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Calculations of the vibrational properties of hcp solid He and He at O'K have been carried
out. The harmonic coupling parameters for first and second neighbors have been evaluated
for four molar volumes in the range 10.0 cm to 16.0 cm using the harmonic ground-state
wave function and the self-consistent method of Koehler. The dispersion relations and sound
velocities were evaluated for the symmetry directions Z, T, and &. Frequency distribution
functions and Debye temperatures at O'K have also been obtained for both solids in the hcp
phase. A comparison with experiment indicates that the calculated Debye temperatures are
too high, the agreement with experiment being best at the highest density examined. The ratio
of the He Debye temperature to the He Debye temperature 63/84 at O'K is found to be approxi-
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mately 1.23 as compared with the classical value of 1.154 and the experimental value of 1.18.

I. INTRODUCTION

A theoretical study of the lattice dynamics of
solid helium is complicated by the presence of a
relatively large zero-point energy, a consequence
of the small atomic mass and the weak forces be-
tween atoms. As a result of the large quantum
effects, classical lattice dynamics fails as a meth-
od for determining the various vibrational prop-
erties of the solid. Classical lattice dynamics'
gives imaginary frequencies for molar volumes
of the solid larger than 12. 6 cm'.

In recent years several quantum-mechanical
treatments have been presented for the determi-
nation of the ground-state energy of the solid. ' '
Nosanow and co-workers, ' " in a series of papers,
have calculated dispersion curves, Debye temper-
atures, etc. , for the low-density bcc phase of He'
and for low densities of hcp He4. Nosanow et al.
have used a variational method and a trial wave
function composed of a product of single-particle
functions centered about the lattice sites and short-
range two-particle correlation functions.

Koehler"-" has developed a method of self-con-
sistent lattice dynamics using a variational method
with a ground-state harmonic wave function as a
trial wave function. Kith the addition of short-
range two-particle correlations to the trial wave
function, Koehler" has calculated dispersion
curves and the ground-state energy for bcc He'.

The purpose of this work is to examine the vibra-
tional properties of solid helium in the region of
high densities. Previous theoretical results have
been presented for molar volumes in the range
17.5 to 24. 5 cm'. The results presented here are
for molar volumes in the region 10.0 to 16.0 cm'
and for T = O'K, conditions under which both He'
and He4 are in the hcp phase.
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The self-consistent method of Koehler"-" modi-
fied for hcp symmetry is used in this calculation.
The choice of trial wave function is that appropri-
ate to a harmonic solid in the ground state. This
particular choice of wave function suggests itseU
in the high-density case for several reasons. As
the density of the solid increases, the effective
single-particle potential shifts from one where
the mean atomic position occurs at a relative po-
tential maximum to one where the mean atomic
position occurs at a potential minimum. Thus,
the single-particle potential in the vicinity of the
mean atomic position changes from a markedly
anharmonic potential at low densities to a potential
approximately harmonic at high densities. Ac-
companying this pronounced change in the potential
shape is a relative decrease in the importance of
the vibrational energy. At the lowest densities of
the solid, the vibrational energy is of the same
order of magnitude as the static lattice energy.
As the density of the solid increases, however,
the static lattice energy increases much faster
than the vibrational energy. This means that as
the density increases, the rms atomic displace-
ments decrease more rapidly than the mean
nearest-neighbor separation, thus tending to estab-
lish conditions for which the harmonic approxima-
tion is valid.

In addition, as the density increases long-range
order should become the predominant effect. The
harmonic ground-state wave function contains this
long-range order implicitly. As a further point
of interest, the results of Nosanow" indicate that
the short-range correlations soften the repulsive
core of the potential too much as the density of the
solid is increased. This results in a lower bound
on the range of densities considered. Thus less
short-range correlation is needed as the density
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increases, a conclusion which further commends
the wave function used below.

H. GENERAL THEORY

are obtained from the set of equations

ZD. . " (k)e. (k, X)=~- e . (k, X),ij jv k$ pi
Vj

(2. 8)

Qassical Lattice Dynamics

Consider a perfect crystal of solid helium in
any of the three phases bcc, fcc, or hcp. Using
periodic boundary conditions the Hamiltonian for
any macrocell in the crystal l.s

Pl P, l

+—Q' v(t% +q™0 "-q "!), (2. 1)
P V V

PlP,
nv

where M represents the mass of a helium atom
and the prime on the second summation excludes
those terms where (m, p) = (n, v). The mean
position and the displacement from the meanposition
of the pth atom in the mth cell are given by 5,
and q ~, respectively. The corresponding
momentum in the Cartesian direction i is given
by p .m. The two particle interaction v(r) is
taken to be the Lennard- Jones potential

where D" &"(k) is the dynamical matrix definedlj
by

For each k, there are 3r modes of vibration &k&,
where z is the number of atoms in the unit cell.
The quantity X then indexes the different modes
of vibration.

