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A formal procedure, valid for arbitrary wavelengths, for calculating the conductivity
tensor of an electron liquid is presented. The spin-independent magnetoplasma modes are
determined by requiring that the constitutive equation (solution of the kinetic equation) be
consistent with Maxwell's equations. If the small coupling between plasma waves and spin
waves is neglected, Maxwell's equations can be used to eliminate the ac electric and

magnetic fields from the kinetic equation. The magnetoplasma modes can then be deter-
mined rather simply by solving the kinetic equation. The secular equations determining
the dispersion relations for propagation both perpendicular and parallel to the dc magnetic
field are given. Analytic results are given for the long wavelength limit, and numerical
results are presented for the case in which the interaction function is approximated by the
first-three terms in an expansion in Legendre polynomials.

I. INTRODUCTION

It is well known that the free electron theory of metals is able to account successfully for a wide variety
of phenomena in metals as, for example, the deHaas-van Alphen effect, the temperature dependence of
specific heat, and cyclotron resonance. However, the interaction between the electrons is far from weak.
It is then natural to ask what modification of the free-electron results and what new phenomena will arise
if we include this interaction properly. There has been considerable literature on a system of interacting
electrons starting from microscopic many-body theory, but usually these formal microscopic calculations
do not lend themselves easily to comparison with experiment. In this respect, a semiphenomenological
approach, first formulated by Landau, seems to be more fruitful.

In his classic papers on Fermi liquids, ' Landau proposed a theory which applies for a system of fermi-
ons with short-range interactions as, for example, He'. Later, Silin showed that the Landau theory is
also applicable, with slight modification, to a system of interacting electrons even though the Coulomb
force between electrons is long range innature. Although the Fermi liquid theory involves some ad hoc as-
sumptions, it has been justified by microscopic theory. Provided certain restrictions are satisfied, the
theory is rigorous. In this section we present a brief outline of the Landau theory as applied to the elec-
trons in a metal. In particular, we sketch the derivation of the Landau-Silin transport equation for an
electron liquid. In Sec. II we use this transport equation to study the electrical conductivity tensor of a
metal in the presence of a dc magnetic field of induction B. We first consider the case in which the
Fermi-liquid interaction function 4(p, p') can be approximated by a constant. This simple case displays
many of the important features of the method of analysis which we use, while at the same time it is rela-
tively free of mathematical complexity. In addition, this calculation can be carried out for a Fermi sur-
face of arbitrary shape, so that it may actually be a useful first approximation in studying some effects
in metals with complicated Fermi surfaces. For the general case in which the Fermi-liquid interaction
function cannot be approximated by a constant, we limit our considerations to spherical Fermi surfaces
and assume that the interaction function 4 (p, p') depends only on the angle between p and p'. The formal
method for determining the conductivity tensor is discussed in detail, but calculations are presented only
for the case in which 4(p, p') is approximated by the first-three terms in an expansion in spherical har-
monics. ' In Sec. IO we investigate the magnetoplasma modes of the electron liquid. This involves mak-
ing Maxwell's equations consistent with the constitutive equations which relate the response of the system
to the ac electric and magnetic fields. The general dispersion relation for the magnetoplasma modes is
quite complicated. However, if we neglect the small coupling between spin waves and "plasma" waves,
we can make use of Maxwell's equations from the start and considerably simplify the calculation. For
the case of plasma waves we use Maxwell's equations to express the electric field E in terms of the elec-
tron current density j, and then write j in terms of the distribution function. The transport equation then
becomes a homogeneous equation whose nontrivial solutions are obtained by setting an infinite determinant
equal to zero. e A similar procedure has been applied to the case of spin waves and will be reported in a
later publication. We give explicit expressions for the elements of the infinite determinant whose zeros
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correspond to plasma waves. The long wavelength limit of the dispersion relations for propagation per-
pendicular to and parallel to the dc magnetic field are determined by expanding the elements of the deter-
minant in powers of qe~/vc, where q is wave number, e~ the Fermi velocity and &oc the electrons cyclo-
tron frequency. Dispersion relations valid for short wavelengths (qv&/&o» 1) can be obtained by similar
approximate methods. The final section of this paper contains a summary of our results and some dis-
cussion of the interpretation of egperimental results.

The basic assumption of the Landau theory is that the low-lying eigenstates for the real interacting sys-
tern can be obtained from certain eigenstatesof the ideal noninteracting system by switching on the inter-
action "adiabatically". In particular, the ground state of the real system can be obtained in this manner
and will also possess a sharp Fermi surface. It is well known that this assumption is not satisfied by
some systems of fermions. For example, electrons in metals with attractive interaction can have a
ground-state characteristic of a superconductor. This state is completely different from the free-elec-
tron case and cannot be obtained by "adiabatic switching". A system which obeys the basic assumption
in Landau theory is, by definition, a normal Fermion system.

