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A formal procedure for calculating the dynamic spin susceptibility of an electron liquid is
presented. The spin-dependent oscillations of the system are determined by requiring that
the solution of the kinetic equation be consistent with Maxwell's equations. When the small
coupling between spin waves and plasma waves is neglected, the condition for spin wave

propagation is essentially equivalent to the requirements that the ac magnetic induction
vanishes. By making use of this condition in the kinetic equation, we are led to a simple
secular equation, valid for arbitrary values of the wavelength of the spin-dependent oscil-
lations. Analytic results are presented for the long wavelength limit of all the spin wave
modes.

I, INTRODUCTION

In his classic paper on the oscillations of a de-
generate electron liquid Silin' first predicted the
existence of collective oscillations of the spin
magnetization of electrons in nonferromagnetic
metals. Recently, Schultz and Dunifer' observed
a series of side bands in the study of conduction-
electron spin resonance of sodium and potassium,
and attributed this phenomena to the spin-wave
excitation. Platzman and Wolff' have analyzed the
experimental results with the aid of I andau's
Fermi-liquid theory. The agreement between their
theory and the experiment data is surprisingly
good. However, the method of Platzman and Wolff
applied only to simple metals with spherical Fermi
surfaces such that the Fermi-liquid interaction
function' g(p, p') depends only on the angle be-
tween p and p . In addition, their analysis is re-
stricted to long wavelengths such that qxz «1,
where q is the wave number and xz the cyclotron
radius. In view of the fact that there is a possi-
bility of observing spin waves in metals with more
complicated Fermi surfaces and also at shorter
wavelengths, it is desirable to have a more general
theory of these spin-wave excitations. The present
authors have recently discussed' a method of an-
alysis which is valid for arbitrary value of the
wavelength. This calculation was restricted to the
very simple case in which the Fermi liquid inter-
action function g(p, p') can be approximated by a
constant. Though this is indeed an over simplified
model, it is of value in two respects. First, the
analysis of Platzman and Wolff' indicated that the
dominant Fermi liquid effects on spin properties
of an electron gas are retained even when only the
8-wave interaction is included. This is quite dif-
ferent from the spin-independent case, where' we
have seen that the procedure of keeping Ap and Ay
only leads to essentially no change in the propa-

gation of plasma waves. The reason for this is
that A, is associated with the charge-density dis-
tribution and A, is associated with current density.
There exists a huge restoring force whenever these
are out of balance, while there is no corresponding
analog in spin properties. Second, the calcula-
tion can be carried out for an arbitrary-shaped
Fermi surface and thus could be used as a first
approximation for the analysis of spin waves in
these materials.

In this paper we apply the general method dis-
cussed in Ref. 5 to a spherical Fermi surface, for
which the function P(p, p') depends only on the an-
gle between p and p'. Instead of retaining only the
S-wave interactions, the full interaction function is
taken into account. We present in Sec. I the for-
mal method of calculating the dynamic spin sus-
ceptibility. In Sec. II, we discuss the propagation
of spin waves. If we neglect the small coupling
between spin waves and plasma waves, then the
condition for spin-wave propagation is essentially
la 'l =0, where the tensor n relates the dynamic
spin magnetization m(q, &u) to the ac magnetic in-
duction b(q, &o)

m(q, v) = o. (q, &o) ~ 5(q, ~)

Thus the condition for spin-wave propagation in
metals is equivalent to setting b(q, ~) equal to
zero. The kinetic equation under this condition
can be transformed into an infinite-size determi-
nantal equation. The various solutions to this
equation corresponding to spin wave modes can
each be labelled by a pair of subscripts (n, m)
correspond to a particular spherical harmonic.
General expressions for the elements of the ma-
trix are presented. In Sec. III, we discuss the
solutions of the determinantal equation in certain
limiting cases. In particular, we present an ex-
pression, valid in the long-wavelength limit, for
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the frequencies &un m of all the different (n, m)
modes. The dispersion relation for these modes
are extremely similar to the plasma wave modes
discussed in the preceding paper. Our method
indicates clearly how the various modes are
mixed at long wavelengths and reproduces easily
all the results that are obtained by perturbation
theory. ' The dispersion relation presented in
Sec. III is readily accessible to numerical cal-
culation if only a few terms in the expansion of
the interaction function need be kept.

