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The three-dimensional transport equations of converting charged species are solved, taking
into consideration the effect of the following for both primary and secondary species: dif-
ferent electron and/or ion temperatures, different initial radial distributions, an absorbing
drift-tube wall, and the distinction between radial and axial diffusion coefficients. The so-
lution bears explicit dependence on all the relevant geometries of the drift-tube assembly,
making it applicable to all known types of drift-tube arrangements. Three realistic initial
charge distributions are considered. Remaining inadequacies of this transport model are
critically examined.

I. INTRODUCTION

In the past decade, various articles' " have
offered analytical solutions to transport models of
converting ions in drift tubes. However, none of
the models was treated in a way that is general
enough to be applicable to all known arrangements
of drift-tube assemblies. »" "&" Moreover,
their models are not three dimensional in a com-
plete sense, in that none of them consider for both
parent and daughter species (a) effects of different
ion temperatures, (b)effects of different initial ra, —

dial distributions, (c) distinction between radial
and axial diffusion coefficients, and (d) effects of
an absorbing drift-tube mall. For accurate inter-
pretation of drift-tube data, which generally have
prominent three-dimensional characteristics, such
features should be included in the mathematical
solutions. For experiments designed to interpret
the drift-tube data to 1% accuracy, " "the advan-
tage of having the solutions of a versatile trans-

port model establishing guidelines is considerable.
On the other hand, it should be stated that experi-
ments'~~& o ' can be designed to minimize the
above listed effects, not properly accounted for
owing to the inadequacies of the theoretical model.
But the accompanying requirements are often se-
vere. These requirements are usually a combina-
tion of the following: (1) the construction of a
bulky drift tube, (2) the acceptance of unnecessary
limitations on the dynamical ranges of the experi-
ment, and (3) the acceptance of time-consuming
internal consistency checks for every simplifica-
tion assumed in the theoretical model at every ex-
treme of the parametric space.

II. STATEMENT OF THE PROBLEM

The relevant transport equations describing the
three-dimensional drift and diffusion phenomena
of two charged species 1 and 2, where species 1
converts to species 2 are
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= V ' (Qz ' Vpz) —vx ' Vpx —Qpz

' =V ~ (S, ~ Vp, ) —v, ~ Vp, + op„ (2)

p.(r, &, + ~, t) = 0, i = 1, 2. (4

The origin of the coordinate system is at the en-
trance shutter of the drift region. The initial con-
ditions are

p.(r, e, z, t)=0,0' i=1, 2;

where p, S, v, and & are, respectively, the charge
density, diffusion tensor, drift velocity, and con-
version frequency.

The region of interest for these equations is a
cylindrical cavity of infinite length, and radius, r„
along whose surface, the charge density is assumed
to be zero. Hence, the boundary conditions are

p. (r, 8, z, 0) =f. (r)[H(z+ k.) —H(z)], i = 1, 2, (5)
z

where H and h~ are, respectively, a Heaviside
step function and the axial width of the initial slab
of the ith species. Hence, Eq. (5) represents an
arbitrary radial distribution, with azimuthal sym-
metry, and a step-function axial distribution of
width hz.

III. SOLUTION

Using the separation of variables approach, where a~, are constants to be determined from the initial
conditions:

p.(r, z, t)= Q a. R (r)Z. (z, t), i=1, 2,
k 1

(8)

the separated transport equations, which are consistent with the boundary conditions and the assumption
of diagonal diffusion tensors, are

d Rk 1dRk Pk
+ 2Rt' ch x' k'

BZ 82Z sg
(8)

~Z 82Z BZ 2D

where Pk is the kth root of J„which is a Bessel function of the first kind and zeroth order Dri a.nd Dzi
are, respectively, radial and axial diffusion coefficients of the ith species.