Using the same adiabatic switching procedure, we can define the concept of a quasiparticle or a quasi-
hole which is obtained by starting with the ground state plus a particle outside or a hole inside the Fermi
surface. The quasiparticles and quasiholes thus appear as elementary excitations of the real system,
which, when combined, give rise to a large class of excited states. Because of the interaction, a quasi-
particle will decay with a finite lifetime. Obviously, the concept is only useful if the lifetime of a quasi-
particle is large compared with the time of switching and the characteristic time involved in the particular
phenomena being studied. In a pure system at zero temperature, the lifetime of a quasiparticle has been
shown' to vary as the inverse square of the energy separation from the Fermi surface. Hence, the con-
cept of quasiparticle is useful if only low-lying excited states are involved. In what follows, we shall omit
the spin index 0 of a quasiparticle and include it in the momentum p, unless necessary for clarity. Each
excited state can then be characterized by a distribution function n(p) of the quasiparticles. It should be
emphasized here that the physically meaningful quantity is the departure from the equilibrium distribution
—5n(p), rather than n(p) itself, because it does not make sense to define a distribution function n(p) in a
range of momentum where the quasiparticles are unstable. Only 5n(p) enters the final equations.

The second assumption of Landau is that the state energy is a functional of the distribution function.
For 5n(p) sufficiently small, we can write the total energy of the system as

&[~(p))=&0+2 & 5n(p)+-,'Z, @(p,p')5n(p)5m(p'}+ 0(5n')+ ~ ~ ~ (1.1)0 p qp
' pp'

In (1.1}, 8&p is the first functional derivative of 8, and 4(p, p'} is the second derivative, etc. If 5n(p) de-
scribes a state with one extra quasiparticle of momentum p, the energy of the system is given by (1.1) as
Eo+ 8 ~. This means that the energy of a single quasiparticle of momentum p is just 8 ~. The gradient
of g

P P fP
p =-VS

is the group velocity of the quasiparticle. 4(p, p') in (1,1), being the second variational derivative of 8
with respect to n(p), is symmetric in p and p'. It is the interaction energy between the pair of quasipar-
ticles with momentum p and p'. We shall see later that it is this quantity which is responsible for a con-
siderable modification of the physicalproperties of the system from those predicted by the free-electron
theory.

So far 5n(p) has been considered as independent of position and time. Consider now a distribution of the
form

n(p, r, t) =n'(p)+ 5n(p, r, t) . (1.3)

In (1.3), n(p, r, f) gives the distribution in a unit volume centered at a point r. Obviously, such a descrip-
tion works only in the regime where the uncertainty principle is of no concern. Within linear response
theory, we can write, without loss of generality, the departure from the equilibrium distribution in a
plane wave form as

5n(p, r, t) =5n(q, (u) exp[&(q. r- (o&)j (1.4)

The uncertainty principle gives rise to an uncertainty hq in the momentum p and S~ in the energy S~. If
q and ~ satisfy the relations,

ye+ «p, and

then the uncertainty principle can be ignored. ' In other words, Landau's theory may be applied only to a
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macroscopic perturbation. It is important to bear this point in mind as we proceed. As before, the total
energy is a functional E[n(p, r, t)j of the distribution, i.e. ,

E =E +Q fd~r8 5n(p, r)+ —2Q, fd'r fd~r'4 (p, p', r —r')5n(p, r)5n(p', r')+
P ep

' ' PP' (i.6)

Here, we have assumed that 8 ~ is independent of r and that 4 is a function of r —r' only. This is true
for a translationally invariant system. For electrons in a real metal, additional complications arise
because of the periodic structure. If the wavelength of the disturbance is long enough so that (1.5) is
satisfied, 5n(r) will vary only slightly throughout a unit cell. One can then take average over a unit cell,
and (1.6) still holds. For short range forces, 5n(p) may be considered as constant over the range of in-
teraction, so that in (1.6) 5n(p', r') may be replaced by 5n(p', r). The total energy of the system can then
be written as

E=E + fd'r5E(r)
with 5E(r) =Q 8 5n(p, r)+ ~Q, (p, p')5n(p, r)5n(p', r)

I ep ' pp

(i.7)

(1.8)

4 (p, p') in (1.8) is defined by the expression

4 (p, p') = fd 'r'4 (p, p', r —r ') (1.9)

The volume 0 is assumed to be unity throughout, and the momentum p is quantized accordingly. Accord-
ing to (1.8), the local excitation energy of a quasiparticle of momentum p is equal to

S(p, r) = h +Z,4 (p, p')5n(p ', r) .
o'P p

(i.io)

The theory above is not directly applicable to electrons in metals because of the long-range nature of
Coulomb interaction, which leads to divergences in expressions like (1.9}. As Silin has first shown,
these difficulties are removed if we allow for the dynamic screening of the particle motion self-consis-
tently. First, the departure from equilibrium will give rise to an average density fluctuation and hence
to a space charge electrostatic field E(r, t) which is given by the Maxwell's equation

V .E(r, t) = 4meg 5n(p, r, t) .
p

(i.ii)

Hence, a part of the interaction between the quasiparticles can be regarded as a quasiparticle interacting
with an additional applied electric field given by (1.11). The interaction between any given pair of quasi-
particles is thus screened by the polarization cloud surrounding each particle, and the residual short-
range correlation between them can then be treated in exactly the same manner as described in the stan-
dard Landau theory. .With this new interpretation of the function4 (p, p'), (1.8), (1.9), and (1.10) apply to
a system of charged fermions such as electrons in a normal metal as well as to uncharged fermions.

