000

6.0001
3.9995
3.9995]
4.0000

4.0003
1.9937
2.0000
2.0000

4.0001
1.9984
1.9990
2.0000

4.0001
1.9943
1.9988
2.0000

4.0001
1.9936
1.9987
2.0000

Pv

4.0001
2.0000
1.9937
2.0000

4.0001
1.9990
1.9984
2.0000

4.0001
1.9988
1.9943
2.0000

4.0001
1.9987
1.9936
2.0000

Pz

4.0001
2.0000
2.0000
1.9937

4.0001
2.0000
2.0000
1.9937

4.0000
2.0000
2.0000
2.0000

4.0000
2.0000
2.0000
2.0001

4s =dye

0.6803

1.1701

0.8455

0.8470

0.6802

0.6803

i.3331

1.3331

1.9999

1.0040

1.0048

1.0053

Az= dyz

1.9999

1.9999

1.9998

1.9998

Total

26.04
9.99
9.99
9.99

26.02
9.99
9.99
9 99

26.02
9 99
9.99

10.00

26.03
9.99
9.99

10.00

where r is an atom and X~„ is the kth atomic orbital
associated with that atom, the partial gross atomic
population of this kth orbital on the atom r is de6ned as

E(k„)=Q X(i,k„),

where E(i,k,) is the contribution to 1V(k„) from the ith
occupied molecular orbital, and is dered as

X(i,k,) =E;(C;s, + Q C;I,„C;4Ss„4). (12)

The gross atomic population of atom r is the sum of all
the E(k,) for all the orbitals belonging to the atom r.
Another useful measure is the partitioning of the gross
atomic population according to the type of the basis
functions (s, p„p„,p„etc.).

ALE IX. Relative populations of inner d orbitals to outer
d orbitals. g =Population entirely derived from half-filled molec-
ular orbitals. *=Population derived partly from filled, partly
from half-filled molecular orbitals.

3A 2g

T2p
Tlg
T1g

Ni~('A so)
Ni~(IT„}
Ni~ ('Tg~)

~1.929
*1.867
*1.916
*1.884
g1.926
*1.897
~1.869

g1.929
~1.926
1.831
1.835

qi.926
1.767
1.869

1.778
~1.863.*1.923
~~1.869
1.822

~1.991
*1.936

1.778
1.775
1.750
1,755
1.822
1.799
1.805

~ R. S. Mullikeu, J. Chem. Phys 23, 18.33 (1955).

compared to those indicated for the bare cluster in
Table VII and Eqs. (8) and (9).

For an easier understanding of the electron distribu-
tion, we can now turn to Mulliken's population anal-
ysis. 's Given a molecular orbital f; occupied by N;
electrons

(10)

We report in Table VIII the gross atomic population
for each center, together with its partitioning according
to the type of basis function. The numerical results are
given to five signi6cant figures, corresponding to the
accuracy of the population-analysis calculation. Usually
the trend of a change, for instance, from one state to
another, will be given by the fourth significant 6gure.
It should be emphasized that such small changes are
meaningful only on a relative basis. Absolute meaning
should not be attached to the four or 6ve 6gures because
of the approximate nature of our wave function and
because of some arbitrariness in the way the population
analysis distributes the electrons between the atoms.

Before more extensive commentary, the results which
are given in Table VIII deserve two more explanations.
First, one will notice that the populations are given for
the six types of d functions d, , d,„,d„, d», d„„and d„
because the population analysis is performed on the
basis functions, not on the symmetry-adapted functions.
Second, the six Quorine atoms are no longer strictly
equivalent for the 'T2„'Ti„and 'T~, states. This is
because we have calculated one state of a degenerate
triplet in each case. There is no requirement that
these states have the full symmetry of the Hamiltonian.

The most striking result is that the total population
for each atom is very close to that for the free ion. For
instance, in the 'As, state, the net charge is +1.9594 on
the nickel atom and —0.9932 on each fluorine. This
indicates a small amount of electron transfer from the
Quorine ion to the nickel ion. Note that most of the
charge transferred (and even the totality for the 'A»
state) comes from the 2po orbital of the fluorine.

