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Properties of quantum-mechanical time-dependent correlation functions of pairs of irreduc-
ible tensor operators are derived from the transformation properties of the tensor operators
under rotations, the assumed rotational invariance of the Hamiltonian of the system, and the
Wigner-Eckart theorem. It is shown that many of the possible correlation functions are zero,
and that the nonzero correlation functions can be expressed in terms of reduced matrix ele-
ments. Some examples of irreducible tensor operators which occur in applications are given,
and their reduced matrix elements are calculated.

I. INTRODUCTION

Quantum-mechanical time-dependent correla-
tion functions of pairs of operators occur in the
theory of magnetic resonance and relaxation, '
and also in the theories of other phenomena, such
as microwave resonance, Raman light scattering,
and neutron scattering. ' The operators whose
correlation functions are to be calculated are
irreducible tensor operators, or they can be ex-
pressed as linear combinations of irreducible
tensor operators. However, the properties of
irreducible tensor operators do not seem to have
been exploited fully in previous calculations of
correlation functions.

Some general properties of correlation func-
tions of irreducible tensor operators are derived
in Sec. II, and it is shown how such correlation
functions can be expressed in terms of reduced
matrix elements. In Sec. III correlation functions
of tensor operators pertaining to a single mole-
cule in the system are considered. Section IV is
concerned with symmetry properties, symme-
trized correlation functions, and their Fourier
transforms. In Sec. V some examples of irre-

ducible tensor operators are given, and their
reduced matrix elements calculated.

H. GENERAL PROPERTIES

An irreducible tensor operator of rank k can
be defined' as a set of 2k+1 operators Tk, mkm~
= -k, -k + j, ... ,k, which transform u'nder ro-
tations of the coordinate system in the following
manner. The operator Tkm in a coordinate sys-
tem S ' is equal to the operator

k

RT& R '= Q D, (nPy)T
m'=-k

in a coordinate system S, where npy are the
Euler angles specifying the orientation of S' with
respect to S. R is the unitary rotation operator

R=exp(-inL )exp(-ipL )exp(-iyL )g y + t

where SI& and Arz are, respectively, the y and
z components in S of the total angular momentum
SK of the system. The unitary matrix DL(nPy)
has elements
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D, (nPy) =(LM'IRILM),

p = e /Tr[e ], P =5/kT-, (4)

where ILM& is an eigenket of K' and I, , with
eigenvalues L(I +1) and M, respectively.

Consider a system consisting in general of many
atoms and molecules. Let the Hamiltonian of the
system be denoted by SF. The density operator
describing the system in thermal equilibrium
at temperature T is

Hence Wk I I (t) transforms under rotations in
the same manner as SkI I . Therefore Wkj I(t)
is an irreducible tensor opexator of rank k'.

Let I LbM) be an eigenket of L' with eigenvalue
L(L+1), of I, with eigenvalue M, and of other
operators which commute with each other and
with L' and I.z,. the eigenvalues of the other
operators are represented by b. According to
the Wigner-Eckart theorem, the matrix ele-
ment of an irreducible tensor operator T& be-
tween two such states is of the form'~4

where the k in P is the Boltzmann constant.
The quantum-mechanical correlation function

of two irreducible tensor operators T~m and

S~ Imr associated with the system is defined by

(Lb M iT„ Igb M)

= C(L kL;M mM )(L b IIT III. b ), (10)

"[P'k-""km ]

where Tkm(t) is the Heisenberg time-dependent
operator

( )
iEt —iFt

km
' km'

Since the trace of a product of operators is un-
changed by a cyclic permutation of the operators,
it follows that

('k ""k &="['k k

—iFI; iEt
where Wk, , (t) —= e Sk, ,p eu'm' u'm'

where C(L,kL„M,mM, ) is a Clebsch-Gordan co-
efficient, and (L2b2IITkIII. lb 1) is a quantity called
the reduced matrix element, which is independent
of M, and M, . Similarly, since Wkj (t1) is an
irreducible tensor operator, its matrix elements
are of the form

(Lb M iW, , (t)ILb M )

=C(L k'L;M m'M )(L b IIW (t)III b) . (11)