Let us now consider the transport properties of a Fermi liquid. For this purpose, it is easier to work
with an expression for 4(p, p'} showing explicit spin dependence. We write

@(p,p') =4(p, p')+g(p, p')o o' . (i.12)

(1.18)

As Pines and Nozieres' have argued, 4(p, p') described by (1.12) is the most general form possible if the
Fermi surface has inversion symmetry and time reversal invariance is assumed. With a dc magnetic
field present, time reversal invariance is no longer valid. However, we shall simply assume that the in-
teraction function 4 (p, p') is not modified by the presence of the magnetic field. This should be a good
approximation if the magnetic field is weak enough so that the inequality

is satisfied. In (1.13), &ue is the usual cyclotron resonance frequency and SF is the Fermi energy.
The Landau-Silin transport equation can be derived by regarding the quasiparticles as independent, de-

scribed by a classical Hamiltonian h(p, r). However, the spin part of the Hamiltonian must be treated
quantum mechanically, since it has no classical analog. Thus we combine the classical Liouville's
equation with the quantum-mechanical equation of motion for the spin part and write the basic transport
equation as'

+ i[8, nj+ {n, h) = I(n) . — (i.i4)

In (1.14), [8,n] is the commutator of b and n, and ( ~ ~ .) is the symmetrized Poission bracket defined
as
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1 8A BB BB BA 1 BA 8B BB BA
fA, a}=— ~ +~ ~ —— ~ + ~

2 er Bp Bp Br 2 Bp er r Bp
(1.15)

I(n) is a phenomenological collision term which describes collision between quasiparticles. It cannot be
derived rigorously within the scope of the Landau theory. %e assume that a large dc magnetic field B
is applied in the z direction. Let us denote the energy of a quasiparticle of momentum p in the absence
of the dc field B as S ~. For a metalwithaspherical Fermi surface, S ~ is equal to p'/am*. Here,
m is the effective mass of a quasiparticle. According to (1.2), it is the ratio of Fermi momentum p
to the Fermi velocity v at the Fermi surface. When the magnetic field B is switched on, the equilib/ium
distribution and the qu siparticle energy can be shown (to first order in &uc/Sf) to be

n =p —yBo (ap /aS ) (1.18)
z 0 qp

and 8 =8 —yo B
0 qp z

Here y is a renormalized gyromagnetic ratio, ' and p, is the usual Fermi distribution function

p =(exp[(S —p)/kT]+ I. ) '
O'P

(1.17)

(1.18)

It should be emphasized that the quantities n„p, are matrices in spin space. Suppose now the system
experiences a small perturbing ac magnetic field of induction b and an electric field E. These are of
course the self-consistent magnetic and electric fields inside the metal rather than the applied field. The
fields b and E will create quasiparticles and change the distribution to

n=n +6n

It is convenient to write 5n as

5n =5f+ag ~ o

The local quasiparticle energy is changed from the value 8, to 8,+ 5$, which can be written as

S = S + |]S +
gaga

~ o ——',g Po ~ b

(1.19)

(1.20)

(1.21)

Here g is the spectroscopic splitting factor, and P is the Bohr magneton. In (1.21), the terms 5S, and~ S
5S, ~ o represent the change in quasiparticle energy brought about by the change in the distribution of all
the other quasiparticles. Making use of (1.10), we can easily express them in terms of the distribution
function as

5S =2K-, y(p, p')&f(p'),
1 p'

and aS =a+, ]t](p, p')5g(p') .
p

(1.22)

(I.as)

The last term on the right-hand side of (1.21) is the direct interaction of the magnetic moment of the bare
electron with the perturbing field b. It is convenient to combine this term with the term 5$, g and define
a factor y, by the relation

—y o b =as ~ o- —,g Pb o
1 2 s

(1.24)

Substituting (1.20) and (1.21) into the Landau-Silin kinetic equation and keeping linear terms only gives

—5n+ i([aS, n, ] + [S„an] )+ ln„5S]+ f5n, S,]=I(n) (1.28)

We now make use of the following properties:

eS e 8=v+ 68, — y,o.b,p Bp ~p

gg e egx(B+b) — (aS, —y,g ~ b)+eEer c p er

nnd i[d, n] = —irB[n, d] n —ir&b [B, n ], (-rnid )
gp

(1.28)

(1.27)
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= —2yP(o g —o g )+2y +yP gP' (o 5 —o 5 )xy y x 1 8$ y x xy (1.28)

