THE

PHYSICAL REVIEW

 $\mathcal A$ journal of experimental and theoretical physics established by E. L. Nichols in 1893

SECOND SERIES, VOL. 180, No. 2 10 APRIL 1969

Electronic Spectrum and Energy Levels of Gd^{3+} in LaF₃

H. H. CASPERS, S. A. MILLER, AND H. E. RAST

Infrared Division, Corona Laboratories, Naval Weapons Center, Corona, California 91720

AND

J. L. FRv Department of Physics, Louisiana State University, Baton Rouge, Louisiana and Infrared Division, Corona Laboratories, Naval Weapons Center, Corona, California 91720

(Received 21 December 1968)

The optical-absorption and fluorescence spectra of Gd^{a+} in crystals of LaF₃, pure GdF_3 , and mixed crystals of 50% CaF₂: 50% GdF₃ are given. Absorption has been observed in all the states of the ⁶P, ⁶I, and ⁶D multiplets, with the exception of ${}^6D_{1/2}$ state. Fluorescence from the components of the ${}^6P_{7/2}$ state has been observed. A least-squares fit of 14 barycenters, with the inclusion of configuration interactions, gave a mean error of 43 cm⁻¹ between the calculated and experimental barycenters, with the parameter values F_2 = 419.1 cm⁻¹, $F_4 = 56.54$ cm⁻¹, $F_6 = 6.006$ cm⁻¹, $\zeta_{4f} = 1486$ cm⁻¹, and $\alpha = 21.78$ cm⁻¹. With the inclusion of spinother-orbit and spin-spin effects, the mean error was reduced to 32 cm^{-1} . The intermediate-coupling free-ion calculation was carried out assuming nonhydrogenic ratios of the Slater parameters.

INTRODUCTION

'RIVALENT gadolinium belongs to the $4f⁷$ configuration and consists of 119 multiplets which, through the spin-orbit interaction, give rise to 327 SLJ states involving octet, sextet, quartet, and doublet states. According to Hund's rule, the ground state of Gd³⁺ is ${}^8S_{7/2}$, which, being an S state, cannot be split in first order by crystalline fields. From electron spin resonance studies of Gd^{3+} in various salts, 1^{-7} one may conclude that the over-all crystal field splitting of the ground level in zero magnetic Geld is small and of the order of 0.3 cm⁻¹. The fact that ${}^{8}S_{7/2}$ is the ground state, leads one to anticipate that the gadolinium ion has a simpler absorption or fluorescence spectrum than the other trivalent rare earths in that the positions of the

Among the trivalent rare earths, Gd^{3+} is unique in that it possesses distinctive characteristic properties associated with a half-filled shell of equivalent 4f electrons. These distinctive features allow separation of the states of the $f⁷$ configuration into two classes.⁸ The states with seniority $v=7$ or $v=3$ belong to class I, while those with seniority $v=5$ or $v=1$ belong to class II. No matrix elements of the spin-orbit and crystal field interactions exist among states of the same class, whereas the matrix elements of the Coulombic, orbitorbit, and spin-spin interactions are nonvanishing only for states of the same class. The tabulated states' in terms of the Racah quantum numbers $vWSUL$ indicate that the ${}^8S, {}^6D, {}^6G,$ and 6I states belong to class I, while the $\mathfrak{F}, \mathfrak{F},$ and \mathfrak{F} states belong to class II.

Copyright $©$ 1969 by The American Physical Society.

¹ B. Bleaney, R. J. Elliott, H. E. D. Scovil, and R. S. Trenam, Phil. Mag. 42, 1962 (1951).

² B. Bleaney, H. E. D. Scovil, and R. S. Trenam, Proc. Roy.

² B. Bleaney, H. E. D. Scovil, and R. S. Trenam, Proc. Roy.

S

 $*$ D. A. Jones, J. M. Baker, and D. F. D. Pope, Proc. Phys. Soc. (London) 74, 249 (1959).

J. M. Baker and R. S. Rubins, Proc. Phys. Soc. (London) 78, 1353 (1961). ⁷ D. R. Johnston, E. Y. Wong, and O. M. Stafsudd, J. Chem. Phys. 44, 2693 (1966).

observed lines will effectively be an energy level diagram of the ion. Most lines occur in the ultraviolet region, the lowest absorption lines being observed at approximately 3100 A for all salts previously studied. Also, depending on the host lattice, the detection of the excited states around 45 000 cm^{-1} may be hampered by the absorption of the radiation by the host crystal.