If the trace in Eq. (7) is evaluated in the rep-
resentation ILbM), use is made of Eqs. (10) and
(11), the fact that

C(L kL;M, mM )

The important terms in the Hamiltonian SF are
in many cases invariant under rotations of the
coordinate system; for example, the terms rep-
resenting the kinetic energies of the particles in
a liquid or gas, and the interactions between par-
ticles. If electromagnetic fields are applied to
the system, there are interactions which are not
invariant under rotations of the coordinate sys-
tem; however, these interactions are usually
negligible compared with the terms in SF which
are rotationally invariant. Hence, it will be
assumed here that SF is invariant under rota-
tions. In this connection, it is worth noting
that when correlation functions arise in the theory
of the line shape of a resonance produced by the
application of an oscillating electromagnetic
field, the Hamiltonian SF that occurs in the
correlation functions usually does not contain the
interaction with the oscillating field.

Since IF is invariant under rotations, it follows
that exp(+iFt) and p commute with the rotation
operator R and its inverse. Therefore

C(L kL;M m),
M2, M, +m

the symmetry properties of the Clebsch-Gordan
coefficients' and the relation'

C(j j j m, m-m )C(j j j';m, m —m )m

= b, ~(j,I2j),B'

where d (j,j,j) equals unity if j, , j, , and j can
form the sides of a triangle, and is zero other-
wise, one obtains the result

( k
(') k '

='k k' ~ — '-" "kO""kO'

and

(T (t)Sk ) =(2k+1) ~ Q Q &(L L k)
L,b~ L2b~

RW, , (t)R =e RSk, , R peu'm' a'm'
1

x (- 1) ' '[(2L, + 1)(2L, + 1)]
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x (L2&2II &~IILpl)&LI&ill W~(t)IIL2&2& . (14)

Equations (13) and (14) have been derived by
using just the transformation properties of Tp
and I' under rotations. They show that many of
the correlation functions are zero, and that only
reduced matrix elements are needed to evaluate
the nonzero correlation functions.

III. TENSOR OPERATORS OF A SINGLE

MOLECULE

according to Eq. (1), it follows that

Rx, , (t)R '=R x, , (t)R

= Tr'[RIW&, , (t)R ']

=Tr'[R'R .W, , (t)R 'R' ']
1 a'm'

= Tr'[RW&, , (t)R ']

Consider a system containing N molecules. Let
TI ~ and Sy ~~1 now be irreducible tensor opera-
tors involving just the motion of the particles in
a single molecule with respect to its center of
mass. This molecule will be designated the first
molecule, and its angular momentum with re-
spect to its center of mass will be denoted IX.

Since the angular momentum operator KK of
the entire system can be expressed as the sum of
the angular momentum operators of the mole-
cules with respect to theircentersof mass, plus
the sum of the angular momentum operators of
the centers of mass, it follows that the rotation
operator 8 for the entire system can be expressed
as R=B'R, , where R, is a rotation operator of
the form of Eq. (2) except that the components of
L are replaced by the components of J, and R' is
a rotation operator involving the components of
K-X. Since R'and R, commute, and R' com-
mutes with Ty~, it follows that Ty~ transforms
under rotations according to Eq. (1), and that
equation is also valid with R and R ' replaced by
Ry and R, ', respectively.

The correlation function of T~~ and S~~~l is
defined as before by Eq. (5) and can be expressed
by Eq. (7). It should be noted that W i i(t) is an
operator involving all the variables o the system,
even though S~l~ I involves just the motion of the
particles of the first molecule with respect to its
center of mass.