The exact ground-state wave function of the
Hamiltonian given in (2.4) is

=A exp[ —~~ ((g /2h)Q Q ].0
ky k&

(2. 8)

Using the inverse transformation from normal to
real coordinates (2. 8) becomes

=Aexp —— q . 6 . . q.1 Pl Pl@ n
0 2 . p, i p.i, vj vj

PlP, Z

(2. 9)

D.." (k)=—QC . . exp[8 (5 =5 )].(2. 7)ij M p.i, vj

v (r) = 4 e [ (o/r)" —(cr/r)'] . (2. 2) where

In the harmonic approximation (2. 1) becomes G . . =(M/eX)Q ~- e . *(k, X)
p.ivj

kX
kX pi

Plp, i Plp,
xe .(k, X) exp[ik (R ~ —5 )].

lg
(2. 1O)

1 mn m n

P4&VPl P, Z

Svj

(2. 3)

where the 4 ~~ are the coupling parameters"pz, g
of second order. In terms of normal coordinates
(2. 3) is

The Ground-State Energy

Using the method of Koehler" we now evaluate
the ground- state energy for the general Hamiltonian
given in (2. 1). In the variational calculation that
follows, the wave function 4, (2.9) is used as a
trial wave function for the general Hamiltonian
with the frequencies +k& treated as variational
parameters. The ground-state energy is

+—Q' v(i% - 5 "i),
nv

where the transformation

(2.4) ~o=(I/2M) Z (~o, (P . )'~o)/(eo, ~o)
Pl P, $

+
2

Q' (eO, v(]x -x ()@O)/(e, y ), (2. 11.)
PlP,

q . =,„, Q e . (k, X)q exp(ik. 5, )
kX

(2. 5)

Pl + Pl ~ Plwhere x = m +q
p, p,

(2. 12)

has been used.
The frequencies &ok~ and eigenvectors e&z (k, X)

The kinetic energy term is the same as that
present in the harmonic case so
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KE =(ff/4)Z (o„- .
kX

(2. iS} Differentiating P „mn(q ) with respect: to &ok~ and
P, P

integrating by parts then yields

where

mp,
nP (2. 14)

The method of evaluation for the integrals in the
potential energy term is similar to that given by
Koehler. " The result of this evaluation is

ms
BED 8 1 gr P&r re

Brrr~ 4 8 . Bagkmpi k)
npj

8q.8q. p. Pj
(2. 19)

P "( ) =
I (E ") 'I'"m '"

P, P P, P

xexp[- g(E ) 'q],
P, P

(2. 15)

and the abbreviations 5 m" =5, m —5„"and
P, P P, P

q =q m-q
p have been used. q and q are col-

umn and row representations of the vector q. The
function P „"(q) represents a two-particle
probability function for the relative displacement
of the atoms (m, iL) and (n, v) with the symmetry
of the lattice appearing in the 3 0&3 matrix F
for each pair of atoms. The elements of this
matrix are closely related to the G . .m" of (2. 10)

p, i,vj
and are defined by

P . . "=(2'/XM)g'~„- 'e . (f-, X)
pi, vj kX pi

where (m, p, ) e (n, v), and

mm f m8
pi, vj pi, vjSP

(2. 20b)

The minimization condition is then

The remaining integral represents the expecta-
tion value of Bnv/Bqfsq& with respect to the weight
function P»m+. This expectation value replaces
the second-order coupling parameters which ap-
pear in classical lattice dynamics. By analogy
we define

B ~(I% "+q I)
mn & P m&(q) dq

pi~ vj 8q.8q. p, P
Z

x(e .(k, X)-e .(R, 1)
uj

xexp[ik (5 "—5 )]),
P P,

(2. 16)

8F .BE, @ 1 gr mn pfrvj
8"k 4 8 . Pilj 8N

kX mp, z kX

(2. 21.)

with the prime on the summation indicating that
the k =0 acoustic modes are excluded.