A more detailed analysis of the d-orbital populations
is reported in Table IX for the cluster states as well as
for the corresponding states of the ¹i++free ion. Here
are given the ratios of the populations of the portions
of the d orbitals closer to the nucleus to those of the
expanded portions (the sum of these parts occurs in



HARTREE —FOCK THEORY OF NiFg' 393

Table VIII). Ratios for orbitals from which the popula-
tion is entirely derived from half-61led molecular
orbitals are marked *; those derived partly from filled
and partly from half-6lled molecular orbitals are
marked *.The numbers may be compared with 1.847,
the corresponding ratio for the ground state of Ni++,
which was calculated under the constraint that all d
orbitals have the same radial dependence. Examination
of this table con6rms the observation made by direct
inspection of the wave functions. There is a tendency
for half-6lled orbitals to be somewhat contracted, and
for doubly 61led orbitals to be somewhat expanded,
rel.ative to the free ion. All changes are small.

COMMENTARY

The major indications of our calculation are the
following:

(i) If a point-charge representation of the crystal
outside the cluster is plausible, the calculations show
that only small errors are made in the vacuum-cluster
approximation and that it is primarily 10 I'q that is
affected. However, it is so easy to include a point-charge
model that we see little reason to continue with the
vacuum approximation for calculations avoiding drastic
approximations in the integrals.

(ii) It seems that d orbitals from free-ion calculations
are not much distorted in the cluster. There is a slight
tendency for half-6lled orbitals to be somewhat con-
tracted, and doubly filled ones somewhat expanded.
This may be an artifact of the constraint to identical
radial behavior of all d orbitals in the atomic calculation.
Uniform expansion of d functions required by Marshall
and Stuart" to account for neutron form factors, is
not confirmed.

(iii) There is very little difference between corre-
sponding orbitals for different multielectron states,
apart from the eGect of orbital 6lling already noted.

(iv) The reported calculations do not reflect reduc-
tion of repulsive term splittings. This may be associated
with unchanged d-orbital radii and insufhcient co-
valency in the wave function. Such an association
should be partially con6rmed by a calculation with an
extended basis (see above). Alternatively, one must
suppose that there are appropriate changes from state
to state in the correlation energy.

(v) The calculated ligand-Geld splitting, 4670 cm ',
for the adorned cluster is 35% too small. Since the wave
functions hardly change when the point-charge shells
representing the crystal are added, it is reasonable to
say that the Madelung potential is an additive contribu-
tion of about —200 cm ' to 10 Dq. Then our result
may be compared to corrected estimates for the LCAO-
molecular orbital method, ' 2600 cm ', and the HL
method, ~ 5200 cm '. If one accepts the Hamiltonian
approximations of Hubbard et al. , this indicatesthat
there is little to choose between a SCF and a HL method
of estimating 10Dq. However, it seems a more likely

extrapolation that correct evaluation of the Hamil-
tonian combined with interaction with a few con6gura-
tions is necessary for accurate evaluation of j.ODq. In
any case, the implication drawn by Hubbard et ul. ,
that their low estimate of 10Dq is related to under-
estimated covalency, does not seem tenable.

(vi) The t&, orbital of the excited state LEq. (9)j
shows that ps bonding is about four times smaller than
po bonding in e, orbitals (measured as

%%uq
fractional

occupation). These calculations support the notion
that covalency tends to be proportional to the square of
the corresponding overlap integral. (The d-ligand over-
lap of the e, orbital in Eq. (9) is 0.106; for the ts, orbital
it is 0.053.j In the ground state of Ni++ clusters, only 0.

and s bonding are important; for Mn++ clusters, only
m bonding is important. However, all three types of
bond contribute for the ground state of Co++ and in
low enough symmetry environments can be separated. "
This experiment supports a relationship between overlap
and covalency, and suggests that the cancellation of the
anisotropic contributions to MnF64 transferred hyper-
fine structure is a pecularity associated with Mn2+.

There are numerous indications in the literature of a
special role for the d' con6guration. 7 We are considering
a SCF calculation for MnF6 using the integrals for
NiF6' . Although the inner orbitals may not be well
suited to Mn++, the calculation is easy and inexpensive,
and should be qualitatively instructive.

(vii) The SCF covalency estimates are a factor of 3
too small. In contrast, the approximate CI results' tend
to be too large with errors of the same order of magni-
tude. It is unfortunate that HL calculations with all
integrals accurately evaluated do not yet exist for
comparison.