The trace over all the variables of the system
can be expressed as Tr= Tr, Tr'= Tr'Tr
where Tr, indicates a trace over the variables
describing the motion of the particles in the first
molecule with respect to its center of mass, and
Tr' denotes a trace over the remaining variables
of the system. Hence it follows from Eq. (7) that

(15)

u'
(o Pr)

Pf mm

x Tr'[W, (t)]

(etPr)x~, (t) .
m=-n'

(17)

Therefore, x&i~I(t) is an irreducible tensor
operator with respect to K or X

Let (JbM) be an eigenket of the 7' with eigen-
value J'(J'+1), of Jz with eigenvalue M, and of a
sufficient number of other commuting operators
to form a complete set for the first molecule;
the eigenvalues of the other operators are repre-
sented by b. According to the Wigner-Eckart
theorem, ~' the matrix elements of T& andkm
x~ i~ i (t) in the ( JbM) representation are given
by Eqs. (10) and (11), respectively, with L, and
I, replaced by J, and J,. The derivation of Eq.
(18) can then be carried out as before, where the
Ty~ and Sy ~~ I are now the tensor operators for
the first molecule, and where

(T~0(t)S~0) =(20+1) ' Q Q 4(JIJ k)J bi J2b2

1

x(- I) '+ '[(2J +1)(2J,+1)] '

x(J 5 f[T~f(J151)(JI&1(fx~(t)lfJ2&) . (18)

IV. SYMMETRY PROPERTIES, SYMMETRIZED
CORRELATION FUNCTIONS, AND

FOURIER TRANSFORMS

where x~i~1(t), as well as T~~, is an operator
involving just the motion with respect to the cen-
ter of mass of the first molecule defined by

If, in analogy with Eq. (5), one defines

"u '~ ""="["n 't

x, , (t) —= Tr '[W, , (t)] . (15) where S&, , (t) -=e S, , e
'Ft

0'm' A'm '

Since R& i~ I is a tensor operator transforming then the relation
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(Tb Sb, , (t)) =(Tb (- t)Sb, , )

can be obtained by cyclic permutation of the
operators in the trace.

It is a consequence of Eq. (13) that

(2o)

(21)

correlation function of two irreducible tensor op-
erators can be expressed in terms of the one-
sided Fourier transforms of unsymmetrized cor-
relation functions as follows:

f „&{T (t)S, ,}&e' dt

The Hermitian adjoints of the irreducible tensor
operators considered here are given by'

(22)

Therefore 1'~0 and S~0 are Hermitian. Hence, it
follows from Eqs. (5) and (13), and the fact that
E is Hermitian, that

(T (t)s, , )*=(S, , T (t)) .

In some theories, ' there occur symmetrized
correlation functions, defined by

{Tom")Sb m
}'=Tr[P{Tk ""I

(-1)
ply I

x 2{f &TbO(t)SbO&
e' dt

+f (S (t)T &e

+[f (T (t)S ) e
'

dt

+f (S (t)Tbo) e dt] } . (29)
0

Use has been made of Eqs. (20), (23), and (13) in
deriving Eq. (29). If &o is replaced by —a& in Eq.
(29), one obtains the complex conjugate of expres-
sion (29). In the special case that Sb ~m ~ = Tb Im I,
Eq. (29) reduces to

in terms of the symmetrized product

='[
k

' O' "I' ' b
(25)

f ({T (t)T, ,})e' dt

By use of Eqs. (5), (13), and (20), the symme-
trized correlation function can be expressed as

x Re{f (T (t)T )e dt
0

+ f &Tbo")Too'

which is a real, even function of +.

(3o)

(Tu (t)Sb ),(Sk Tk (t)&

=5, 5, (—1)
ply I

x —,
' [(T (t)S ) +(S T (t)) ],

It follows from Eq. (23) that

({T (t)S, ,})=Re(T (t)S, , ),

(26)

(27)

V. EXAMPLES

In this section several examples are given of
irreducible tensor operators whose correlation
functions occur in practice, and reduced matrix
elements of the operators are calculated.

1. Anguhr Momentum

The spherical components L~, m = —1,0, 1, of
the angular momentum SL of a system, definedby

so the symmetrized correlation functions of ir-
reducible tensor operators are real. Also, from
Eqs. (26), (20), and (21),

({Tb (-t)Sb, ,})=({Sb (t)Tb, ,}) .