The ground-state energy for the system is then

Introducing the derivative of F m" with re-
spect to ~k X and rearranging term's, we obtain
for the minimization condition

E =(a/4)Q

+—Q' f v(IR +q I)J' (q)dq. (2. 1V)

Qe . . exp[ik (5 —0 )]
m pi, vj P JX

npj

xe . (k, X)=~ 'e . (k, X)
vj ' kA

(2. 22)

"(q)
x

kX
dq ~ (2. ie)

The Minimization Conditions

%e now require that the ground-state energy be
a minimum with respect to the parameters cgk&.
The mk occur in P m" (q) through the depen-
dence of the matrix F»m on the uk~. Hence,

BE @ 1+r t (Igmrr~ I)
Bcd 4 2 J p~

kX mp,

which is equivalent to (2. 6).
This final form for the minimization condition

(2. 22) corresponds to the eigenvalue problem of
classical lattice dynamics. There are, however,
some significant differences: (1) the coupling
parameters 4» &m depend on the frequencies

sothe set of equations (2. 15), (2. 16), (2. 20),
and (2. 22) must be solved self-consistently; (2)
the coupling parameters contain anharmonic ef-
fects, which can be simply demonstrated by ex-
panding B'rr/Bq Bq& for small q; and (3) the cou-
pling parameters are determined by a quantum-
mechanical average.
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III. HEXAGONAL CLOSE-PACKED
STRUCTURE

In this section the general theory is applied to
the specific case of a hexagonal close-packed
lattice. The positions of the lattice sites surround-
ing the origin are labeled by

The wave vector, k in this case is

2w n i, (n, +2n, )i m i„)

This vector k is restricted to the first Brillouin
zone by requiring that

(s. i)

and

12n, +n, l ~I. ,

t 2n, t&I. ,

(S.4a)

(s.4b)

0 =(r, --.' r,)ai, +(/S/2) r, af, +i,cf, , (s. 2)

with z„s„and s~ being unit vectors in the x, y,
and z directions, respectively, and x is directed
along the nearest-neighbor line in the basal plane.
The quantity a represents the cell constant in the
basal plane and e represents the cell constant in
the z direction. The unit cell integers l„l„ l,
and the components of S are listed in Table I
for the first 12 neighbors of the lattice site at the

origin.

where I.'=N, the number of unit cells. The first
Brillouin zone is shown in Fig. l.

The method of Begbie and Born" is used to re-
duce the number of coupling parameters that need
be considered. A summary of the coupling param-
eters between the first 12 neighbors and the atom
at the origin is found in TaMe II.

TABLE I. Positions of the first 12 lattice sites.

8 2

9 2

10 2

12 2

0 0

1 0
1 1
0 1

-1 0
—1 —1

0 —1

0
0 0
0 0

0
0

0

0
0
0
0

0

0.

0

a/2
—a/2
-a

-a/2
a/2

0
0

—a/2
—a/2

a/2
a/2

0

0
3"'a/2
3"'a/2

0
-3"'a/2
-3"'a/2

/3 i/2

a/31l2

a/2 x 3"'
a/2 x 3"'
a/2 x 3'/'

a/2 x 3"'

0

0
0

0
0
0
0

—c/2
c/2

—c/2
c/2

—c/2
c/2

FIG. 1. First Brillouin zone for the hcp lattice.

0
1
2

3

5
6

7
8

9
10
11

P

—6(n+ A,)

n+ 2p

n-p
n-p
n+ 2P
n-p
n-p
A, +2p
&+2@

p
p

A. ~ p,

p,

TABLE II. Coupling parameters for the first 12 neighbors.

—e22p —@'33
p

-6(n+~)
n —2P

n+p
n+p
n —2P

n+p
n+p
~ —2p,

A, —2p
X+@
A, +p
A. +p,
A, + p

0

0

3 i/2p

3 i/2p

0
3i/2p

3i/2p

0

0
31/2~

3"'p

3 f/2

0
0
0
0
0
0
0
0
0

3 0'

3 i/2

3 i/2
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sc'-X/2a' = Sy+ v . (s. 5)

The Dynamical Matrix

The dynamical matrix can be written in the form

(A(k) B(f) )
I B*(f) A(f)

7 (s. 6)

where A(k ) and B(k ) are 3 xs matrices defined by
6

A(f)= Z (e /~)exp(ff %~),
p=0

12
and B(k)= Q (e~/M)exp{sf 5~},

p-7

(3.7a)

(s. Vb)

with 4P defined by Table II. The elements of
A(k) and B(k) are given in Appendix A.