⁸ G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943).

⁹ B. G. Wybourne, Spectroscopic Properties of Rare Earth (Wiley-Interscience, Inc., New York, 1965).

¹⁸⁰ 329

The total observed splitting of approximately 1200, 800, and 1300 cm⁻¹, respectively, for the 6P , 6I , and 6D multiplets for Gd^{3+} in crystals of $GdCl_3 \cdot 6H_2O$, $GdBr_3 \cdot 6H_2O$, LaCl₃, and LaF₃ indicates the existence of a strong spin-orbit coupling between states belonging to different classes. Therefore, to obtain accurate spinorbit and Slater parameters for Gd^{3+} which reflect the correct energy and order in which the levels of a multiplet occur, it is desirable to perform the calculation by diagonalizing the Hamiltonian, consisting of the coulombic and spin-orbit interactions including all the states of the $f⁷$ configuration.

During the 1930's, detailed absorption spectra of several gadolinium salts were observed by Freed and Spedding¹⁰ and by Spedding and Nutting.¹¹ Together with the Zeeman study of $GdCl_3 \cdot 6H_2O$ by Spedding,¹² they provided detailed information of the spectra of Gd³⁺. The first assignments were made by Dieke and Leopold¹³ of the levels which belong to the ${}^6P_{7/2}$, ${}^6P_{5/2}$, and $^{6}I_{7/2}$ states for GdCl₃.6H₂O, and by Cook and Dieke¹⁴ of the ${}^6P_{7/2}$, ${}^6P_{5/2}$, and ${}^6P_{3/2}$ states for the crystals of gadolinium acetate $4H_2O$ and $Gd_2(SO_4) \cdot 8H_2O$. The experimentally determined levels of the 6P multiplet formed the basis for several theoretical investigations by Lacroix¹⁵ and by Runciman.¹⁶ In these calculations the 4f wave functions are assumed to be hydrogenic, whereas values for ζ and F_2 were selected either from interpolation between published results for Eu³⁺ and Tb³⁺ or by arbitrarily fixing the ratio of ζ/F_2 . Hellwege, Hüfner, and Schmidt¹⁷ reinvestigated the absorption spectrum of $GdCl_3 \cdot 6H_2O$ and reported on the ${}^6P, {}^6I,$ and 6D multiplets. Using interpolated values for the Slater parameters from the available data from other trivalent lanthanides, and a value of $\zeta=1480$ cm^{-1} , which gave the correct multiplet splitting, Wybourne¹⁸ calculated the spectrum of Gd³⁺. Although the calculated multiplet splittings agreed with the data observed by Hellwege et al.,¹⁷ the positions of the bary centers of the multiplets suggested the coulombic parameters needed further adjustment.

The inclusion of configuration interaction effects, especially for excited-state energy levels, has been shown to reduce significantly the deviations of the calculated barycenters of the multiplets from their experi-

-
-
-
-
-
- 460 (1963). $\frac{18}{18}$ B. G. Wybourne, Phys. Rev. 148, 317 (1966).
	-

mental observed values.¹⁹⁻²⁴ For an f^N configuration, Rajnak and Wybourne25 have shown that this interaction can be represented by an effective operator such that the diagonal matrix elements are given by

$$
\alpha L(L+1) + \beta G(G_2) + \gamma G(R_7)
$$

where α , β , and γ are interaction parameters and the values for $G(G_2)$ and $G(R_7)$ are tabulated. From published analyses of trivalent rare earths including configuration interaction effects, one may conclude that a value of approximately 20 cm^{-1} is well founded for the value of approximately 20 cm⁻¹ is well founded for the parameter α^{26-29} However, no conclusive evidence is available for the magnitude or signs of the parameters β and γ .

Recently, Piksis, Dieke, and Crosswhite²⁸ analyzed the spectrum of $LaCl₃:Gd³⁺$. Their free-ion calculation assumed hydrogenic ratios for the Slater parameters, also $\zeta = 3.60F_2$, and an $\alpha L(L+1)$ configuration interaction term with $\alpha=23$ cm⁻¹.