II. DYNAMIC SPIN SUSCEPTIBILITY

We consider our system as a collection of inter-
acting electrons immersed in a neutralizing uni-
form background of positive charge. A strong dc
magnetic field B is applied in the Z direction.
When a perturbing field of the form

g(» )» 'L(q r hat )

is applied to the system, the deviation of the dis-
tribution function is represented as 5f+5g ~ o and
the change in quasi-particle energy is

] 8p 1

2 8e
Tro f(n)

+

(g+5f )+ Q g y /7'
1 m m
T 2 limi&2 2 t 2

(2. 6)

We note here that 7., does not have any particular
relation to v. The integral of the collision term
over momentum space need not vanish because
of the possibility of spin-flip collisions. For the
case of a spherical Fermi surface, the interaction
function 4'(p, p') between two quasi-particles can
be expanded in a series of Legendre polynomials
as

(2. &)

Se t, ), all quantities in Eq. (2. 5) are understood
to 5e evaluated on the Fermi surface at sufficiently
low temperatures. The collision term in Eq. (2. 5),
following the treatment in Ref. 6, can easily be
written in terms of the spherical harmonic expan-
sion coefficients, i.e. ,

5e, + 5e, ~ o —y,o ~ 5(r, t ),

8p0
5g +iong =--g

x y
qP

(2. 1)

where 5e, is related to 5f and 5Z, related to 5g.
According to Landau's theory, '-the behavior of the
system under this condition is described by the
famous Landau- Silin transport equations. We
have seen in Ref. 6 that the Landau-Silin equations
can be separated into two equations, one for the
spin-antisymmetric distribution function 5g and
another for the spin-symmetric one 5f. Now we
introduce the following definitions,

R (P, Q+2w)=R (P ), (2. S)

and R =v (P )4/(o

The functionge & is also a periodic function
of &f& with a period 2m. Hence it can be expanded
as

(2. 9)

Here g is the angle between p and p'. The BI's
are defined in such a way as to make them dimen-
sionless. We now introduce the position vector
5(pe, P) of an electron on the Fermi-surface. We
can divide Ei,'into a periodic and a secular part,
5=5&+Re, where

2yB = Q0,

5c =5& +s5&
2 2x 2p

and b =—b +ib
+ X

The equation for g can then be written as'

(2. 2)

(2. 3)

(2.4)

~~
iq R

ge =gfgf(P )e' (2. 10)
~~
iq ~ R iq R

The function e P and ve P can be similar-
ly expanded and their Fermi components have
been shown to be'

—scog+ iq ' v +—v x ~ —+ zQ g+ 5E'
C 0

p
2

and

iq R
P g imP

m m
(2. 11)

—1

2 8E
Tro I (n) (v +V+iQ, )y,b

+ '+
qP

(2. 5) ve
i 2 sin8(J& 1+J& )

=Q v —', i sin8(Z& — —
4& ) e

2 J cosL9

(2. 12)
Here, q is taken in X-Z plane. In writing down
these equations, we have followed the notation used
in Refs. 3, 5, and 6. Because of the factor (- SpO! The argument of all the Bessel functions appear-
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ing in Eq. (2.12) is Ã=—q~vt/&uc. The kinetic
equation can then be written in terms of the
Fourier components as

—QyJ —yq v00m 0
40 —q V —0

z z 0 c
(2. 13)

( )-1f — P q' Rp

AV

where &u =++i/r and I' is defined as the inte-
gral

into the second term on the right hand side and
the form of Eq. (2. 16) is most convenient for an
approximate calculation keeping only the first
few terms in the expansion of g(p, p'). Equation
(2. 16) can be converted into a system of algebraic
equations by the following procedure. First, it
follows from Eq. (2. 10) and Eq. (2. 11) that the
relation between gm and gl is given by

1

g& =(2&)'Z f, 8& Z g d(cos8). (2.17)

2——q. v + i(d —-0
'r

csee

0

+ Z fg, 'I,"/r~
l, fsj&l

(2. i4)

Then we substitute Eq. (2. 17) into (2. 16) multi-
ply both sides by el Jm s and sum over m.
The result can be easily expressed in a matrix
form as

(2. iS)

With the aid of Eq. (2. 7) and the expression The elements of the matrices R and I are

«.=2&-& 4(p, p')~g(p')
p

given in Ref. 6, the quantity Fm can easily be
expressed in terms of the Fourier components
of the distribution function g as

I

z z 0 c

gI' = g B + —-qv -0 -me
m

l l Bl7'l 7' z z 0 c
ss'"' 'll -'ll 'ss

j.

x8 Z (2v) g& (2. 16)
0 and H are column vectors with components
Gl and Hl respectively, where Hls is given
by the expression

el being the Legendre polynomial normalized
such that

f (8I ) d(cos8)=1.