The matrix D(k) and the eigenvectors e(k, X),
are complex quantities. In order to solve for the
frequencies numerically, it is convenient to trans-
form these quantities into a system where they
are real. The matrix B(k) can be written

It should be noted that to insure that the aniso-
tropic stresses within the crystal vanish at equilib-
rium, it is necessary to place an additional re-
striction on the coupling parameters, 2' a conse-
quence of rotational invariance within the crystal.
%hen the external stresses either vanish or are
a result of hydrostatic pressure, the condition is

Using the notation E~ =El „OI, Eq. (2. 16) can be
expressed as

E.. =(2a/mS)LQ~ Qe .*({n};q)
U nX {}li

x e .({s};y)-8. ({&}„y)1j ' vj

The Coupling Parameter Integrals

In the hcp case the probability function (2. 15)
for the pairs of atoms p=l and 8 becomes

P'(x —5') = C, exp[ —(x, —a)'/E„'

—x,'/E„'- x,'/E„'], (3 ~ 14a)

xexp i--— ' R ~+ " ' R ~+~ R ~
x 3~12 y p g

(s. 13)

where n refers to a point in the irreducible part
of the Brillouin zone, and {n}designates a point
outside of the irreducible part of the zone but
equivalent to n. Because of the symmetry of the
lattice, Eq. (3.13) need only be evaluated for p = 1
and 8. This is sufficient to determine the matrices
4' and 4' which contain all of the coupling param-
eter components. The elements of F' and F' are
given in Appendix B.

B(f) =B'(f)+fB"(f), (3.6)

—i7 iI p

(s. 9)

where B'(k) and B"(k) are both real. Using the
unitary transformation,

P'(x - 5') = C, exp[ - x '/E '

[E SE 8 (E 8)2] -1

x[E33'(x, +a/v 3 )'

—2E„'(x,+a/WS )(x, —c/2)

+E„'(x,—c/2)'] }, (3 ~ 14b)

m(f)z(f, x)=~f 'z(f, x), (s. 10)

(A+B' B" )
m(f) = TD(f) T-'=

I3PP + gP
(3.11)

and E(f, X) = Te(k, X) . (s. 12)

The new matrix &(f ) is both real and symmetric.

The Matrix Fpp

The next problem is to express the matrix
F&„~~ for the hcp structure in a usable form.

the eigenvalue problem becomes one of solving the
set of equations

where xy x2 and@, are Cartesian components of
the vector x =g + 5&. The coefficients C„and C,
are defined by

1/(P/2 [ El [
1/8 )

and C, = I/(v"'IE'I "' ) .
(S.15a)

(3.15b)

The coupling parameters given in Table II can
now be determined from (2. 20):

e.. =- J{x.x.f( )+5..g(x)}P (x -5 )dx, (3.16)

where f(x) =-v'(x)/x'+v" (x)/x (3. 17)

and g(x) = v' (x)/x . (3. 16)
v' (x) and v" (x) are the first and second deriva-
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tives of the potential function v(x).
The expressions for n, P, X vp, p Pp and tx ax'e

'
un in ppendix C.
This completes the determination of the set of

equations necessary for evaluatin thing e coupling
parameters self-consistently fo th h
The folio

r e cp lattice.
e ollowing procedure is used in the tual

latino

e ac calcu-
n. An initial set of coupling parameters is

assumecL The . These parameters are used to evaluate
xs matrix is thenthe dynamical matrix S (k) Th'

diagonalized to find the frequencies &@~ and ei
The frequencies and eigenvectors

are then used to evaluate the m t ' I'Pe ma races F which
in turn determine the probability functions P~(j).
To complete the cycle, the coupling parameters
are found by evaluating the integrals (3. 16) nu-
merically. The process is repeated until the cou-
p ing parameters in succesive iterations differ
by no more than one part in 10'.

800
600—
400

200

IOO

80
60

20

IO
8

H

1V. RESULTS

The Coup1ing Parameters

The set of seL~-eL~-consistent equations described
in the preceding section has been solved numeri-
c ly on the Iowa State University IBM 360-50
computer, using as parameters in the Lennard-
Jones potential (2. 2)e= 14 lxlo " er s andergs an o

.56 A. One complete cycle of the iteration
requires approximately 3 min. The integrals

terms of spherical coordinates and then integrated
numericaQy. The lower limit of integration on the
radial integral was set at 1 A. This choice is

13.0 cm' a
somewhat arbitrary for molar volum l thes ess an

cm, as the lower limit of integration can be
varied throughout a region about 1 A without af-
fecting the values of the integrals. In Fig. 2 a,

plot of the integrand f„(p) of the radial integral
of Eg. (Clf) is given as an illustration. For
larger molar volumes the value of the integral

the lo
becomes increasingly dependent on th h

'e c once of
e lower limit of integration as is clear from Fig.

shox'(-
This difficulty is due to the lack of suff' t0 . s lclent

s ort-range correlation in the wave funct' f
the lar er mg molar volumes, and indicates expl' 'tl

th
that the present theory is indeed a h' h-d 't

eory~
zg - ensi y

In the numerical calculations the ideal hcp ratio,
c/a = v"6/3, has been assumed. ln this case the
first 12 lattice sites given in Table I are all near-
est-neighbor lattice sites. The self-consistent
coupling parameters retaining only nearest-neigh-
or interactions are given in Tables III and IV for

four mola. r volumes.
The case where the first 18 neighbors are in-

cluded has also been examined for the molar vol-
ume range 10 to 16 cm3. The change in nearest-
neighbor parameters o, P X dy, , V, , v, an vis

I

I.O 3.020 2.5
p (A)

FIG. 2. TThe radial integrand I„(p) of Eq. (Clf) as
a function of p for four molar volumes.