The insertion of the two terms (e/c)[(aS/ap) x (B+b)] and eE in (1.27) as the driving force due to the ex-
ternal field is not obvious as it may seem as first sight. Since we are dealing with quasiparticles and
not bare electrons, the validity of these Lorentz force terms requires some investigations. Pines and
Nozieres' have shown that (1.2V) is correct. Using (1.26)-(1.28) in (1.25) gives

85 Bpo 8
+—5g &-2y&(o g —o g )+2y ' (+yP)(o & —o 5 )+v' (5f+5g ~ o)

Bt Bt x y y x 18$ y x xy Br
qP

Bn, e - e 86$, - 8 e 8 8 e
+ O

I
—vxb+eE+ — 'xB —«(58 —y o ~ b) —— (y o b)xB +«(5fy5g g) —vxB=I(n), (1.29)

Bp (c c Bp Br 1 1 c Bp 1 Bp c

This can be further separated into two equations, one for the spin-symmetric distribution f and the other
for the spin-antisymmetric part g. On taking half the trace of (1.29), we obtain

a5f a ap, e - a ap, - ap+v «5f 5$,
@

—0 +—vx8 «5f 58,
&

—0 +eE'v
&

---,'Trf(n) (1.so)

Now multiply (1.29) by —,'(o~+io&) and take the trace. All terms which do not contain an even power of a
will vanish, Let a+ =a„+ioy, 6g+= 6gx+i5gy, b+ =bx+iby. Then we obtain

8 8—5g +g ~ —5g +y 5
@

' +—vxB ~ 5g yy 5 &0 ~+2iyB 5g +y 5 &' =2Tro I(n)Bpo e 8 ap, l Bpo 1

Bt + 8~ + 1 +88 c Bp + 1 +88 ) + 1 +88 +
'qP 'qP qP (1.sl)

Similar equations hold for the function 5g =5g~- i5g~ and 5'. The two equations (1.30) and (1.31) are
basic in the study of transport properties of Fermi 1(quid. The quantities defined by

f =5f- (ap /ah )5$
CP

and g=5g —(ap /aS )5h
qP

(1.32)

(1.33)

These two functions occur frequently in our further discussion.

play a role similar to 5f and 5g in the noninteracting system. If n0(8 P) represents the equilibrium distri-
bution function, n0(Sp) will represent a local equilibrium. The difference between n(p) and n0(8p), which
measures the departure from local equilibrium, can easily be seen to be just f and g ~ v, i.e. ,

n(p) =n0(& )+f+g. o (1.s4)

II. MAGNETOCONDUCTIVITY TENSOR

In this section, the magnetoconductivity tensor of a metal will be calculated by solving the transport
equation (1.30). This tensor, being the response function of the system to an external perturbing electro-
magnetic field, is an essential quantity in nearly all transport properties of metals. Cohen, Harrison,
and Harrison" have evaluated this quantity for a simple metal with a spherical Fermi surface in the ab-
sence of electron correlations. Recently, Platzman and Walsh" have extended their calculation to in-
clude the S-wave Fermi-liquid interaction, but no explicit expression for the conductivity tensor was given.
Hamilton and McWhorter" have also evaluated the tensor including both S and P wave interactions. All
these results are applicable only for metals with a spherical Fermi surface like Na and K. However, most
metals have complicated Fermi surface, and many transport properties such as magnetoresistance, depend
critically on the geometry of the Fermi surface. For this reason, we feel that it is worthwhile to evaluate
here the conductivity tensor for a metal with an arbitrary Fermi surface, while including at the same time
the effect of the Fermi-liquid interaction. In general, the interaction function Q(p, p') will depend on both

p and p' in a complicated way. The complete solution, although possible in principle, will involve too many
unknown parameters and hence of little use. We shall simplify the problem by replacing Q(p, p') by a con-
stant Q„ i. e. , including only the S-wave interactions. This is not as bad an approximation as it may ap-
pear at first sight. Theoretical calculation for the interaction function by Rice'4 indicates that the 8-wave
interaction is the dominant term. Provided that the many-body effect on a particular transport property
does not come primarily from the angular dependent terms" in the expansion of Q(p, p'), we can still get
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a fairly good estimate of the interplay of band structure and many-body correlations effects on transport
properties of metals via the conductivity tensor evaluated in this model.

Let us first introduce the function f (p) defined by

af(p) =(- ap0/a& )f(p) .
O'P

(2.1)

—,'Trf(n)=(ap /a8 )[(f+68 )-(f+68 )]/~
aP

(2.2)

The bracket ( ~ ~ ) in (2.2) denotes the average over the Fermi surface. As first shown by Silin, " the local
departure from the equilibrium distribution f+ 68—, appears in (2.2) instead of f, because in a collision
with impurity, " it is the local energy of the quasiparticle and not the equilibrium energy which is con-
served. The integral of (2.2) over the momentum space vanishes. Hence, it satisfies the criterion that
the number of quasiparticles has to be conserved in a collision process. Substituting (2.1) and (2.2) into
(1.30) gives

1 . e a . 1 e a - (f+6@)—iso+ —+iq ~ v- —v&&B ~ f+ iq v+ ———vxB ~ ~ 68, —eE ~ v=
'T c 8p c ~p 7' (2.3)