A solution to Eq. (7) is

R (r)=J (P r/r ), k=1, 2, 8, . .. (lo)

These solutions to the radial equation form a complete set, and we incorporate the standard procedure of
expanding the initial radial distribution in terms of the eigenfunctions of this complete set. Hence,

f.(r)= Q a kJ0(pkr/. ro),
A. =i " ' '

and the a k can be evaluated using the orthogonality of the eigenfunetions,

a. = [2/r 'J '(P )]f 'f (r)J (P r/r )r.dr (»)

Equations (8) and (9) are solved by the use of Fourier transforms. The solution for the ion distribution
of the daughter species is composed of two infinite sums, in k. The first is due to initial injection of the
daughter species. The second sum in k, which shall be referred to as the reaction term, is due to con-
version to the daughter species from the parent species. This latter sum is composed of two partial sums,
due to the distribution of poles occurring in a contour integration. The first goes from k= 1 to N, where
N is the largest positive integer assumed by k such that e+DzyI & 0. The second partial sum goes over
all other values of k where n+Dryk& 0. In eases where Dr is always positive, N clearly equals infinity,
arid the second sum is not taken.
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p {r,z, t)=2 Q ai Jo(p r/ro)exp(- &1&t)(erf)1'-erft'1),
k=1

p2(r, z, t)=2 Q a2&Jo(p&r/ro)exp( a-2 t)(erf)2'-erf$ )
k=1

2 2 ( N (- 1) a

+4D &
Z Z I Z exp(-& t)JO(P r/r )[exp(g '+. .2g. . g. .)

4D

xerfc(& +n .. )- .e.xp(g „'+..2g „g ..")
e. .rfc(& "+.g. )-..(erf& ".. er-f& )]..ij ijk ijk ijk ij ij ijk ij ij

exp(- a. t) J~(P r/r O)[exp(n. .~'+2'. .~4..)0'. ik 0 k 0 ijk ijk ij

where

xerfc($. +g. . )-exp(q '+.
2. g. .&$ . ")erfc(&. "+g. . ').- {erf$."-erf$..)],i ijk ijk ijk ij i ijk i ij (i4)

g. =(z —v.t)v. , g. '=( zh+. -v t)r , .$. ".=(z+hi-v. t)r. , o.'. =+6.1+D .y, D =D -D~ k'

D =D -D 2, v=v —v2, y = p /ro, o.&=X&+(-1) v/2D,z'

=v /4D +n/D +y D /D, g. . '=(-1) g, $. =(-1) f. ,
2 2 2 k k

z z k x z' ijk ijk' 'k i '

g. . =o /2~. .ijk je s'

=(4D .t)-'&'
i zi

%'hile the above solutions are formally composed of infinite sums in k, only the first-few terms are neces-
sary to adequately describe most realistic initial radial distributions.

IV. INITIAL CONDITIONS OF SPECIAL INTEREST

Three types of initial conditions, commonly en-
countered in experimental situations, are consid-
ered below:

(1) The drift-tube assembly is assumed to have
a source aperture radius which is the same as
that of the drift space. Initially there exists over
the source aperture an ion slab of thickness hi,
having uniform density along the axial direction.
The radial density distribution of the ion cloud is
described by a zeroth-order Bessel function,
whose first zero is at the wall of the drift space.
Physically, when the time it takes the ions to
travel from the source to the coilector is long as
compared with the characteristic decay time of the
higher diffusion modes, such a description is ap-
propriate. Mathematically, such an initial con-
dition can be expressed as

p.(r, t=O)=C. Z P —[H{ +a.)-H(z)]i ' i 0 1y' g

= Z a. ~ P —[H(z+I.)-H( )], (16)
ik 0 k ro

where Ci is the charge density of the ith species
at the center of the initial ion cloud. Evaluation
of the coefficients a.k is trivial. Only the first
coefficient is nonzero:

= Q a. Z P —I[H( +a.)-H(z)]. {iS)ik 0 k xo] i

The evaluation of the coefficients at~ by Eg. (12)
is straightforward.

"~=";/['~'1"u)] (2o)

where J, is a Bessel function of the first order.
The first six or so terms of the k series suffice

a..= C.51, k=1, 2, 3, .. .~.
ZC Z

(2) The source aperture radius is the same as
that of the drift space as in case (1), but the ini-
tial ion slab now ha, s uniform density distribution
in both the axial and the radial directions. The
thickness of the initial slab is still hi. Mathemat-
ically, such a distribution is described by

p.(r, 0) = C.[1-H(rO)] [H(z+ h. ) -H(z)] (18)
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to give a fairly accurate description of the den-
sity as a function of r and t. For situations, where
(Dtxtotal drift time)'& is much larger than ro, a
few more terms may need to be taken.