I,5

TABLE III. He neare st-neighbor coupling parameters
(in dyn/cm) .

10.0
~~(cm )

12.0 14.0 16.0

1720
920
6.8

97.8
—63.4

372
—158

700
360
8.5

57.6
-36.3

205
—87.7

339
166
6.4

36.8
21I7

128
-54.0

192
90.5
6.1

26.0
—14.8

88.7
-36.9

10.0
&m(cm )

12.0 14.0 16.0

1660
885
3.0

84.6
-55.0

330
—139

640

73 03

302
145
5.8

31.1
—18.7

107
-44.9

165
75,1

5..1
21.8

—12.1
73,0

-30.2

TABLE IV. He nnearest-neighbor coupling parameters
(in dyn/cm) .
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less than 0. 3%. The second-neighbor parameters
are small, of the order of 1 or 2 dyn/cm. The
fact that the second-neighbor parameters are small
can be understood in the foQoming way. We have
made a calculation of the first- and second-neighbor

couyling yarameters in the classical quasiharmonic
ayyroximation. The result is that the average sec-
ond-neighbor couyling yarameter is ayyroximately
0.9% of the average nearest-neighbor coupling pa-
rameter for a molar volume of 10.0 cc, 1.2% for

LLj
CO

V)x
O
C
K

0
3

Mg
M)

~ Kp

KI
K)

Ks

p+

=X I' ~~I'

FIG. 3. He dispersion curves for V~ = 10.0 cm .3

LLI

M

M

~C
R

IO

3

4e
Nlg

IUI

Kg

Ks
K(

Mg

M3]

& s (Lo)

K M

p4

F I'

FIG. 4. He dispersion curves for Vm--12. 0 cm .3
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a molar volume of 12.0 cc, and 12.3% for a molar
volume of 14. 0 cc. In the quantum-mechanical cal-
culation the coupling parameters are increased in
magnitude by contributions from the core of the po-
tential. Since this effect is considerably larger for
nearest neighbors than for second neighbors, the
relative smallness of the second-neighbor param-
eters results.

The Dispersion Relations

Dispersion relations have been evaluated for
three symmetry directions, 6, Z, and 7'. of Fig. 1,
using the nearest-neighbor coupling parameters
of Tables III and IV. The dispersion relations for
He are given in Figs. 3-6. The dispersion re-
lations for He' are very similar to those for He'.

M2
M

K2

K5
K)

hJ
V)

M ~+X

K
lO

D

3

+T'5

K M
r-

FIG. 5. He dispersion curves for V~ = 14.0 cm .3 3

M,
M)

Kp

K5
K)

A)

FIG. 6. He dispersion curves for V~--=16.0 cm .
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Raubenheimer and Gilat" have listed the allowable
irreducible representations for the high-symmetry
directions and points of the hcp lattice, together
with the corresponding compatibility relations.
These compatibility relations together with the
properties of the eigenvectors were used in label-
ing the dispersion curves in Figs. 3-6.

An interesting feature of these dispersion curves
is that the transverse acoustic modes are widely
separated in the Z and T directions implying a
high degree of anisotropy.

The Frequency Distribution Function

The numerical method of Raubenheimer and
Gilat" has been used to evaluate the frequency
distribution function, G(&o), at several molar vol-
umes for both He' and He4. The unnormalized
G(&o) given in Figs. 7-10 were obtained using a
mesh of 960 points in the irreducible part of the
first BriQouin zone and 1000 channels for ~. The
calculation for each G(u&) requires 9 min on the
Iowa State University IBM 360-50 computer. The
results for He4 are again similar. A summary of
the critical points in the symmetry directions 4,
Z, and Tis found in Tables V and VI. The sym-
metry directions g Z, and T account for most of

the significant critical points in Figs. 7-10. How-

ever, there is at least one strong critical point
not connected with these symmetry directions.
This point lies between the critical points M4
and K,. There may also be another strong critical
point near T4. The critical points F, , K„E„
and T, (LO}all appear to be quite weak or non-ex-
istent.