(viii) Because of the severely limited nature of the
basis set employed, no statement can be made about
suitability of free-ion estimates of the singular integrals
(8(r) s,) and (r ')s„. However, now that it is possible to
calculate wave functions with self-consistency of all
electrons, it is time that all contributions to the hyper-
fine splittings be calculated by summation of the
integrals over all orbitals. The tails of the Ni~ and
neighboring F orbitals overlap into the region of the
F nucleus and contribute signi6cantly to the hyperfine
interaction. Direct calculation will be of even more
importance for unrestricted SCF wave functions than
for spin-paired functions. Unfortunately, the simple
connection between covalency and hyper6ne splitting
vanishes in the calculation advocated. Possibly a simple
relationship may be re-established with Mulliken
population analysis.

The reported calculations have been made with
restricted Hartree-Fock theory on a limited basis set.
There are three constraints implied, namely, that
inadequacy of the basis set does not allow sufhcient
freedom of charge motion, that restricted Hartree-Fock

"H. M. Gladney, Phys. Rev. 146, 253 (1966).
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theory does not recognize that exchange forces are
different for spin-up and spin-down electrons, and that
certain types of orbital relaxation accompanying co-
valency can be represented only by admixture of key
configurations. Each of these limitations is potentially
serious and should be further addressed. Unfortunately,
comparison with previous work is only of limited value,
because of the complicated approximations previously
necessary. Comparison by extension seems more
promising. In particular, unrestricted Hartree-Fock
calculations could be made economically using our
integral lists as input, .' Configuration interaction
extensions allowing for the most important relaxations
probably require some supplementation of the basis set.
sBMoL has the capability of extending integral lists
without recalculating values already available. But a
calculation which simply extends the basis and cal.-

culates all the new integrals would be costly. However,
since the excited configurations enter only weakly, one
might contemplate neglecting many of the additional
multicenter integrals, but continue to use all integrals
implied by the ground configuration. At the moment,
we are not planning either extension ourselves, but urge
their consideration.

To increase the size of the calculation by a factor of 5
seems within our capability in the near future. U»-
formly appl. ied, this expansion would permit about 190
Gaussian atomic orbitals (instead of 128) and about 81
"contracted" Gaussians (instead of 59). The number
of symmetry orbitals would be nearly the same as the
number of contracted Gaussians. However, one can
expect that the atomic basis need not be expanded too
much. With an F basis of (8,4) and a Ni++ basis of
(11,6,4), the atomic total energies should be within
about 0.1% of the Hartree-Fock limit (instead of 1%).
For the cluster, this implies 173 Gaussians and 1.1X10
integrals. A major difIiculty with the credibility of the
present calculation is that the orbitals did not have
enough freedom to relax, so that whatever increase
in the contracted-orbital basis can be afforded is de-
sirable. We suggest contracted bases of (3,2) for
the F ions and (5,4,3) for the Ni++ ion, leading
to 89 contracted orbitals (8X10' integrals on tape)
and 86 symmetry orbitals. Then for the symme-

tries a~„e„ t2„ t~„, t2„and t2~ the degrees of freedom

will be 4, 4, 3, 5, 1, and 1, respectively, instead of 2, 2,

1, 2, 0, and 0. Since the inner orbitals do not change for
cluster formation, most of the increased freedom can be
allowed for the strongly overlapped orbitals. We believe

that this size basis will be adequate in that the major
questions will be directed at other features of the
calculation (spin polarization, con figuration inter-

action, estimation of hyperfine interactions from SCF
solutions).

"On request to the authors, either the tape of integrals over
contracted-basis orbitals or that of integrals over symmetry
orbitals will be available for further calculations.
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APPENDIX A: COMPUTATIONS

The calculations reported in this paper were made

primarily with two programs, both of which are well

documented elsewhere. The atomic SCF solutions used

primarily to select basis functions with optimized
orbital exponents were accomplished partly with a
version of the University of Chicago atomic SCF
program adapted for Gaussian orbitals, partly with a
program developed in this laboratory. " The cluster
calculations were performed by iBMoL,"a program for
I,CAO restricted self-consistent field calculations with

a Gaussian atomic-orbital basis and any nuclear

geometry.
The NiF6 cluster calculation differs from most of

the problems for which tBMoL is being used. About half

of the repulsion integrals have one or more d-orbital

factors in the integrand; most of the previous work

required only s and p orbitals. Also, the symmetry

group of the Hamiltonian is larger than has been

common, with the consequence that many symmetry
orbitals are combinations of four or six atomic orbitals,
so that the symmetry transformation may be expected to
become costly. This is offset by the extensive factoring of
the Hamiltonian matrices and the corresponding time
saving in the SCF calculation. One of us (HMG) further

