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Attenuation of Transverse Zero Sound in He'
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It is pointed out that although a transverse zero sound mode very probably exists in liquid
He, its attenuation, because of the conservation laws, will be about a hundred times stronger
than longitudinal zero sound, and hence its experimental detection correspondingly more
difficult.

/=27 atm. y0 = 0.0004/v

yl = 0.5/v

Here v& is the Fermi velocity, and & is the re-
laxation time. This striking disparity in attenua-
tion is not a peculiarity of these approximations,
but, as we shall show, is a consequence of energy
and momentum conservation in quasiparticle col-
lisions.

The kinetic equation describing a spin-inde-
pendent oscillatory disturbance v of the Fermi
surface is'

dA'
(q - cose) v(e, y) —cose f 4 F(y) v(e', y')

= —I(v)/ikvF . (1)

Here p is &u/kvF, the ratio of the wave velocity
to the Fermi velocity, y is the angle between
(e, Q) and (e', Q'), and I(v) is the collision inte-
gral.

In the zero sound regime (ldll»1, where v is
a typical relaxation time), we may treat the right-
hand side of (1) as a small perturbation on the
solution v. To derive an expression for the at-

The observation' of longitudinal (m = 0) zero
sound in liquid helium-3 has stimulated interest
in the experimental detection of similar modes.
In particular it is quite likely that transverse
(m =1) zero sound exists in He', since' the Fermi
liquid parameter F, is comparable to 6 at low
pressure and substantially greater than 6 at high
pressures. The purpose of this note is to point
out that longitudinal zero sound is subject to
atypically small attenuation compared to the
higher modes, so that observation of transverse
zero sound will be much more difficult. We find
in a single relaxation-time approximation, keep-
ing only F, and F„ that the attenuation y for the
two modes is

P = 0.28 atm: y =y = 0.009/vm=0

y 1
=y = 0.9/vm=1

dn'
(go- cose) vo- cose f Fvo = 0

4m
dQ'

q v +(q0-cose)v —cosef Fv

(2)

= —I (v0)/ikv . (3)

Now multiply (3) by vo/cose and integrate over
0; by virtue of (2)

where (~ ~ ~ ) denotes an angular average. Since
&/kvF —'Q0+'gl, Imk =y ~- ('0, /rl, ) Rek, or

vF g 0
cose cose

Next we expand vp as a series in spherical
harmonics:

(4)

v0= Z a&
I' (e, Q)

When this is substituted into (2), modes corre-
sponding to different m are decoupled. We may
thus restrict ourselves to a single mode

If we expand F(y) as a series in Legendre poly-
nomials,

F(y) =+IF&PI(cosy)

and expand I(v) as

I(v) =-Q v 'a I' (e, y)

tenuation y = Imk of zero sound, expand v and g
as

V = Vp+ V~+ ' ' '
y g = 'gp+ 'g j + ' ' '

where v, «v„q, «g, . Equation (1) gives the
zero- and first-order equations
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then from (2),

'0 " fmm
1 Y (e y) (7)

) 1 ~~ a„'(1+l Z, )

Z a„'[1+E,/(2f+1)]
/=1

Using (5), (6), a,nd (7), we find the a«nuation
(4) tobe

5 'a'
11 ' 1 1+5&2

1y—
0 Ii

/~, )[1+E, /(2f+1)]
/m l l

. (8)

or

1 jqoy&
5q0'+ (1+—.

' E,)(1+ l E2)

a„=[q,5'~'/(1+-,' E,)]a„. (9)

Since g, & 1 is required for propagation, E, must
be enormous to make this ratio small. Using (9)
in conjunction with (8) we can set a lower bound
for y, in terms of the largest (vma ) of the re-
laxation times 7/, l » 2:

Since the quasiparticle collisions conserve en-
ergy and momentum, the l = 0 and 1 terms in the
numerator of (8) are missing. We can take this
into account by the convention that 7p and 7, are
infinite. If we make the reasonable assumption
that the 7/ for /» 2 all have the same order of
magnitude, w/= &, l » 2 then we can conclude:

(i) For hypothetical modes with m ~ 2, y =1/
Ov~&.
(ii) For the m =0 mode it is possible for the

attenuation to be substantially less than 1/q0vE&,
provided that either a«or a„ is substantially
larger than the a/0 for l » 2.