The Debye Temperature

The frequency distribution functions have been
used to determine the Debye characteristic tem-
perature at O'K. In the Debye region the distri-
bution function has the form

g((o) = c,u)',

where cp is a constant determined by fitting in this
case. The Debye characteristic temperature 8
can be calculated from the equation

e = (m ju)(3&,/2c, )'I',

where k is Boltzman's constant and Ap is the total
area under the complete distribution function curve.
The results of this calculation are given in Table
VII.

0.80-

0.60— T(Lo)

CO
0.~—

K

3
0.20-

0.00
0.00 9.00

I

18.00
I

27.00 36.00 45.00 54.QO

I

63.00

co ( Io' RADIANSlSEC)

FIG. 7. He frequency distribution for V~ =10.0 cm .
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4

x 0.60 "

K
K

I Q.m-

Q.20-

0.00
0.00 6.00 I2.00

I I I

I8.0O 24.00 3000
(y (Io' RADIANS/SEC)

36.00

FIG. 8. He frequency distribution for V~ =12.0 cm .

0.00 400 I2.00 16.00 20.QO

tu ( lo' RADIANS/SEC)

FIG. 9. He frequency distribution for V~ = 14.0 cm
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tA

1.20-

lr
K1-

I 0.80-

3
QAO-

0.00
R

5.00 600 9.00 1200 15.00
o) (10'~ RAOIANS/SEC)

16.00
I

21.00

FIG. 10. He frequency distribution for V~ = 16.0 cm .

TABLE V. Critical points for He in 4, Z, and 2' directions.

Point 10.0 cm /mole
&u {10' rad/sec)

12.0 cm /mole 14.0 cm /mole 16.0 cm /mole

r,
I'3

M4
M+

3

M3
M4+
M+

1

M2

K,
K(
K5

K2
(r.o)

4 max

15.3
29.8
17.5
24.6
35.4
39.2
65.4
66.3
21.4
55.3
56.6
58.0
60.1
60.6

11.7
22.2
13.3
18.5
23.0
26.3
41.7
42.4
16.2
35.2
36.4
37.6
38.5
38.9

9.39
17.5
10.6
14.7
16.5
19.2
28.8
29.5
12.8
24.5
25.6
26.6
26.9
27.2

7.89
14.6
8.98

12,3
12.6
15.1
21.7
22.3
10.8
18.5
19,4
20.3
20.3
20.7

The classical value for the ratio of Debye tem-
peratures B,/B, is

B,/B, = (I,/M, )'~2=1. 154,

where M, and M4 refer to the masses of the He'
and He4 atoms, respectively. Sample and Swen-

son' s" measurements give B,/B, = 1.18. Calcu-
lated Debye temperatures 8, and 64 are plotted in
Fig. 11 as a function of molar volume. The re-
sults of Nosanow and Werthamer's" He' hcp calcu-
lation and the experimental data of Sample and
Swenson, ~ Heltemes and Swenson, and Franck
are also plotted.
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TABLE VI. Critical points for He in 4, Z, and T directions.

180

Point 10.0 cm /mole
~ (10' rad/sec)

12.0 cm /mole 14.0 cm /mole 16.0 cm /mole

I 6
+

M4
M+

3

M3

M4

M, +

M2

x,
E'g

X5

K2

~1(~o) mm
4 max

12.4
24.4
14.2
20.0
30.3
33.2
55.7
56.4
17.4
47.2
48.2
49.2
51.2
51.5

9.30
17.7
10.5
14.7
19.3
21.7
34.4
35.0
12.8
29.3
30.2
31.0
31.9
32.1

7.49
13.9
8.45

11.7
13.6
15.8
23.5
24.1
10.2
20.1
20.9
21.7
22.0
22.2

6.27
11.5
7.08
9.70

10.3
12.2
17.3
17.8
8.54

14.9
15.6
16.3
16.3
16.6

TABLE VII. Debye temperatures for He and He
at0 K.

The Sound Uelocities

V~(cm )

10.0
12.0
14.0
16.0

255
187
145
119

211
151
118
95

1.21
1.24

1 ~ 23

1.25

Calculated sound velocities for He' are given in
Fig. 12 for several molar volumes. Similar re-
sults have been obtained for He~. The sound veloci-
ties were determined by finding the change in ~g&
for changes in k at small k. The transverse and
longitudinal sound velocities shown in Fig. 12 re-
flect the cylindrical symmetry appropriate in the

280
240—
200

160—

i ( I
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I 8000—

l20—
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0
N 8'IIII THEORY

4)
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4000—
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o~ 2000

5,5 ( TA ) T~ (TA~ } X ~ ( TA~ }

I i I i I i I & I i I i I

IO I 2 14 I6 IS 20 22
MOLAR VOLUME (cc/mole)

l I

IO.O l2.0 I4.0
MOLAR VOLUME (cczmoIe}

I

I6.0

FIG. 11. Debye temperatures at 0 K. FIG. 12. He velocities of sound at O'K.
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case whe re the crystal symmetry is hcp. An in-
teresting aspect of the results is the large aniso-
tropy of the sound velocities which, because of the
symmetry, is a function only of the angular devia-
tion from the basal plane. For example, the longi-
tudinal sound velocity in the basal plane is larger
than that of the 6 direction by a factor of 2 or 3.