Now we assume all quantities appearing in (1.30} have a space time dependence of the form exp[i(q ~ r —&ut )] .
The collision term is hard to obtain from first principle. We shall discuss it in more detail when we con-
sider simple metals with spherical Fermi surface. For the calculation here, we approximate the collision
integral by introducing a single collision time t as

In arriving at (2.3), we have cancelled out a common factor —ap0/a& . At sufficiently low temperature,
—ap0/ale behaves like a delta function, i. e. ,

—ap /aS =6(8 —8 ) .ei eP
(2.4)

Hence, all quantities appearing in (2.3) are understood to be evaluated at the Fermi surface. Following
Eckstein, "we find it convenient to use the parameters 8, p, and s in place of P, p, P . Here 8 is en-8'.
ergy, p momentum in direction of B, and s is a parameter with the dimensions of tiKe which locates the
position of an electron on its orbit. The equation of motion of an electron in the presence of the dc magnet-
ic field 8 is

ap/as = (e/c)v&&B (2.5)

(2.6)

(2.7}

(2.6)

Here T(pz) is the period of an electron on the Fermi surface with wave number pz, and

Making use of (2.5), (2.3) can be written in a much simpler form as
—&of+(r-'+iq v+a/as)(f+68, ) —eE v=(f+68,)/& .

We now introduce the position vector R(pz, s) of an electron on the Fermi surface. We can divide R into
a periodic and a secular part, R=R~+Rs, where

R (P, s+T(P ))=R (P, s),
and R =v (p )s

S S 8

v .=T 'J v(p, s)dss t g' (2.9)

The functions

f(p, s)exp(iq R ), 681(p, s)exp(iq ~ R ), v(p, s)exp(iq ~ R ), , and exp(iq R)~g' p' 1 8' p' g' p' p

must all be periodic functions of s with period T(pz). Therefore, we can expand these functions in Fourier
coefficients: f&, SI, af, and vf

f(p, s)exp(iq ~ R)=Z'f (p )exp(2ivls /T), 68 (p, s)exp(iq ~ R )=p 8 (p )exp(2mils/T),

exp(iq ~ &) =p a (p )exp(2pifs/T), and v(p, s)exp(iq ~ 5) =Q v (p )exp(2wils/T). (2.10)
P l l z ' g' p l l z

By substituting (2.10) into (2.6) and performing a little algebraic manipulation, one can obtain the equation
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eE vi +& '(f+58 )a
f(p )= —1-, '-" - . &(p )+l z —i&v+7' '-+i@ ~ v +2vil/T l e —iv+7' '+iq v +2vil/Ts s

(2.ii)

We now assume that the interaction function Q(p, p') is a constant for all p, p' on the Fermi surface and in-
troduce a parameter A, defined by

Ao = (eBp T/2m'c) Q (2.i2)

(2.12)

%e introduce further a function E defined by

In (2.12), p~ is the maximum value of pz on the Fermi surface, and T is average period of electronic mo-
tion defined by

T=(2p )-'fT(p )dp, .

F = fdp f,
""pe) .

It can then easily be shown that the following equations hold

E=gl fdp T(p )flal*

(f+58 )=[(1+A )/2p T]F,
58 =(A Z/2p 7},
8 =(A /2p T)sai(p ) .

(2.i4)

(2.15)

(2.15)

(2.iv)

(2.18)

Multiplying (2.11) by T(pe)al (pe), summing over l and integrating over pe then gives a simple algebraic
equation for I' whose solution is

F =ieE. K/(I+A [(i+A )i/~+A ~]I./2P T),
where K=+ fv a *T(p )/[~-q ~ v —2vl/T(p )jdp

and I, =g fiT( p)
~
ai~'/[a)- q. v —2vl/T(p )]dp

(2.i9)

(2.20)

(2.2i)

j=2e(2v) 'fd'p5f(p)[v(p) 2+fd'p'(2m) 3$(p, p')v(p')(- 8p /8h )]0 qp

The last term in (2.22) represents the backflow current density from the interaction of the moving wave
packet with the surrounding fluid. By interchanging the order of integration p and p' in the second term,
one can write (2.22) in the form

j=2e(2v) 3fd~pv(p)(- 8p /8$ )(f+88 )
CP

(2.22)

(2.23)

If we express the integration in terms of the coordinates 8, Pz, and s and then introduce the Fourier trans-
form defined in (2.10), we can write j in the form

j=[2e'B/(2m)~c] fdP T(P )Q v ~(P )(f +8 ) (2.24)

in (2.21), e = &u+ i/v. All the Fourier components of the distribution function can then be obtained by sub-
stituting (2.19) back into (2.11). The next step is to express the current density in terms of the distribu-
tion function. Nozieres" has shown that the current density due to the flow of quasiparticles can be written
as