improved the programming of the relevant sections of
IBMoL over what has been previously reported. For
electron-repulsion integrals with d orbitals, direct use of
the general formula given by Wright'4 was abandoned
in favor of partial hand elaboration of the formula into
a series of special cases. Complete elaboration of the
formula, as is employed by IBMOL for integrals with only
s and p functions, seemed inappropriate because of the
very large number of special formulas implied. But
several factorizations, including one corresponding to
three Cartesian axes and one separating the radial
factors from the angular, replace much of the arithmetic

by a series of quickly executed branch points. While

these new formulas were being coded, several efficiencies

were discovered affecting integrals on s and p orbitals
also. The modified integral package, tested on subsets
of orbitals from proposed NiF64 bases, required about
45% of the time previously reported for integrals on a
basis of s, p, and d orbitals.

It is significant that the organization of rBMoL into
independent integrals, symmetry transformation, and
SCF sections makes the calculation of several states on

"S. Huzinaga, J. Chem. Phys. 42, 1293 {i965); B. Roos,
C. Salez, A. Veillard and E. Clementi, IBM Technical Report,
1968 {unpublished; available upon request).

24 J. P. Wright, Quarterly Progress Report, Solid State and
Molecular Theory Group, MIT, No. 50, 1963,p. 35 {unpublished).
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the same basis set not much more time consuming
than the calculation of a single state. Our computations
were performed on an IBM SYS/360, Model 65. In
the integral calculation and symmetry-transformation
sections, for which the machine was limited only by
central processing unit speed, about 17 and 3 h, respec-
tively, were expended. Generation of a supermatrix
tape for each symmetry state calculated required only
negligible expenditure. Each SCF calculation required
about 40 min. No special difficulty was encountered in
the SCF section. Convergence was achieved without
the use of any special extrapolation procedure.

APPENDIX B: ATOMIC HARTREE-FOCK
SOLUTIONS

For the ground state of Ni++, 6rst of all a wave

function with nine s orbitals, 6ve p orbitals, and four d

orbitals, fully optimized as to orbital exponents, was

obtained. Then the s orbital with the largest exponent
and the corresponding p orbital were eliminated, and

the remaining innermost orbitals were reoptimized.
Finally, the number of d orbitals was reduced to three
and the d exponents were optimized without further
adjustment of the s and p exponents. Hopefully, this

TABLE X. SCF wave function of Ni++('F).

Basis functions (Gaussian orbitai exponents)
$ p

1$

—306.2291
0.06793
0.32458
0.49505
0.25413
0.00160
0.00580—0.00453
0.00103

2$

—39.0190
—0.02157—0.11308—0.25653—0.12745

0.81850
0.42515—0.11141
0.02269

3545.32
583.599
171.800
61.4553
16.4320
4.9993
2.6371
0.965939

Orbital energies and

3$
—5.6557

0.00812
0.04341
0.10138
0.05874—0.53625—0.46729
0.86935
0.60108

80.8868
17.9736
3,6472
1.29997

eigenvectors

2p
—33.1988

0.32870
0.72591
0.14141—0.03039

3P
—3.8888
—0.13152—0.28510

0.45290
0.65852

10.872
2.6068
0.65590

38
—1.3360

0.24600
0.57302
0.47111

TAsr.z XI. SCF wave function of F ('S).

$

238.282
39.7169
11.8581
2.2204
1.1534
0.32901

p
5.7863
1.2415
0.24547

Orbital energies and eigenvectors

2$
—1.0925
—0.02553—0.11572—0.20855—0.02078

0.61687
0.50857

1$
—25.7157

0.10816
0.42815
0.51051
0.18391—0.10026
0.01900

2P
—0.1557

0.21864
0.54244
0.50529

Basis functions (Gaussian orbital exponents)

procedure yields, with a limited basis set, an atomic
wave function which is reasonably accurate far from
the nucleus, with good representations of the d orbitals.
Of course, the total energy thus calculated, —1494.502
a.u. , is not optimal for this size basis, and expectations
of operators singular at the nucleus cannot be accurately
calculated with this wave function. For comparison,
the accurate Hartree-Fock energy, —1506.029 a.u. ,
calculated by Clementi" may be cited.

The functions for Ii were similarly treated. The
estimated Hartree-Fock energy, —98.5884, compares
badly with the accurate value, —99.4593. The presence
of six fluoride ions in the cluster necessitated such
drastic curtailment in this preliminary calculation.

The atomic wave functions are reported in Tables X
and XI.

"E.Clementi, IBM J.Res. Develop. Suppl. 9, 1 (1965).