In an attempt to improve the agreement between experiment and theory, more sophisticated interactions have been considered by Judd and co-workers.²⁹⁻³¹ An examination of the interaction effects of spin-spin (H_{ss}) and spin-other-orbit (H_{so}) on the energy levels of the $f⁷$ -electron configuration, revealed typical shifts of the energy levels of about 10 cm⁻¹ due to H_{ss} and 100 cm⁻¹ due to H_{so} interactions.

In this paper, we report the absorption and fluorescence spectra of Gd^{3+} in LaF_3 at liquid-helium and liquid-nitrogen temperatures in the range from 2000— 3200 A. The intermediate coupling free-ion energy levels have been calculated, including the effects of all the states of $f⁷$ configuration, using 14 experimentally established barycenters which belong to the states of the S , 6P , 6I , and 6D multiplets. Because the observed transitions for Gd³⁺ lie above 32 000 cm⁻¹, it is most likely that the $4f^7$ configuration is perturbed by the $4f^{5}5d^{2}$ configuration. A correction term $\alpha L(L+1)$ has been included in the calculation of the intermediatecoupling energy levels to account for the contribution of the odd-parity configuration. In the least-squares analysis the Slater, spin-orbit, and configuration interaction parameters were assumed to be freely varying.

- 1149 (1959).
²³ J. S. Margolis, J. Chem. Phys. 35, 1367 (1961).
-
- ²⁴ K. Rajnak, J. Opt. Soc. Am. 55, 126 (1965); J. Chem. Phys.
²⁴ K. Rajnak, J. Opt. Soc. Am. 55, 126 (1965); J. Chem. Phys. 43, 847 (1965). "
²⁶ K. Rajnak and B. G. Wybourne, Phys. Rev. 132, 280 (1963).
²⁶ K. Rajnak and W. F. Krupke, J. Chem. Phys. 46, 3532 (1967).
-
- ²⁷ J. L. Fry, H. H. Caspers, H. E. Rast, and S. A. Miller, J. Chem. Phys. 48, 2342 (1968).
- ²⁸ A. H. Piksis, G. H. Dieke, and H. M. Crosswhite, J. Chem.
Phys. 47, 5083 (1967).
- Phys. 47, 5083 (1967).

²⁹ B. R. Judd, H. M. Crosswhite, and H. Crosswhite, Phys. Rev.

169, 130 (1968).

⁸⁰ B. R. Judd, Phys. Rev. 162, 28 (1967).

⁸¹ B. R. Judd, Physica 33, 174 (1967).
	-
-

¹⁰ S. Freed and F. H. Spedding, Phys. Rev. 34, 945 (1929); 38,

^{670 (1931);} J. Am. Chem. Soc. 52, 3747 (1930).

¹¹ F. H. Spedding and G. C. Nutting, J. Am. Chem. Soc. 55,

496 (1933); J. Chem. Phys. 5, 33 (1937).

¹¹ F. H. Spedding, J. Chem. Phys. 1, 144 (1933).

¹² F. H. Speddi

¹⁹ R. E. Trees, Phys. Rev. 83, 756 (1951); 85, 382 (1952); 129,

^{1220 (1963);} J. Opt. Soc. Am. 54, 651 (1964). $^{10.62}$. R. E. Trees and C. K. Jørgensen, Phys. Rev. 123, 1278 (1961). 21 G. Racah, Phys. Rev. 85, 381 (1952). 22 W. A. Runciman and B. G. Wybourne, J. Chem. Phys. 3

Magnetic effects due to $H_{\rm soo}$ and $H_{\rm ss}$ interactions on the spectrum of Gd³⁺ were also investigated.

EXPEMMENTAL PROCEDURE AND RESULTS

Spectra were obtained with single crystals of Gd'+ doped LaF3, pure GdF3, and a mixed crystal containing 50% CaF₂: 50% GdF₃. The LaF₃: Gd crystal was procured from Optovac and was of excellent optical quality and free of strains. The pure GdF₃ and the mixed crystal of 50% CaF₂ : 50% GdF₃ were prepared by Robinson of the Hughes Research Laboratories, Malibu, Calif. Data on the absorption and fluorescence spectra in the range from 2700 to 3200 A were taken in fourth order with a 3.4-m Jarrell-Ash Ebert spectro-

TABLE I. Absorption spectrum of Gd^{3+} in LaF₃ at 4.2°K.