Substituting the solution of the kinetic equation into (2.24), we finally obtain the result

j=( c'+&(r ) E

where o '=[2iesB/(2m)'c] fdp T(p )Q v *v /[&o —q ~ v —2ml/T]
z z l / k s

is Eckstein's expression for the conductivity tensor, and

8o =[2e~B/(2m)sc](+iAO&u —v-')K K/[2p T(1+A )+A &uL —(1+AD)iI/7]'
m

(2.25)

(2.25)

(2.27)
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Here K'(&) =K~(—&). In the absence of Fermi liquid effects cr reduces to

g '+ (i/v)[2e'/(2n)'c(2p T)]K'K

The second term, which is proportional to I/v gives rise to a diffusion current.
For the spherical Fermi surface, there is some simplification. We can choose q to lie in x-s plane

without loss of generality. Then we have

p =p, T=T=2 v/&u, v =v, a =J(q v /~ )
m f' c' s s' l l x& c (2.26)

Here Pf is the Fermi momentum, Jl is a Bessel function, and &oc, the cyclotron resonance frequency, is
equal to eB/m*c. The Fourier components of the function v exp(iq Rp) can easily be shown to be

2 sin8(J'l +Jl I)

vi -- v —(i/2) sin8(Jl —J )

4& cos6)

(2.29}

(2.so)

(2.sl)

We have introduced vj = vf sin8. Substitution of (2.28) and (2.29) into (2.26) gives the well-known result of

Cohen, Harrison, and Harrison, "while 5 o can be conveniently expressed as

6 o = ,'(o, /7)—[(iA,~ v')/—((I +4,) —[A,~ + (I+A, )i/v] Mj]N N

Here M=K f+, d{cos8)Ji'{Xsin8)/(~ —q v cos8 —l&u )e C

Jl (Xsin8) t/ l
(l/X) J

and N =Z f, d(cos8) —i(S/8X)J-q e cos8 —l(d
E g E c COSHJ

E

(2.32)

Agai»'(&) =~(—~). We have introduced o, =ne'v/m*, the dc conductivity, and X=q vf/&u . For a metal
with a spherical Fermi surface, we can further generalize the above treatment of the collision term and
the interaction function in the following way. If we consider scattering by impurities alone, then we can
write'

I(n(p)) = —2w+, S,5(h —h, )fn(p)[l —n(p')] —n(p')[I-n(p)]]
P PP P P

(2.33)

Now we assume that the transition probability has a spin dependence of the form

(2.s5)S I+U, o ~ v
PG, p 0' pp pp

It then follows from (2.34) and (2.35) that

—' TrI(n) = —47r~, W,[f(p) —f(p')] 5 (h —8,)
p PP qP qP

(2.s6)

With rotational symmetry, W'& && at the Fermi surface depends only on the angle between p and p'. Hence,
it can be expanded in a series of Legendre polynomials as

W, =pl WIP (cos$)pp'
(2.37)

In (2.33), the factor 2vSpp&5(Sp —Spl) is the transition probability for the scattering of a quasiparticle from
state p to state p'. The delta function corresponds to conservation of local energy Sp. The determination
of Sp p& from first principle is outside the scope of Landau theory. Further, the spzn dependence of S on
~ and o' varies with the particular kind of impurity. Vfe therefore consider S ~ as a phenomenological

p&p
parameter. Dropping terms of order 5n2 and (&uc/SF)6n, we can write (2.33) as

I(n) = —2v g,S,5(S (p) —8 (p'))[5n(p) —6n(p')]
p p p qP qP

(2.s4)

Here t' is the angle between p and p'. Substitution of (2.37) into (2.36) gives

—,
' TrI(n) = f+ Q f™Y'——(8, P)/v

l, lm) & l
(2.se)
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where we have introduced the following definitions

1/T=(6m/rn*v 2)W, and I/& = (6'/m+v 2)W /(2l+1)0 l l (2.39)

f& denotes the (I, m)th coefficient when we expand f in a series of spherical harmonics Y&~. Obviously,
the occurrence of a large-number of relaxation times make comparison with experiment very difficult.
Hopefully, only a finite number of terms are needed in the summation over I, m in (2.38). This is true if
the angular dependence of W(p, p') is small. In the literature on Fermi liquids, the usual procedure'o is to
drop the terms gf ~ . . completely, or to retain only the term f,'/r, . In the present treatment, we shall
retain the same number of terms in the expansion of W(p, p') as in the expansion of Q(p, p'). The latter,
when evaluated on the Fermi surface, is also a function of the angle g between p and p' only. Hence, it
can be written as

P(p, p') = 5 ~ A &P& (cosg).
(2I+ 1)m'

l=0 E
(2.40)

The AI defined by (2.40) are the crucial parameters in the theory. The parameter Ao defined by (2. 12) re-
duces to that defined by (2.40) in the limit of a spherical Fermi surface. Substitution of (2.40) into (1.22)
gives an expression for 54, as

58 = Z &f Y (8&).
l ~ ~ l

l l l
(2. 41)

In deriving (2. 38) and (2. 41), we have made use of the addition theorem
l

P&(cosg) =
&

Z Y& (8, P) Y& (O', P'),
nz = —l

(2.42)

and the convention we adopt for Fl is
1

Y, (8, e)=8, (8). (2 ) '.
1

Here 81 =[—,'(2l+1)(l —!ml)!/(I+ Iml)! ] 'Pf ™(cos8)5m,

(2. 43)

and 5~=(-1), if m~0; 6~=1, if m&0.