The Elastic Constants

The elastic constants can be, calculated from the
coupling parameters given in Tables III and IV using
the relations"

c„=(2/3' 'c)( —2g'/X+sn+sp+g —p, ), (4. 4a)

c„=(2/3'"c)(2p, '/X- sn+9p- X- sp), (4.4b)

e» = 3"'cp/a', (4.4c)

c„=3 eX/a q
(4. 4d)

c„=—(4o/a + 3"'cx/a'), (4. 4e}

where e and a are the appropriate lattice param-
eters.

DiscUsslon

The Debye characte ristic temperatures at 0 K
provide one of the few tests for comparison of the
calculations with experin ental data. As was ex-
pected the agreement with experiment becomes
worse as the molar volume increases. The theo-
retical values for V = 14.0 cm' and V~ = 16.0
cm' are much higher than the experimental results.
On the other hand, the calculated Debye tempera-
tures for V~ = 12.0 cm' and V~ = 10.0 cm' are
much more reasonable. This agrees with the orig-
inal conjecture that the theory should be more ap-
propriate at the higher densities of the solid.

It is interesting to note that the calculated ratio
6,/6, = 1.23 is fairly consistent throughout the
range of molar volumes indicating a significant
departure of the Debye temperatures from the
classical mass dependence.

The calculations presented here are for molar

volumes ranging from 10.0 to 16. 0 cm'. Extend-
ing the calculation downward to 8. 0 cm' yields no
anomalous results.

APPENDIX A. THE MATRICES

A(R) AND 8(R)

Evaluation of the elements of the matrices A(k)
and B(k) using (3.3), (3. 7), Table I, and Table II
yields

A„= (I/M){6K+2(n+2p)[1 —cos28, ]
+ 2(n —p }[2 —cos28, —cos2(e,+ 6,)]), (Ala)

A„= (1/M) {6X + 2(n —2p )[1 —cos28,J

+ 2(n+ P)[ 2 —cos28 —cos2(8, +8,)]},
A» = (1/M) {6 p + 2y [ 3 —cos28,

—cos26, —cos2( e, + e,)]J,
A„= (2v 3p/M) {cos26, —cos2(8, + 8,)),
and A„=A„=0

where e, =wn, /L, and e, =en, /L, and

B„= (2/M) -f (X+2p) e

(Alc)

(Ald)

(Ale)

+2(X —p) cose, e ]cose, ,
ZP (Asa)

B„=- (2/M)[ (X- 2 p, ) e

+2(~+ q) cose, e ] cose, ,
Ap

(A2b)

B» = —(4v"sa/M) sine, e sine, , (A2e)

4

B„= (4ia/M)[e -'+ —cose, e +] sine, , (Asf)

where 8, = m, /L and y = m(n, + 2n, )/3L .

B» = —(2v/M)[e + 2 cose, e ] cose, , (Asc)

B» = (4&sgi/M) sine, e' cose„ (AM)

APPENDIX B. THE MATRIX F~

Matrices E' and F' are symmetric with elements

ZI '= Q (fiN /3NM)Q ar „'{(El'+E4')[-,' —cos281 ——cos282 ——cos2(8 +e )]n n X nX

+ —', (E,'+E,') [ 2 —cos28, —cos2(8, + 8,)]+(+3/2)(E,E,+E E,) [ cos28, —cos2(e, + e,)]], (ala)

F22'=Q (5N /3NM}g u& '{(E2'+E5')[—,
' —cos261 —-,' cos28 ——,

' cos2(6 +8 )]22 n n X nX

+ —,
' (E,'"+E,')[ 2 —cos28, —cos2(6, + e,)] —(/3/2)(z, z, +Z,Z, )[ cos2e, —cos2(e, + 8,)]), (Bib)
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(@N /3NM)p ~ '(E '+E )[3—cos26 -cos26 —cos2(6l+82)],
33 n n X nX

E,2' =E,s' =E23'= 0,

(gN /3NM)p ~ -'(-', [E '~E '+E '+E '] -cos63((E&'-E4')ll n n X nx

x[cos2y+ ~ cos(8, +y)+ k cos(6, —p)]+ ~ (E,' —E,')[cos(6~+9 )+cos(61- P)]