Upper level Stark compo- Quantum		Wave- length in air	Wave number in vacuum Relative		Experi- mental barycenter
nent	state	(Ă)	$\text{(cm}^{-1})$	intensity	(cm^{-1})
A_1	${}^6P_{7/2}$	3107.18	32 174.21	8	32 195.40
$\bm A_2$		3106.26	32 183.75	10	
A_3		3104.81	32 198.70	9 5	
A4		3102.29	32 224.95		
B ₁	${}^6P_{5/2}$	3050.73	32 769.54	8	32 789.10
$B_{\rm 2}$		3048.85	32 789.69	7	
B ₃		3047.15	32 808.06	10	
Сª	${}^6P_{3/2}$	2996.5	33 363.0		33 363.0
D_1	$^{6}I_{7/2}$	2783.05	35 921.20	7	35 956.43
D_2		2781.33	35 943.42	6	
D_3		2779.52	35 966.82	10	
D_4		2777.40	35 994.27	8	
E_1	${}^6I_{9/2}$	2756.02	36 273.49	4	36 294.00
E_{2}		2755.18	36 284.55	5	
E_{3}		2753.66	36 304.57	10	
$E_{\rm 4}$		2752.99	36 313.41	7	
$\scriptstyle F_1$	$^{6}I_{17/2}$	2751.55	36 332.41	6	36 357.86
${F}_2$		2750.97	36 340.07	8	
$_{F_3}$		2750.56	36 345.49	10	
F_{4}		2750.15	36 350.91		
F_{5}		2749.21	36 363.33		
\mathbb{F}_6		2748.66	36 370.61	8573	
F_{7}		2748.21	36 376.57		
$F_{\rm 8}$		2747.69	36 383.45	4	
$\scriptstyle G_1$	${}^6I_{11/2}$	2735.21	36 549.45	6	36 578.79
$\scriptstyle G_2$		2734.31	36 561.48	9	
$\scriptstyle G_3$		2733.56	36 571.51	10	
G4		2732.57	36 584.76	7	
G5		2731.91	36 593.60		
G_6		2730.54	36 611.96	$\frac{2}{5}$	
$_{H_1}$	$^{6}I_{13/2}$, $^{6}I_{15/2}$	2726.96	36 660.02		36 715.60
H_{2}		2726.27	36 669.29	$\overline{3}$	
H_3		2725.63	36 677.90	$\overline{\mathbf{4}}$	
$_{H_4}$		2724.83	36 688.67	6 7 5	
Н.		2724.02	36 699.58		
H_{6}		2723.02	36 713.06		
H7		2722.68	36 717.64	8	
$H_{\bf 8}$		2722.33	36 722.36	10	
H_9		2721.55	36 732.89	9	
H_{10}		2721.23	36 737.21	6	
$\bm{H_{11}}$		2720.18	36 751.39 36 761.93	8 7	
H_{12}		2719.40 2718.74	36 770.85	7	
$\scriptstyle H_{13}$ Кª	${}^6D_{9/2}$	2515.0	39 749.0		39 749.0 ^a
Mа	${}^6D_{7/2}$	2451.5	40779.0		40 779.0 ^a
Nа	${}^6D_{3/2}$	2444.5	40 896.0		40 896.0a
Oа	${}^6D_{5/2}$	2433.0	41 089.0		41 089.0ª

 $*$ Experimental barycenters were obtained from observed transitions in crystals of 100% GdF $*$ and 50% GdF $*$: 50% CaF $*$.

TABLE II. Fluorescence spectrum of Gd^{3+} in LaF₃.

	Upper level		
Stark component	Ouantum state	$77^{\circ}K$	Wavelength in air (\AA) 4.2°K
A_1 A_2 A_3 A 1	${}^6P_{7/2}$	3107.49 3106.57 3105.08 3102.53	3107.21

graph having a dispersion of 1.2 A/mm. Absorption data in the 2000-2500 A range were obtained in first order by means of a 0.3-m McPherson ultraviolet monochromator equipped with a 2400 lines/mm grating, and also by means of a Bausch and Lomb 505 spectrophotometer. Tables I and II summarize the absorption and fluorescence data. The observed groups of lines are labeled $A \cdots O$ following Hellwege et al.¹⁷ In Gd: LaF₃, transitions to the ${}^6P_{3/2}$ state and to the states belonging to the 6D multiplet were not observed. These transitions, however, were measured in GdF_3 and in the 50% CaF₂: 50% GdF₃ crystals. Although the lines in the pure and mixed crystals were broad and diffuse as compared to the sharp line spectrum of LaF_3 : Gd, no measurable differences were detected in the line positions for the well-deined groups in the different crystals.