We now investigate the relation between the Fourier coefficient f~ defined in (2. 10) and the spherical
harmonic coefficient f~ . Substituting (2. 10) and (2.28) into the definition of f& gives

1
= f+ f Y& (8, &)f(8, &)de�(cos8) =g f+ 8 (8)f (8)J. (X sin8')(2v) d (cos8) . (2. 44)

From (2.44), we see that a particular spherical harmonic component ff is related to all the Fourier co-
efficients f~(8) with values of m running from —~ to + ~. With the aid of (2. 38), (2.41), (2. 44), we can
write the transport equation (1.30) as

(-i~+iq v cos8+ r ' +im&u )f +i[q v cos8 —(i/7)m&u ] Y (8) —E ~ v
z Ii c m z I C tB m

Z I 8 (8)Z (X sin8).
l, l+I&l l

(2. 46)

In (2. 45), we have introduced

iq 8
Y (8) = (2m) Of e ~ e g(p, p') (- sp /SS, )f(p')dpdg'd (cos8')p dp'.

m 0 qP'
1

Here I'& —= (2v) 'f&, I/7& =n& r, and o. = I+A

(2. 46)
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We now expand Q(p, p') in the following way
C

y(p, p') = Q p (e, e') e' (2. 47)

Comparing with our previous expansion of P(p, p') in (2.40), and making use of the addition theorem yields

y (8 e')= Z y — e (e)e (e')= „Q A e (e)8 8m '
~ ~

n 2n+1 n n m+p
(2. 46)

It then follows from (2. 46), (2. 4V), and (2. 48) that

Y (8) = Z Al el (8)J (X sin8)I'
E, l~l~~

(2. 49)

The Fourier component f can now be written in the following way:m

ieE ~ v 40

+ Z —1+ A I' e (8)Z (X sine)
40 —g V Cose - Pl(d

8 f c 1 (sisal z f& —q v cosa-meed l l l m-s
C

(2. 50)

where &u = &a+ i/7, and &el= v+ i/Apl. It is interesting to note that vi appears in the combination 1/Al7l
which may be comparable with ~ even when v v~ » 1 for large l. Hence, it is desirable to keep as many
of the higher-order collision terms as possible, at least to the sarpe order as the Fermi-liquid interac-
tion coefficients An. Now we multiply both sides of (2. 50) by 8l I Zm s i(Xsine), sum over m and in-
tegrate over d(cos8). Then (2. 50) becomes an infinite set of linear simultaneous equations,

I 40 I

with a, = Q J d (cos8) —1+ 8l 8, A, J (X sine)J, (X sin8)

and C = —Q g+ [iK ~ v /(v —q v cose-mv )] 8 Z d(cose).—1 m z f m-s

It is of course impossible to solve the infinite set of equations (2. 51) exactly. Since theoretical estimates'4
for the interaction function indicate that it has only a slight angular dependence, it is reasonable to make
the approximation of setting Az = 0 for i greater than a certain fixed number. By this procedure of trun-
cating the P function after one or two terms, one is able to obtain the dominant terms in 5o, the correc-
tion to the free electron expression for the conductivity tensor. However, the relative importance of the
different terms in 6 o depends on how they are combined in the final expression. For example, there has
been a great deal of confusion in the interpretation of the experimental results concerning plasma waves
in potassium. If we try to explain the results with Landau-Silin theory, it turns out that ALp and A, do not
enter the final dispersion relation, and only for finite values of A., and A„etc. , does the theory predict
a deviation from the free electron behavior. %e shall leave more detailed discussion on plasma wave in
a, later section. This serves to illustrate that the proper way of truncating the expansion of 4 (p, p') in
Legendre polynomials to get an approximate result really depends on the particular phenomena under
consideration.

We shall now solve (2. 51) assuming that A =0 for i~ N0. In principle, the method is applicable for
arbitrary large value of N, . However, the amount of numerical work required to obtain useful informa-
tion from the final expression will be enormous for large N„since the number of simultaneous equations
for a given N, will be N,'. In most ranges of values of q and v, only terms linear in the A's are important.
The final expression will then be fairly simple. A further simplification can be noted: either by employ-
ing the equation of continuity or by expanding the distribution function in spherical harmonics and substi-
tuting into the transport equation, it can be shown that

I" '=6 '~'(q vF/u))n (I' ' —I' +')+5 'I'(q v /(o)o, I' '. (2. 54)
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(2. 55)

I
Here (I', s') runs through all pairs of values (1,0), (1, 1), (1, —1)' '', etc. , except (0, 0) and bf&i~s

SS S=all~ + 6lI . The function 6l s is defined by
1

5, = 6 '(q v /u&)n a, for (l', s')=(1, —1),

Except for the case where only A, is retained in the series (2.40), the number of simultaneous equations
can be reduced to N,'- 1 by making use of (2. 54). From (2. 51), it follows that

Ss S S
"u 'u '- "Il', )s'j(l'

1

= —6 ~(q v /&u)a a, for (I', s')=(l, l),
1

=3 '(q v /(u)n a, for (I', s')=(1,0),

I
and 5IIs is equal to zero otherwise. We can also represent (2. 55) in a simpler matrix form

D l =C.