(iii) For the m = 1 mode the attenuation can be
substantially less than 1/q0vE r only if a» is sub-
stantially greater than the a/1 for l » 2.

The results for p, and p, quoted in the first
paragraph are based on a single relaxation-time
approximation (v'f =v, l ~ 2) in a model keeping
only I"

0 and E„using the experimental values~
Eo = 10.77, E, = 6.25 (0.28 atm) which imply q(m
=0) =3.597, 7l(m =1)=1.003; and E, =75.63, E,
= 14.35 (27 atm) which imply g(m =0) = 12.218,
q(m = 1)= 1.202. '

Evidently the possibility (ii) is quite strikingly
realized for longitudinal (m =0) zero sound. An
examination of the solution reveals that it is the
dominance of a„ that is responsible for the very
small attenuation.

Equally clearly, possibility (iii) has not pro-
duced a small attenuation for the transverse
mode. It is most unlikely that the large size of
y, /y, is an accident of the simple model for
which we have calculated them. Even when a11
the Ef are kept, if we multiply (2) by Y»* and in-
tegrate over angles we find that

It is unlikely ' that E, exceeds 5. Figure 1 indi-
cates that g, will not be very much larger than
unity for any plausible values of I',. Thus under
the most favorable of circumstances one might
do as well as y =0.3/vE7 .

We conclude that since v~ 1/T', one will have
to go to temperatures about a factor of 10 lower
than those used in observing longitudinal zero
sound to achieve a comparably long attenuation
length for the transverse mode.
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&IG. 1. The dependence of $0= co/key on E2 is shown
for the transverse (m = 1) mode in a model that keeps
only I'"f, and Z2 for the experimental values of F~ at 0.28
and 27 atm.
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It is essential, in doing this calculation, to use a
numerical value for g which preserves its precise
analytical dependence on Eo and I'~ to a high degree of
accuracy, since a delicate cancellation occurs in yield-
ing a small value of po. Alternatively, if one wishes to
demonstrate tha.t vo is dominated by a~0 one must again
use an g that contains the precise dependence on the
EE's to a very high order. If this is not done a spurious
divergence in the a~ will be found for higher l.

See, for example, G. A. Brooker, Proc. Phys. Soc.
(London} 90, 411 (1967).
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The theory of stimulated thermal scattering in liquids has been extended to the second-
sound problem in crystals. In contrast to the diffusion limit, in the second-sound case the
stimulated thermal Brillouin scattering has a much larger gain per unit length than the stim-
ulated thermal Rayleigh peak. Further, we also obtain asymmetry in the gain factors, which
actually exists in the diffusion limit as well but has not been reported.

I. INTRODUCTION

Although the detection of second sound in crys-
tals by light scattering has been much discussed
in the recent literature, '~'&' second sound has not
been observed by this method. One of the funda, -
mental reasons is that the ratio of the intensity of
the second-sound doublet to that of the Brillouin
doublet is equal to p —1=10 ' for crystals at the

very low temperature needed for second-sound
propagation. Here y is the usual ratio of specific
heats. It has been suggested by Griffin3 that one
might extend the theory of Herman and Gray4 on
stimulated thermal scattering to the second-sound
problem and thus arrive at a situation which is
experimentally more favorable. In this paper we
present such an analysis. The procedure adopted
here resembles closely that of Herman and Gray. 4

II. CALCULATION

In stimulated scattering, we are interested in calculating the power gain per unit length, G, for the
various physical processes that may take place. If we adopt the convention that a positive frequency has
a time dependence @+~~st, then following Bloembergen, ' it can be shown that G is related to the imaginary
part of the nonlinear susceptibility yN& (~s) through the relation G = 4mk&ImX NL(+s), where the subscript
s refers to the scattered wave and k is the wave number. Then G & 0 corresponds to amplification of the
scattered wave, G & 0 to attenuation. To calculate the nonlinear susceptibility y NL, we start with a set of