Substitution of Eq. (2. 15) into Eq. (2.13) then
gives an equation for each of the Fourier com-
ponentgm, i. e. ,

—(0 y J' +y0q v )b00m 0 m +
(d —q v -0

z z 0 c

(
+ Z -1+
l~, js I&l' z z 0 c

-0 -mv

I 1

x BI, 8I, J,(2m') gf, .(2. 16)

(0 y J +y q v )(2v)'"
d(cos8) .40-q v -Q -mM

(2. 19)

m = y, Tr J &7 (Bf + 5g o )d'p/(2v)' . (2. 20)

The combination m =m~ +im& is therefore re-
lated only to the spherica1 average of g by the re-
lation

To obtain the spin susceptibility, the next task
is to relate the spin magnetization to the dis-
tribution function. The magnetization is obtained
by taking the trace of the product of the Pauli
spin matrix and the distribution function and inte-
grating over all momentum space, i. e. ,

In Eq. (2. 16), a& -=a& +i/r and ef & = v +i/BI & q &.

Equation (2. 16) looks as complicated as the origi-
nal. transport equation. However, we note that
all the effects of the interaction have been grouped

m = (2v)-'2m*p g '. (2. 21)

We can easily see from Eq. (2. 16) that g,' is pro-
portional to b+. Hence it follows from Eq. (2'. 21)
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that m+ is simply proportional to b+ with a scalar
proportionality constant. A formal solution for
g,' can easily be obtained from Eq. (2. 18). In-
troducing the definition U =-b+ 'H, g, can be ex-
pressed as

persion relation of spin wave in metals can be
easily obtained by requiring the magnetization
to satisfy both the constitutive equation b =n 'm
and a relation obtained from Maxwell's equations, '
i. e. ,

g,'/b = IR "1/I R I (2. 22) b=Q ~ m (3. 1)

Here I R") is the determinant of the matrix ob-
tained by replacing the (0, 0)th column of R by the
column vector U, and I R l is the determinant of
the matrix R. Combining Eq. (2. 21) and Eq.
(2. 22), we finally obtain an expression for n+
as

and

—qz
o )

(2. 23)
Q= z x

(0 q 0

(3.3)

Since b+=h++4m'm+, m+ is also proportional to
the magnetic field h+ with a simple scalar pro-
portionality constant X, given by

The dispersion relation is therefore simply the
determinantal equation

I 0 —a ')=0. (3.4)

This is just the combination X» —iXx of the
elements of the susceptibility tensor. From the
equation for g and gz, it can easily be seen
that m is related to h and mz to hz in a simi-
lar way. Hence we have the important conclusion
that to first order in &oc/ef, the spin suscepti-
bility has the following properties

X ~ X,
= XXX gp xy yx

X —X =X =X
(2. 24)

This property of the susceptibility tensor is in-
dependent of the manner in which we truncate the
interaction function g(p, p') .

III. SPIN WAVES

A. General Dispersion Relation

It is we11 known that, in general, a propagating
electric field or magnetic field with a space-time
dependence of the form

exp[i(q ~ r —(ot)]

m(q, (o) exp[i(q ~ r —~&)]

corresponds to spin-wave excitations. The dis-

cannot exist in the main bulk of a metal. However,
at some particular frequencies and wavelengths,
a kind of collective oscillation may be excited and
then propagation is possible. Example of these
oscillations are the helicons' and plasma waves
discussed in Ref. 6. The condition for the exis-
tence of a finite magnetization of the form

Since elements of o are of order &u '/&oc, we see
readily from Eq. (3.2) and Eq. (2. 3) that the
elements of 0 are negligible compared with ele-
ments of n ' provided we are in a region of fre-
quency and wavelengths such that

((o '/c'q')((o/&u )»1.
p C

The exception to this is near the solution of the
equation l o I =0. Under this condition, elements
like ozz ', for example are no longer of order
&c/~p' but can be exceedingly large. Physically,
this corresponds to excitation of plasma waves.
If we are far away from the crossing point of the
dispersion branches of the spin waves and plas-
ma waves the coupling between them may be ne-
glected and the dispersion relation for spin waves
reduces then to the simple equation

(3. 5)

This can be further factorized into three equa-
tions o.+y 0 Q y =0, and nz ' —-0. In this
approximation then, the spin-wave excitations
occur at the poles of the response function ea, etc. Obviously, any component of Eq. 3.5),
for example o.+

'=0 implies that the correspond-
ing component of magnetic induction b vanishes
for the existence of a finite magnetization m

Hence a much simpler way of obtaining the dis-
persion relation is to set b or b, etc. , equal
to zero directly in the kinetic equation and look
for the condition for the existence of nonvanishing
values for the distribution function 5g. Let us in-
vestigate the branch corresponding to n '=0,
for example. Setting 5 =0 in Eq. (2. 18 gives
the equation



222 S. C. YING AND J. J. QUINN 180

(R — I )G =0. (s. 6)

Nonvanishing values of g are therefore only pos-
sible if q and m satisfy the relation

r -1=
nn

—(d +p (0 +m(d )
+ 0(X ).