In general, $J+\frac{1}{2}$ Stark components were identified in absorption, the exception being the group of very weak and diffuse lines which are observed around 2400 A and which correspond to transitions terminating on the Stark components of the ⁶D states. The Stark levels of the $^{6}I_{13/2}$ and $^{6}I_{15/2}$ states are mixed. Their calculated barycenters are separated by only 14 cm^{-1} . In their assignments, we have followed the interpretation of Piksis, Dieke, and Crosswhite,²⁸ and have placed the of Piksis, Dieke, and Crosswhite,²⁸ and have placed the experimental barycenter of the $^{6}I_{15/2}$ state below that of $^{6}I_{13/2}$ state.

Strong absorption lines were observed at \sim 2000 Å. Because of their strength one can surmise that either these lines are due to the $4f \rightarrow 5d$ allowed electric dipole transitions or they can tentatively be assigned to the 6G states of the f^7 configuration. The 6G states were calculated to lie at 50000 cm^{-1} .

In fluorescence, transitions originating from A_1 through A_4 were observed at liquid-nitrogen temperature. Only one very intense sharp line at 3107.21 A was observed at liquid-helium temperature. The intensities denoted in Table I are estimated values and represent relative spectral intensities on a scale from 1 to 10 for lines within each group only. No structure due to the Stark components of the ${}^{8}S_{7/2}$ ground state was observed.

FREE-ION ENERGY CALCULATIONS

The diagonalization of the Coulombic and spin-orbit energy matrices with the inclusion of the configuration interaction term $\alpha L(L+1)$ was carried out with the

SLJ	Calc. energy ^a (cm^{-1})	energy $\rm (cm^{-1})$		Inter- Expt. LS cou- mediate pling, coupling, g value g value	SL composition $(\%)$
${}^{8}S_{7/2}$	0	0	2.002	1.994	$97 \,^8S, 3 \,^6P$
${}^6P_{7/2}$	32 237	32 195	1.716	1.678	$76 \, \text{°P}$, 13 °D , 7 °D , 2 °S
${}^6P_{5/2}$	32 814	32789	1.888	1.840	83 °P, 14 °D, 2 °D
${}^6P_{3/2}$	33 380	33 363	2.403	2.348	$90 \, \, ^6P, 8 \, \, ^6D, 1 \, \, ^4S$
$^{6}I_{7/2}$	35 887	35 956	0.443	0.462	92 $6I, 74H$
$^{6}I_{9/2}$	36 265	36 294	0.828	0.836	94 $6I, 54H$
$^{6}I_{17/2}$	36 507	36 358	1.295	1.290	$96 \,$ $67, 4 \,$ $4K$
$^{6}I_{11/2}$	36 579	36 579	1.035	1.038	$96 \, \frac{6}{7}$, 3 $4H$
$^{6}I_{15/2}$	36790	36 691	1.240	1.237	97 $6I, 14K$
$6I_{13/2}$	36776	36746	1.159	1.159	97 ⁶ I
${}^6D_{9/2}$	39 805	39 749	1.557	1.543	93 $6D, 3$ $6F, 3$ $4F$
${}^6D_{1/2}$	40 640	\cdots	3.339	3.309	99 ⁶ D
${}^6D_{7/2}$	40 807	40779	1.589	1.588	80 6D , 12 6P , 3 6F , 1 4D
${}^6D_{3/2}$	40 912	40 896	1.869	1.890	$89 \, {}^6D, 8 \, {}^6P, 1 \, {}^6F$
${}^6D_{5/2}$	41 076	41 089	1.659	1.672	81 6D, 14 6P, 3 6F, 1 4D
${}^6G_{7/2}$	50 224	.	1.143	1.188	$25 \, {}^6G, 16 \, {}^4D, 12 \, {}^4F,$
					$10~^6F, 7~^4G, 6~^2F, 5~^4H,$
					$3~^2G, 2~^6P, 2~^6D, 2~^6H$
${}^6G_{5/2}$	50 996	.	0.857	1.043	40 $\,6G$, 17 $\,4D$, 16 $\,6F$,
					$2 \, \mathrm{^6H}, 2 \, \mathrm{^4G}, 1 \, \mathrm{^6D}$
${}^6G_{9/2}$	51 296		1.274	1.304	56 6G , 27 6F , 4 6H , 3 6D ,
					$2\,4G, 2\,4H$
${}^6G_{11/2}$	51 373		1.344	1.367	53 $\,^6G$, 35 $\,^6F$, 3 $\,^6H$, 3 $\,^4G$,
					2 4 H
${}^6G_{3/2}$	51 901		0.002	0.502	48 ${^6}G$, 20 ${^6}F$, 17 ${^4}D$, 12 ${^4}F$
${}^6G_{13/2}$	53 171		1.386	1.366	$87~^{6}G, 7~^{4}H, 4~^{6}H$