(3} The source aperture radius rs is assumed
smaller than that of the drift space. The initial
ion slab is cylindrically shaped, having dimen-
sions h~ and rs. Its distribution is uniform in
both the radial and axial direction. Mathemat-
ically,

These solutions are also applicable to drift-
tube experiments operated under steady-state
condition, '&" provided that one lets hg»z0 and

t=z0/vt in Eqs. (13}and (14). It being understood
that such conditions demand that the solution is
valid at the time range, z0/vt«t«ht/vt, only.
The generality of these solutions is shown by the
fact that the solutions offered for converting ions
in Refs. 1 to 11 are special cases of our treat-
ment.

p .(r, 0)= C .[1-H(r )] [H(z + h.) -H(z)]
Z

'
Z s (21) VI. CRITICISM

Q a. J P —[H(z+h. }-H(z)). (22)
rp z

The ag, evaluated by Eq. (12) are

a. = 2c.r J Ph
—/[r0P &I'(Ph)] (2.3)

ik i s1 kr,

The choice of the number of terms is determined
by the ratio (Dt x total drift time)'I'/rs. More
than ten terms should be taken, if this ratio is
larger than one.

V. APPLICATION TO DRIFT EXPERIMENTS

In drift-tube experiments, one is usually inter-
ested in the current at the collector, which is

g 0
Zg ~Z

(24)

where r~ is the radius of the collector. The dif-
ferentiation of p with respect to z is straightfor-
ward, and the integration with respect to r needs

only the use of the relationship

r
f J (P

—)rdr rr J (p
—

)=/p . (25)

Hence the substitution of Eqs. (13}and (14}into

(24) yields an analytical expression for the ex-
perimentally measured value I(z„ t), in terms of

g, , g„'U2, Dz1, Dr], Dz2, Dr2, Ci, C2, zp

rs, r„r&. The explicit dependence of I on the
last-four parameters, zp, rs, r„and r~ makes
the solution applicable to all drift-tube arrange-
ments & ~ 2

& of cylindrical symmetry. In ex-
periments where the measured quantity is charge
collected at z, during time interval w, instead of

the instantaneous current I(zo, t), one needs to
compare the data with the expression,

Five assumptions made in this transport model
are: (1) the wall surrounding the drift space is
a perfect absorber, (2) no absorption by the
source shutter, (3) no absorption by the collector
(collector shutter), (4) the charge distribution is
azimuthally symmetric, and (5) the diffusion
equations adequately describe the motion of the
charge distribution. The validity of the first as-
sumption must be examined separately depending
upon the nature of the charged particles involved.
In the case of iori transport, the metal guard rings
defining the drift space can be considered as gen-
uine perfect absorbers. The only approximation
made is the discrete spacing of the rings, instead
of a continuous wall. This approximation can be
examined with the help of a numerical example.
Consider the case, where v, =50000 cm/sec,
Dzl=Dr1=900 cm'/sec, r0=r~=1 cm, ht=0. 5

cm, z, = 10 cm, & = 0 sec-' and the initial radial
distribution is uniform. The fractional loss due
to radial diffusion, with the assumption of a per-
fectly absorbing wall, is 0.64; while that for six
equally spaced guard rings is found to be 0.59.
For drift tubes having guard rings more densely
spaced than above, the approximation should be
even better. In cases, where fast electrons are
involved, the surrounding wall becomes some-
what reflective. Therefore, another approxima-
tion is involved. It is found, however, from
simple consideration of net radial diffusion losses,
that this assumption can be corrected to first
order by the introduction of an effective drift-
tube radius, r, '. When the ref lectivity 8 is small,
r, ' can be related to the physical drift-tube radius
r„ through the relationship r, '= r,/(1 —R)'~'.