(d —0 —mCO

(s. 9)

IR- I I =0 . (3. 7)

B. Propagation Perpendicular to dc

Magnetic Field 5

We now look at the solution of Eq. (3. 7) in some
limiting cases. In the geometry with q perpen-
dicular to B, i. e. , qz = 0, the matrix element of
R has the following property. xll I vanishes
unless l+s and l'+s ' are both even or both odd.
Hence the secular equation separates into two in-
dependent equations: one for the odd modes and
another for the even ones. Since the magnetiza-
tion is only related to the spherical average of

pp we need only consider the even modes in
the study of spin waves. For arbitrary value of
wavelength, the exact solution of Eq. (3.7) is im-
possible. To extract information from Eq. (3. 7),
we need to make some approximation on the inter-
action function g(p, p'). The easiest way is to
truncate the series Eq. (2. 7) after a finite num-
ber of terms, i. e. , to set B„=Ofor n &nO, where
n, is a fixed number. This will reduce Eq. (3.7)
to a finite determinantal equation and the solution
can be easily obtained by numerical methods.
Another approximation we can make is to keep
only terms linear in the parameter Bn; then Eq.
(3. 7) reduces to

This is equivalent to the equation n '=0. Other
equations corresponding to ez '=0 can be similar-
ly derived.

In Eq. (3.9), P = 1+Bn, and we have dropped
all collision terms for simplicity in writing.
The off-diagonal elements are

&u =P (0 +m&u )+y X'.
nm n 0 c nm (s. ii)

as X-0, the various modes are completely sep-
arated from each other. For a particular (n, m)
mode, only the spherical harmonic component
gnm remain finite as X-0, all the other com-
ponents go to zero as different powers of X. In
particular, the magnetization m, which is pro-
portional to g,', varies with X in the (n, m) mode
as

40(0ss c
II' ((o —0 —s(o )((u —0 —s'(u )0 c 0 c

I

x X( I, sin8~&)+O(X') (3. 10)

for js —s' I=1: all other elements are of order
of higher powers in X. In Eq. (3. 10)

(
I

=—f 8 8, d(cos8).l l -j l l'

It is not difficult to see from Eq. (3.6), Eq. (3.9),
and Eq. (3. 10) that the solution at the long-wave-
length limit of Eq. (3. 7) consists of an infinite
number of modes each labeled by a pair of in-
dices (n, m). The dispersion relation of each
mode is of the form

(s. 6)

n
m ~X

+
(s. 12)

n, lmI«

The sum in Eq. (3. 8) is over all pairs of indices
(n, m) such that n+m is even. This equation can
again be solved numerically with suitable choices
for the values of the parameters B . It is only
a good approximation when the inequality

B co «
I co —0 —mar

n c 0 c

is satisfied for all n and m. The situation here
is very similar to that for the plasma waves dis-
cussed in Ref. 6, and the interested reader can
refer to that article for the consequences of trun-
cation of the series and also the method of solu-
tion at X= q~ vf jure» l. At the long-wavelength
limit where X«1, a closed form of the disper-
sion relation can be easily obtained. Since the
argument of the Bessel functions are now small,
they can be expanded in a power-series form
and the diagonal element is

This follows from the fact that each component
gn is coupledby a term of order Xtog ™t:1
and Zn+ 1m+ . The coefficient pnm in Eq. 3.11)
can be easily evaluated from Eq. (3.7). For the
(n, m) mode rnnmm —1 is of order X'. Keeping
terms independent of X in all other diagonal ele-
ments and terms of order X in the (n, m)th row
and column, we obtain an expression for ynm as

P (0 +m(c )

n

——,'P '(Q +m(u )n 0 c
n m

o„ I(„ I &I„ )I'
[P (I +)-mb- ]m[P, (f+m')-P (I+m)] .

n n' n

(s. is)
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Here we have introduced the symbol b =—Q0/&uc.
The sum is over n'=n+1 and m'=m+1 except for
n =m =0, where the sum reduces to a single term
n'=m'=1 only. It follows from (3. 12) that the
magnetization at the long wavelength limit is
strongest in the (0, 0) mode. Hence, this is the
mode easiest to excite, and it corresponds to the
spin-wave excitation observed by Schultz and
Dunnifer. ' The dispersion relation for this mode
ls