TABLE III. Gadolinium energy levels.

^a Values of $F_2=419.1$, $F_4=56.54$, $F_6=6.006$, $\zeta_{4f}=1486$, and $\alpha=21.78$ cm⁻¹ are found to give the best over-all agreement between the experimentally observed and calculated levels, with a rms deviation of 75

 $\delta = \sum (E_{\text{cal}} - E_{\text{expt}})^2/(n-k)$ 71/2.

where *n* corresponds to the number of barycenters, and *k* to the number of parameters used in the least-squares fit. The mean error is 43 cm⁻¹.

aid of an IBM 360 Model 50 computer. All the states of the $f⁷$ configuration were used in the calculation. The spin-orbit and Coulombic matrices have previously been tabulated by Nielson and Koster.³² The barycenters corresponding to the states of the ^{8}S , ^{6}P , ^{6}I , and ^{6}D multiplets were employed in the least-squares analysis to determine the Slater and spin-orbit parameters and

TABLE IV. Eigenfunctions of the lowest levels (including all coefficients greater than 0.100).

${}^{8}S_{7/2}$	0.986 $S+0.163$ P
${}^6P_{7/2}$	0.871 $P - 0.155$ $S - 0.356$ $D + 0.184(111)^{a}(20)$ D
	$+0.198(220)(22)^4D$
$^{6}P_{5/2}$	0.913 $P - 0.368$ $D + 0.104(111)(20)$ D
	$+0.111(220)(22)$ ⁴ D
${}^6P_{3/2}$	0.949 $P - 0.278$ $D - 0.107$ (220) (22) $4S$
$^{6}I_{7/2}$	$0.961\,$ $\frac{61+0.196(211)(21)\,4H+0.166(211)(30)\,4H}{$
$^{6}I_{9/2}$	$0.972\frac{6I+0.162(211)(21)\frac{4H+0.138(211)}{30}\frac{4H}{4}}{4}$
$^{6}I_{17/2}$	$0.980\text{ }^{6}I - 0.147(211)(21)\text{ }^{4}K - 0.130(211)(30)\text{ }^{4}K$
$^{6}I_{11/2}$	$0.980\frac{6I+0.124(211)(21)}{H+0.105(211)(30)}$
$^{6}I_{15/2}$	$0.986 \frac{6I - 0.105(211)(21) \frac{4K}{L}}{2}$
$^{6}I_{13/2}$	$0.985~$ f I

^a The numbers in parentheses correspond to the $W = (w_1, w_2, w_3)$ and $U = (u_1, u_2)$ quantum numbers.

the configuration parameter α . Using an iterative method, the freely varying parameters were determined by minimizing the sum of the squares of the deviations between the experimental and calculated barycenters. The computer program provided the energy levels, eigenvectors, and intermediate-coupling g values for the free-ion problem. Table III summarizes the results of the calculations, while Table IV shows in detail the eigenfunctions of the lowest levels. The calculated energy levels agreed with the experimental barycenters, with an average deviation of 43 cm⁻¹. The unobserved ${}^6D_{1/2}$ state is calculated at 40 640 cm⁻¹. The 6G levels are determined to lie approximately 10 000 cm⁻¹ above the 6D states. The parameter values which are found to give the best over-all agreement between experiment and theory are tabulated in Table V. Included in Table V are previously determined free-ion parameters of Gd³⁺ obtained from data on different salts. From Table V we observe that a value of about 1480 cm⁻¹ for ζ_{4f} is necessary in order to obtain agreement with the ob-

TABLE V. Free-ion parameters for Gd³⁺ (cm⁻¹).