Therefore ({T (t)T, ,}) is an even function of
um a'm'

It is usually the Fourier transforms of correla-
tion functions that occur in applications, rather
than the correlation functions themselves. ' ' The
two-sided Fourier transform of the symmetrized

L —= +(2) ''(I. +iL ), L —= I+1 x y
' 0 z

are the components of an irreducible tensor opera-
tor of rank one. ' As before, let ( I.bM) be an eigen-
ket of L' with eigenvalue I.(I, +1), of Lz with
eigenvalue M, and of other commuting operators
whose eigenvalues are represented by b. The
matrix elements of the I. in this representation
are'

(LbMiL iLbM)=bb
2 1 2 1
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x [L,(L, + 1)p"C(L,1L„M,mM, ), (32)
(J b M iY (A)ij'b M )

2 1 2 1
(33)

which is in the form given by the Wigner-Eckart
theorem, Eq. (10), with reduced matrix element Z (Jb M ID p (g )ijb M)22 2 mm

x Y,(A), (36)

Similarly, the spherical components, J, of
the angular momentum of a single molecule of
the system are the components of an irreducible
tensor operator of rank one with respect to the
angular momentum J of the molecule. Hence the
matrix elements of the operators J between
eigenstates ) JbM) of J' and Jz, and the reduced
matrix element, are given respectively by Eqs.
(32) and (33) with the L, 's replaced by J's.

Correlation functions of the spherical compon-
ents of the angular momentum of a molecule occur
in the theory of nuclear magnetic relaxation by
spin-rotational interactions of nuclei in linear
molecule s.'

2. Spherical Harmonics

Consider some vector r associated with a sys-
tem having angular momentum KK. Let A—= 8, g
be the polar and azimuthal angles specifying the
direction of r in a coordinate system S, and 0'
—= O', Q' the polar angles specifying the direction
of the same vector in a coordinate system S' the
Euler angles of which are g—= nPy with respect to
S. Since spherical harmonics F~~ with argu-
ments 0 and 0' are related by'

( JKM) =[(2J+1)/Bw'] 'I'D (g ). (37)

The I JKM) are eigenstates not only of J' and Jz,
but also of the s component in S, of the angular
momentum J, with eigenvalue E'." Hence'

(JKM (D, (g ))J'KM )

= [(2J,+1)/(2J2+ 1)] 'I2 C(j,kJ2;M,mM )

x C(j,kj„K,m'K, ), '

(3S)

where the C are Clebsch-Gordan coefficients,
which have the property that

since the rotational eigenstates are functions of
g, . The result must be of the form given by the
Wigner-Eckart theorem; that is, Eq. (10) with
the L replaced by J.

The right-hand side of Eq. (36) can be evaluated
easily if the molecule is a symmetric top. If Sy
is chosen to be the principal body-coordinate sys-
tem, the normalized rotational eigenstates for a
symmetric top are

( ')= Z k, () ~ (), (34)

Y (A)= Z D, (g )Y,(A ). (35)

the spherical harmonics are irreducible tensor
operators.

In the special case that r is a vector fixed in a
single molecule of the system, the spherical
harmonics Ykm(A), where A represents the polar
angles of r in the laboratory coordinate system
S, are the components of an irreducible tensor
operator with respect to the angular momentum
J of the molecule. Let S, be a coordinate system
fixed in the molecule. Let g, represent the Euler
angles of S, with respect to S, and 0, the fixed
polar angles of r in S,. From Eq. (34) and the
fact that D (g, ) is a unitary matrix, it follows
that

C(j kj;K m K )=5,C(j kj;K m').
1 2' 1 2 E2,E, +m' 1 2' 1

Hence as predicted by the Wigner-Eckart theorem

(JKM iY (A)ijKM )

= C(j kJ;M mM )(J K ii Yk(A)iijK ), (39)

where the reduced matrix element is

(J K ((Y(A)[~j K ) =[(2J +1)/(2J +1)]'"

x C(J kJ;K, K -K )Y K (Al). (40)
2 1

If the molecule is linear, with rotational eigen-
states I JM), and if A represents the polar angles
specifying the orientation of the molecule in the
laboratory coordinate system S, then it can be
shown that"

Hence the matrix element of Yk (A) between ro-
tational eigenstates of the molecule can be cal-
culated from

(J M )Y (A))j M )

= C(J kJ;M mM )(J ((Yk))j ), (41)
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where the reduced matrix element is

(J2III'hllJI) = C(JIh J2, o0)

x [(2J, + 1)/(2Z, ~ 1)] '~' [(2h + I)/4w] '~' . (42)

As might be expected, the result for a linear mole-
cule can be obtained as a special case of the result
for a symmetric top by putting X, =E2 = Q and 01
=0, 0 in Eqs. (39) and (40).