The absorption of charged particles by the
source shutter must be examined separately de-
pending upon the size of the source aperture. If
the source aperture is of the same size as the
drift tube, only the absorption of back diffusion of
the admitted charged particles needs to be con-
sidered after the shutter is closed. This problem
was investigated by Lowke, "assuming an infinite-
ly thin plane initial charge distribution. Taking
his results and modifying it slightly to fit an ini-
tial step distribution of axial width h, one obtains

q, (t)= f, "1.(z, t)dt. (25} 8 = h/(z, [exp(hv/2D) —I]), (2 I)
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where E is the relative error in position (as com-
pared to zo) of the peak density at f = (z, + b/2)/v.
When the diffusion coefficient is small, E can be
taken as the relative error in the arrival time of
the maximum current. This error is less than
1% for most ion-drift experiments. For electron-
drift experiments the error can be significant. If
the source aperture is smaller than that of the
drift tube, and if the initial charge distribution
has a finite width h, then one may consider the
additional radial absorption effect by the shutter.
The trailing edge of the initial charge distribution
is always more severely distorted, because this
portion of the distribution is limited by the physical
presence of the source shutter to a cross section
of radius ~~, while the mathematical representa-
tion allows it to diffuse in the radial direction as
freely as the leading edge. If the time b/v is
very small as compared with the total drift s, /v,
the effect due to this mathematical inadequacy is
believed to be insignificant.

The effect of absorption by collector or collec-
tor shutter has been investigated by a number of
persons. "&" Whealton and Woo" showed that the
arrival-time spectrum is not significantly affected
(less than 1%) by the assumption of either a com-
pletely transmitting or absorbing collector, for
conditions where (vz, /D & 200). When the above
condition is severely violated, as it is in some
electron transport cases, one would expect that
the assumption of a completely absorbing collector
is more appropriate. "~ '2 An analytical solution
satisfying such a boundary condition can always
be constructed from solutions to a perfectly trans-
mitting collector transport model. The intro-
duction of a negative image term, having appro-
priate strength for each diffusion mode, starting
at z =2~p and traveling with the same velocity,
shall satisfy the p(&„x, f) = 0 boundary condition
for all t. For example, a substitute expression

for Eg. (13), satisfying the absorbing collector
boundary condition is

1 ' ' 2 Ik lk
1

k=1

where

+2 Q a»bl ZI (a-2z0, ~, t), (28)
1

0=1

~p
r 1&

+p
(29)

and where b1p, the strength factor for kth diffu-
sion mode, is determined by the condition:

Z (a, x f) 8 Zp

=bl Z (z —2z, y, f) . (30)
Zp
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Properties of quantum-mechanical time-dependent correlation functions of pairs of irreduc-
ible tensor operators are derived from the transformation properties of the tensor operators
under rotations, the assumed rotational invariance of the Hamiltonian of the system, and the
Wigner-Eckart theorem. It is shown that many of the possible correlation functions are zero,
and that the nonzero correlation functions can be expressed in terms of reduced matrix ele-
ments. Some examples of irreducible tensor operators which occur in applications are given,
and their reduced matrix elements are calculated.

I. INTRODUCTION

Quantum-mechanical time-dependent correla-
tion functions of pairs of operators occur in the
theory of magnetic resonance and relaxation, '
and also in the theories of other phenomena, such
as microwave resonance, Raman light scattering,
and neutron scattering. ' The operators whose
correlation functions are to be calculated are
irreducible tensor operators, or they can be ex-
pressed as linear combinations of irreducible
tensor operators. However, the properties of
irreducible tensor operators do not seem to have
been exploited fully in previous calculations of
correlation functions.

Some general properties of correlation func-
tions of irreducible tensor operators are derived
in Sec. II, and it is shown how such correlation
functions can be expressed in terms of reduced
matrix elements. In Sec. III correlation functions
of tensor operators pertaining to a single mole-
cule in the system are considered. Section IV is
concerned with symmetry properties, symme-
trized correlation functions, and their Fourier
transforms. In Sec. V some examples of irre-

ducible tensor operators are given, and their
reduced matrix elements calculated.

H. GENERAL PROPERTIES

An irreducible tensor operator of rank k can
be defined' as a set of 2k+1 operators Tk, mkm~
= -k, -k + j, ... ,k, which transform u'nder ro-
tations of the coordinate system in the following
manner. The operator Tkm in a coordinate sys-
tem S ' is equal to the operator

k

RT& R '= Q D, (nPy)T
m'=-k

in a coordinate system S, where npy are the
Euler angles specifying the orientation of S' with
respect to S. R is the unitary rotation operator

R=exp(-inL )exp(-ipL )exp(-iyL )g y + t

where SI& and Arz are, respectively, the y and
z components in S of the total angular momentum
SK of the system. The unitary matrix DL(nPy)
has elements