Host	lattice GdCl ₃ .6H ₂ O ^a	LaCl ₃ b	LaCl ₃ °	LaFs	
$_{F_2}$ $\frac{F_4}{F_6}$ ζ_{4f} α $M^{\mathbf{0}}$ M^2 M^4	372.1 53.58 5.407 1480 \cdots	408.0 56.4 6.17 1470 $\lceil 23 \rceil^d$. .	421.5 55.30 6.035 1497 F20 ⁻ -1.717	419.1 56.54 6.006 1486 21.78 1.20 -1.207	

a Parameters adopted by B. R. Wybourne to fit GdCl₃.6H₂O data

Farameters adopted by B. R. Wybourne to nt GdCls.OH₃O data

(Ref. 18).

^BThe values correspond to the hydrogenic parameters of A. H. Piksis,

G. H. Dieke, and H. M. Crosswhite (Ref. 28).

^ROnhydrogenic parameters of

served experimental multiplet splittings. This value of ζ_{4f} is smaller than the value of 1534 cm⁻¹ obtained by using the empirical formula of ζ' by Judd and Lindgren,³³ or by interpolating between the known values for ζ_{4f} from Eu³⁺ and Tb³⁺ in other salts.³⁴ The calculated values of ζ_{4f} for the various salts, as summarized in Table V, are in excellent agreement. It appears that the multiplet splittings for Gd³⁺ are more insensitive to the particular host lattice in comparison with the splittings of the other trivalent rare-earth ions. This is evident from Table VI which shows the consistency of the magnitude of the multiplet splittings for Gd^{3+} in $GdBr_3 \cdot 6H_2O$, $GdCl_3 \cdot 6H_2O$, $LaCl_3 : Gd$, and $LaF_3 : Gd$. Using the wave functions listed in Table IV, the calculated intermediate-coupling g value of 1.994 is larger than the value of 1.990 ± 0.001 determined by Jones, Baker, and Pope⁵ for the ${}^8S_{7/2}$ state in LaF₃. Simi-

³² C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the p^n , d^n , and f^n Configurations (The MIT Press, Cambridge, Mass., 1963). Magnetic tape entitled "Energy Matrices for all Configurations of Equivalent f Electrons" (MIT, Cambridge, Mass.).

³³ B. R. Judd and I. Lindgren, Phys. Rev. 122, 1802 (1961).

³⁴ B. R. Judd, Proc. Phys. Soc. (London) A69, 157 (1955).

lar results were obtained by Wybourne,¹⁸ who concluded that the correct explanation of the observed ${}^{8}S_{7/2}$ splitting and g value must involve the detailed interaction of the ligands with the gadolinium ion.

Recently, the importance of the spin-other-orbit and spin-spin interactions between f electrons has been demonstrated.²⁹⁻³¹ For an f^N configuration, the inclusion of the H_{so} and H_{ss} effects introduces in the analysis new parameters M^k ($k=0,2,4$) and P^k ($k=2,4,6$) to be determined. Since only four multiplets are observed, the meager data require some simplifying assumptions in order to keep the calculation physically meaningful. As suggested by Judd, Crosswhite, and Crosswhite,²⁹ we will compromise and impose the condition

TABLE VI. 6P , 6I , and 6D multiplet splitting for Gd³⁺ in various salts cm^{-1}).