E E, [2sin2p —,
' sin(6, +q)+-,' sin(8, —p)]+(/3/2)(Ep, -E,E~)[cos(6&—P) cos-(6i+P)]

—( Q3/2)(E E +E E ) [ sin(6, +y) + sin(9, -V)] —l E.E [»n(8, —q»- »n(8 + q»]]

( gN /3NM)Q ~ -' (-,' [El'+E4'+E2'+E5'] —
cos63{ (E2' —E5')

n n X nX

x[cos2cp+ 4 cos(6, +y)+ ~ «s(6, —p)]+ 4 (E,'-E,')[«s(6, +q )+c»(8, —p)]
—E,E, [2 sin2y ——', sin(8, + y)+ —', sin{6, —y)] —(/3/2)(EE2- E4E,) [cos(61 —g7) —cos(9, + cp)]

+ (v"3/2)(E,E,+E~,)[ sin(8, + y)+ sin(8, —y)] ——,
' E,E [ sin(6, —

q )- sin(8 + p)])),
F 38-Q (hN /3NM)g &o '(3[E3'+E82] -cos83((E3' —E6')

x [cos2cp + cos(6, + cp) + cos(6, —p)] —2E,E, [ sin2p —sin(8, + cp) + sin(8, —y)]) ),
E '=-Q (IfN /3NM)Q (o 'sin83((E2E3 —E E )[sin2p &+sin(8l+p) — sin(9l —p)]n n X nX

(Blc)

(Bld)

(B2a)

(B2b)

(B2c)

—(ESE5+E2E6)[—cos2p+ 2 cos(8q+ p) + 2 cos(8)- p) ]
+ (&3/2)(E E, —E E,)[ sin(6, + q ) + sin(8, —y)] —( E3/2) (E E, +E E,)[cos(6, + q ) —cos(6, —q )]), (B2d)

and E» =F»' ——O. (B2e)

The quantities e„e„and y are defined in Appendix A. The parameter N„represents the weight of the
point n in the irreducible part of the first Brillouin zone, and E~ represents the ith component of the eigen-
vector E(n; X) which is real and has the dimension six. Details as to the values of Ns and the eigenvectors
appear in Ref. 27.

APPENDIX C. THE COUPLING
PARAMETER INTEGRALS

v= f [ 'fx( ) xg(+x)] P'(x —0')dx, (Clf)

n= .' J'[(x +x -)f(x)+2g(x)]P'(x -5,')dx,
(Cla)

f (x,' —x ')f (x) P'(x - 0') dx, (Clb)

X=-.' f[( x,
' +x,')y( x)+ 2g( x)] P'(x -5')dx,

(Clc)

(Cld)p, = e f (x ' —x 2)f (x)P'(x —5') dx,
o =-' fx~,f(x)P'(x —0')dx, (Cle)

The expressions for the parameters a, p, y, x,
v, and o' are obtained from (3. 5), (3. 16), and

Table II:

n =2P+y,
3~~2c jx =ao',

and x- v=(3c'/a' —2) p, .

(C2a)

(C2b)

(C2c)

These conditions are invalidated by the quantum-
mechanical averaging in the present case. For
example, Eq. (C2a) is invalid because the x,'
term in (Cla) and (Clb) is nonzero.

where x- Ix I The parameter y is determined by
using Eq. (3. 5).

It is interesting to note that in the case of classi-
cal lattice dynamics we would have the following re-
lations among the coupling parameters:
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Evidence for Condensation of He' Atoms on the Surface of Bubbles in Liquid He" ~
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A phenomenological model is presented to explain the reduction in the critical velocity for
vortex-ring creation by negative iona in liquid helium when small concentrations of He im-
purities are added. The model is based on the assumption that the surface state for a He

atom has a lower energy than the bulk state. This results in an enhanced concentration of He

atoms on the surface of the negative ions. This change in the surface affects the flow of liquid
helium in the boundary layer around the ion. The effects of the difference in the surface of the
positive and negative iona on the critical velocity is discussed in both the continuous and
instantaneous vortex-ring creation models.

The creation of vortex rings in liquid helium
eras first discovered by Rayfield and Reif. ' The
critical velocity of the ion for vortex-ring cre-
ation has since been studied by Rayfield. 'y' Re-
cently Rayfield4 reported a reduced critical ve-'
locity for vortex-ring formation by negative ions

in the presence of He' imyurities. The corre-
sponding critical velocity for positive ions was
found to be independent of He' concentration. The
two species of iona are considered to differ dras-
tically in structure. The commonly accepted
models for the iona are as follows: The positive