Correlation functions of second-rank spherical
harmonics occur in the theory of spin relaxation
by dipole-dipole interactions. '

where the J„'I are the spherical components of
J in S, , and the a~ ~n~ can be expressed in terms
of the constant elements of c in S,. It is easily
shown that

a =-,'(c v c ——,'i(c a c+I, —1 yy xx ' yx xy

a =+ (2) "'(c sic ),+1 Q xz yz

a =-,'(c +c +-,'i c + c+1, 1
'

yy xx yx xy

a =v (2) '~'(c v ic ), a =c . (4V)
Q, al zx zy '

QQ zz'
3. Spin-Rotational Interaction

It follows from the fact that Xsr is Hermitian
that

The Hamiltonian of the spin-rotational interac-
tion of a nucleus with spin h f in a molecule with
angular momentum 5J can be expressed as

a =(-1) am+n
mn m n (48)

Z =Sf' c ~ S=hI h,sr (43) which is satisfied by the expressions (4V).
Substitution of Eq. (46) in Eq. (45) gives

1
X =h Z (1)Zsr ~ Sg Slm= —1

(44)

Since Xsr is invariant under rotations of the
laboratory coordinate system, since the I~ are
elements of a tensor operator of rank one, and
since Eq. (44) is in the form of the scalar product
of two tensor operators of rank one, it follows
that the h~ are the elements of an irreducible
tensor operator of rank one.

Let g, =o.,P,y, be the Euler angles of the body-
coordinate system S, with respect to the labora-
tory-coordinate system S. Then the spherical
components of h in S, denoted by h~, are re-
lated to the spherical component in S1 denoted
by h~ I, according to

where c is the spin-rotational dyadic, whose ele-
ments have constant values c», c», c~~, etc. ,
in a coordinate system S, attached to the molecule,
and h =— c ~ S is proportional to the magnetic field
produced at the position of the nucleus by the ro-
tation of the molecule.

If spherical components of f and h, defined as in
Eq. (31), are introduced, X can be expressedsr
as

1
h = g a, ,D ~*(g )J' (49)

— 1
'"' ' 1 "m n =-1

Since the spherical components J'i in S, arenrelated to the spherical components J„in S by
1

J', = Z D, (g )J'
n= —1

(50)

and the symmetry properties of the Clebsch-
Gordan coefficients. ' The result is

h~ can be expressed in terms of J„by use of Eq.
(50) in Eq. (49).

Matrix elements in the I JbM) representation
can, in principle, be calculated by use of Eqs.
(49) and (50). We consider here the special case
of a symmetric top molecule, and choose S, to be
a principal body-coordinate system. The matrix
elements of Jnj can be calculated by use of Eqs.
(50), (32), (38), and (12), the fact that

1
h =, (g )h', ,

tn '= —1
(45)

(J' K' M I J', IJ K M ) = 5
2 1 2

x [J,(J, + 1)] 'I' C(J',1J„K,n'K, ) . (51)

sirice they transform in the same manner as the
spherical harmonics in Eq. (35). But since h
=—c ~ J, it follows that O' I can be expressed as

Use of this expression and Eq. (38) to calculate
the matrix elements of expression (49) for hm
gives the following result:

(J K M Ih I J K M )

= C(J,IJ„M,mM, )(J+,IIhII J,K, ) (52)
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as predicted by the Wigner-Eckart theorem, with
reduced matrix element

2

m = —2
(sv)

&J,K, II&ll J,K, &

= [J,(J,+ 1)(2J, + 1)/(2J, + 1)]"'
I

1
m n +2-~l~m

a
m', e'=-1

x C(J', 1J„K,—n', n')C(J, 1J~;K,—n', m') .
(58)