Magnitude οf multiplet splitting		$GdBr_3 \cdot 6H_2O^a$ $GdCl_3 \cdot 6H_2O^b$ $LaCl_3:Gd^c$ $LaFe_3:Gd$		
${}^6P_{7/2}$ – ${}^6P_{5/2}$	592	595	597	594
${}^6P_{5/2}$ - ${}^6P_{3/2}$		572	572	574
$^{6}I_{7/2}$ - $^{6}I_{9/2}$	342	344	345	338
$^{6}I_{9/2}$ - $^{6}I_{17/2}$.	66	51	64
$^{6}I_{17/2}$ - $^{6}I_{11/2}$.	216	226	221
$^{6}I_{11/2}$ - $^{6}I_{15/2}$.	105	116	112
$^{6}I_{15/2}$ - $^{6}I_{13/2}$.	60	36	l 55
${}^6D_{9/2}$ - ${}^6D_{7/2}$	1020	1012	10311	1030
${}^6D_{7/2}$ - ${}^6D_{5/2}$	319	327	\cdots	318

^a Values obtained from data by G. C. Nutting and F. H. Spedding (Ref. 11). The Data of the data of σ is the best of the Data obtained from K. H. Hellwege, S. Hüfner, and H. Schmid
 σ Data obtained from A. H. Piksis, G. H. Dieke, and H. M. Crosswhite
 σ Data obtained from A. H

 $M^0 = M^2 = M^4$ and $P^k = 0$. The M^k are the radial integrals of Marvin,³⁵ which are proportional to grals of Marvin,³⁵ which are proportional to

$$
\langle (nl)^2 | (r<^k/r>^{k+3}) | (nl)^2 \rangle,
$$

and appear in the expressions for H_{soo} and H_{ss} . Since these interactions are of the order of 100 cm^{-1} , it is appropriate to calculate their effects by first-order perturbation theory and by choosing the value of M^0 for which the calculated energy levels agree with experiment. Table VII summarizes the results. The value of 1.20 was found to give the best agreement with the experimental data, reducing the mean error to 32 cm^{-1} .

» H. H. Marvin, Phys. Rev. 71, ¹⁰² (1947).

TABLE VII. Energy levels of LaF3.' Gd with the inclusion of H_{soo} and H_{ss} .

SLJ	Experi- mental barycenters (cm^{-1})	Calculated levels including $F_2, F_4, F_6, \zeta, \alpha$	$M^{0}=1.71$	$M^{0}=1.20$
${}^{8}S_{7/2}$	0	0	0	0
${}^6P_{7/2}$	32 195	32 237	32 224	32 232
${}^6P_{5/2}$	32 789	32814	32 834	32828
${}^6P_{3/2}$	33 362	33 380	33 366	33 360
$^{6}\! I_{7/2}$	35 956	35887	36 036	35 991
$^{6} \! I_{9/2}$	36 294	36 265	36366	36336
${}^6I_{11/2}$	36 579	36 579	36 643	36 624
$^{6}I_{13/2}$	36 746	36 776	36770	36772
$^{6}I_{15/2}$	36 691	36 790	36733	36750
$^{6}I_{19/2}$	36358	36 507	36 407	36 437
${}^6D_{9/2}$	39 749	39 805	39 778	39786
${}^6D_{1/2}$		40 640		
${}^6D_{7/2}$	40779	40 807	40796	40 800
${}^6D_{3/2}$	40896	40 912	40 952	40 940
${}^6D_{5/2}$	41 089	41 076	41 090	41 086
Mean		43	38	32
error				

These results are compared with the energy levels obtained with a value of $M^0=1.71$, obtained by Judd et $al.^{29}$ from the analysis of $LaCl₃$: Gd.

In conclusion, the optical spectrum of LaF_3 : Gd has been obtained in the 2000—3200 A spectral range. The parameters obtained from the analysis agree with the parameters obtained from the analysis agree with the values obtained by Judd *et al.*²⁹ A value of 1486 cm⁻¹ for the spin-orbit radial integral is required for explaining the observed multiplet splittings. Since only the ${}^{8}S$, ${}^6P, {}^6I,$ and 6D multiplets were observed, the number of parameters used in the analysis was minimized to ζ_{4f} , $F_{2,4,6}$, and α . The effects of the parameters β and γ were not investigated. Their general contribution would be to shift the 6D and 6I states equally by an amount $\frac{1}{6}\beta+\frac{2}{5}\gamma$ with respect to the states of the 6P multiplet. Unless other excited multiplets are experimentally verified, it is difficult at present to assess the effects of the more sophisticated magnetic interactions as compared with the complete set of configuration interaction parameters α , β , and γ .

ACKNOWLEDGMENTS

We would like to thank M. Robinson for supplying us with the pure GdF3 and mixed crystals, and R. Marlin for assistance in obtaining the data.