Sec. II. We will not go into detailed discussion
again. A new feature which is absent in the ge-
ometry of the qz = 0 case is the possibility of
Landau damping. Whenever the wave number
increases to such a value that the inequality qzvf

is satisfied, then the spin-wave excita-
tion will be severely damped by electrons travel-
ing in phase with the wave. In the long-wave-
length limit, a diagonal element has the form

(0(d
=(-~+P Q )/(~-Q )+B

0

(3. 14)
x Z' icos'ei +0(Z').0, 0

(3. iS)

The frequency &os in Eq. (3. 14) is equal to 2&B
x (1+B,) and is just the ESR frequency in the dc
field B. Platzman and Wolff's result' reduces to
Eq. (3. 14) in the collisionless limit. These au-
thors found a good fit with experimental results
by choosing the values of the parameters as 8,
= —0. 1 and B,=0. 2. Equations (3.13) and (3. 14)
are only valid in the region

ly &'I« IB (Q —~& )I.
nm e 0 c

This is so because we have treated the quantity

Here Z—=qzvf/vc. An off-diagonal element has
the form

0 0
, =B,

( Q, Z ~cosa~, +0(Z').
0

(3. ie)

The dispersion relation for the (n, 0) mode can
then be obtained by the same method used in ar-
riving at Eq. (13). It is

=P Q +y Z'
no n 0 no

x'/((o —Q —ma) )0 c

as being of order X'. As X increases, more and
more modes become mixed and the solution is ex-
tremely complicated. If the series expansion of
$(p, p') converges rapidly, then the behavior of
the (0, 0) mode at shorter wavelength can be ap-
proximately studied by including 8, and B, only
in Eq. (3.V). Equation (3. V) reduces to a 3x 3
determinantal equation in this case.

C. Propagation Parallel to the dc Field B

Next we study the geometry with q parallel to
B. All the arguments of the Bessel functions
appearing in Eq. (2. 18) vanish and only the zeroth-
order Bessel function survives. Thus

Im m
tin mm

and modes with different values of azimuthal in-
dex are separated. Since we are only interested
in modes of oscillation for which the magnetiza-
tion (which is proportional to g,') has a non-
vanishing value, we need only consider modes
like (0, 0), (1,0), (2, 0), ... , (3, 0), etc. In a
typical matrix element like x~~~ ., we can
now suppress the indices m and m' and fix
them at the value m = m '= 0. For an arbitrary
value of wavelength, we still have to resort to
any of the approximation schemes described in

with

r 0= (f) ~ '/B Q0) cos'8)0, 0

P 2~ 'B,
~

~cosa
n c n' n n'

B Q(B —B,)
. (3.iV)

The sum in n' goes through n' =n+1. Owing to
the way in which the expansion in powers of qz is
done, Eq. (3. 1V) is valid only in the rather re-
stricted region

Z2J«~a, -a ~n
no n' n 0 '

and Zv «]B )0c n 0
' (3. 18)

IV. SUMMARY

We have presented a general method of evalu-
ating the spin-susceptibility tensor in the Fermi-

When the wave-vector makes an arbitrary angle
with the magnetic field, all the modes are mixed
and the resulting dispersion relation became more
complicated. The dependence of the spin-wave
frequency on the angle between q and B can fur-
nish useful i@formation on the interaction func-
tion and provide further confirmation of the theory.
This situation will be discussed elsewhere. '
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liquid theory. We have also shown how to obtain
the dispersion relation of spin waves from the
response functions o and n . When the coupling
between spin waves and plasma waves can be
neglected, the dispersion relation can be simply
obtained from the kinetic equation by first setting
b+ (or b, bz) =0. The resulting dispersion rela-
tions are very similar to those of plasma waves.
Unlike the situation in plasma waves, the first
two expansion coefficients of the interaction func-
tion J3, and J3, are not canceled out, and they are
responsible for the dominant terms showing
Fermi-liquid effects. It is important to note that

a spin wave is primarily a many-body effect
which does not exist in the absence of correla-
tions. This was first pointed out by Platzman
and Wolff' for the particular case of the (0, 0)
mode at the long-wavelength limit. The general
proof of this result can be readily obtained from
Eq. (3. 7). If we set all the Bz equal to 0 in Eq.
(3. 7), the dispersion relation reduces to I I I

= 0
which has no solution of any kind. In principle,
all the expansion coefficients of the spin-anti-
symmetric part of the interaction function ((p, p')
can be determined by a study of these spin-wave
excitations.
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