Correlation functions of the quantities km occur
in the theory of nuclear magnetic relaxation by
spin- rotational inter actions. '4

where g, denotes the Euler angles of S, with re-
spect to S. The elements F' i in the body-co-
ordinate system are constants. Since V~& is a
real symmetric tensor, there is a body-coordi-
nate system, say S", in which V~& is diagonal,
the only nonzero elements being V~X, V&&,
and VZZ. The a es of 8" are labeled so that
IVzZ I

~
I VXXI ~

I Vyy I . Quantities eq and g
are defined by

eq -=V, and g —= (V —V )/V . (58)

The constant elements F"«of F in S«are then

4. Nuclear Electric Quadrupole Interaction F ll F I I 0 F I I 1(6)

2
K = Z (-1) F

q —m mm= —2
(54)

The interaction of a nucleus having spin angular
momentum hi and quadrupole moment Q with the
other charges in a molecule containing the nucleus
has the Hamiltonian"

Let g"= n "P"y" be the Euler angles of S" with
respect to S,. Since the F' II are given in terms
of the F' i by an equation similar to Eq. (57), it
follows that

2
Z D, '+(Z )D, „'*(Z")F"„m, „mm' 1 m'm" m".

m j m

(«)
The quantities Fm and Qm transform under rota-
tions of the coordinate system as second-rank
spherical harmonics, and hence are irreducible
tensor operators of rank two.

The Qm involve the nucleus; they can be ex-
pressed as

The matrix elements in the I JbM) representa-
tion can be obtained from Eq. (60). In the special
case of a symmetric top molecule, the following
result is obtained by use of Eq. (38):

(J K M IIF IIJ1K1~1)

Q = [eQ/2I(2I- 1)] [SI ' —I(I+1)], (ssa) = C(J,2J„M,mIIf, )&JP;IIFIIJ K ), (61)

q = v ~(6)'I'[eQ/2I(2I-1)) [I I +I I ), (55b) in agreement with the Wigner-Eckart theorem,
with reduced matrix element

Q = —'(6)'~' [eQ/2I(2I —1)]I ' (55c)

where I~ =I~+iI . The Fm are given in terms of
the second partial derivatives of the electric po-
tential V of the other charges in the molecule,
evaluated at the position of the centroid of the
nucleus, by

&J&,IIFIIJ,K, )

= [(2J,+ 1)/(2J, + 1)) 'i' C(J,2J„K„K,—K, )

2

II (l' )F ll
II n 2 lcm m

m
F = 2 V

F =+(6) "'(V +iV ),ZX ZP

F = g(6) 'I' (V —V + i2 V ),XX PP gP

(Ssa)

(56b)

(Ssc)

= [(2J,+ 1)/(2J', + 1)] 'I' C(J,2J„K„K,—K, )

x{~eqDK K 0(g")+~ (6)-' 1)eq
2 l~

where the subscripts on V denote partial deriva-
tives. If elements of the tensor in the laboratory
coordinate system S are denoted by F, and
elements in a principal body-coordinate system
S, of the molecule are denoted by E' I, then

x[aK K 2(g-), aK* K 2(g-))). (62)
2 l~

Correlation functions of the quantities E occur
in the theory of nuclear magnetic relaxation by
quadrupolar interactions. "
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VI. REMARKS

Theprincipalresultsof thispaper, Eqs. (13), (14),
and (18), have beenderivedbyuse of just thetrans-
formation properties of irreducible tensor opera-
tors under rotations, the assumed invariance of
the Hamiltonian under rotations, and the Wigner-
Eckart theorem E. quation (13) shows that many
of the possible correlation functions are zero,
and Eqs. (14) and (18) show that the nonzero cor-
re1ation functions can be expressed in terms of
reduced matrix elements.

The form of the correlation functions given by
Eq. (13) is, in itself, of importance in applica-
tions, since it sometimes can be used to reduce
the number of unknown quantities in a theoretical
expression sufficiently that the remaining unknown
quantities can be evaluated by comparison of the
theory with experimental results.

The calculation of the nonzero correlation func-
tions remains a formidable task. However, the
fact that only reduced matrix elements are re-
quired may facilitate the solution of this difficult
problem. If so, the examples of reduced matrix
elements given in Sec. V should be of use.
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