The elements of the matrix D are

(2. 56)

SS - Ss Ss
ll' ll' ll' (2. 57)

I I
and r, C stand for the coin'mn vectors with rf/ and CII as components. The solution to (2. 56) can
then be easily written down as

S S S ~lsI' = X& /4, where b = IDI, and XI = ID I. (2. 58)

In (2. 58), IDI is the determinant of the matrix D, and D is the matrix obtained by replacing the (I,s)th
column of D by the column vector C. For simple metals with spherical Fermi surface, the expression
(2. 23) and (2. 24) for the current density reduces to the following expressions:

j = (em*p /2v')n Q f+' d(c ose)f (2. 58)

f r, -' —r, '

ant j= e, (—
) l [I', '+ r, ']/l)

r, '/vY
(2. 60)

Now it is easy to see that the solution for rf of (2. 58) is always in the form" rf s = I' s ~ R and if we
~ s

21 S
l

write Cf s =VI ~ E, the whole system of equations (2. 55) still hold with CI and rf replaced by Vf s. and
I'l . It follows that Xl can also be expressed in the form

S ~ S
-Xl E .

Combining (2. 58), (2. 60), (2. 61), we finally obtain an expression for the conductivity tensor as

(2. 61)

x -'-x
ix ix

E 1
(r =, (X '+X ')/iIx Ix

'//2

x -'-x
iy iy

(X -~+X ')/f

x '/v2
1y

X -1-X
iz 1~

(x, -'+x, ')/f

'/v 2

(2. 62)
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The form of the conductivity tensor as shown in (2. 62) is complicated because each component (like Xl ')
is actually a (N,' —1)&&(N,' —1) determinant. It simplifies considerably when we consider the particula~r
geometry in which qz = 0. Then we have

Ia, =0, if (l+s) and (I'+s') have different parity„.

and C =0, for (I+s) even; C =0, for (I+s) odd.
s s

lz E x,y

It follows readily from (2. 62) that v =oz~ = 0, and the determinants for determining X,o or X; ' and X,'
are separated. When we retain only terms linear in the A„, we can write

0 ~0 ~'~s Os 1 ~1 ~i~s Is
1 1 l 1l ' 1 1 l 1l

(2. 63)

In (2. 63), Q in the equation for XI0
' indicates that the summation excludes the term for which I=f0

and s =s,. Cohen, Harrison, and Harrison's result indicates that in the absence of Fermi-liquid interac-
tions, the magnetoconductivity tensor has the following general property

g = —cr
XP Px (2. 64)

It can be shown from the expression (2. 62) or directly from the explicit form (2. 30) and the result ob-
tained by Hamilton and McWhorter" that (2. 64) still hold when we retain Ao only, or when we retain Ao
and A. , in the geometry where q is perpendicular to B. We have not been able to give a rigorous proof for
(2. 64) when the complete interaction function is taken into account. However, it is easy to show from
(2. 63) that if only the terms linear in the A„are kept, (2. 64) is still true.

Without actually solving for &y ~y and X, to obtain an explicit expression for o, we can already
obtain some general properties of o in some limiting cases. These conclusions are independent of the
manner in which we truncate the series (2.40). First, we note that at low-frequency and high-impurity
concentration such that &ur «1, (2. 52) gives

=Z Jd (cos8)(-&, + 7/7 ')8 8, (2. 65)

With the aid of the mathematical identities"

J J , =6I—s m —s' ss' (2. 66)

and f+' d (cos8)8 (8)8 (8) = 6 (2. 67)

(2. 65) becomes a, =
6&&,6,(-A&+ v/7&) .ll' ss '

Hence it follows from (2. 51) and (2. 68) that

n -1 mI', =(7/7, —n) C, , for m =+or 0.

(2. 66)

The conductivity tensor is therefore unchanged from the non-interacting expression o ' except for a pre-
factor o., /(n, —v/v, ) . Another situation in which the Fermi-liquid effect becomes very small is when the
following criterion is satisfied

qv» l~ I, and/or v» I + I. (2. 69)

I
In this case, we can drop terms of order &u/qv or u/&oz in (2. 52). Then aff ~ is approxi'mately equal
to —AI6II~6ssi, and it canbe seen from (2. 51 that I'I is simply —(I/o. ,)CI . The factor 1/n, cancels
the factor n, appearing in (2. 62) in the coefficient of a, and the conductivity tensor then reduces exactly
to the noninteracting expression. It is not difficult to see directly from the transport equation why. the
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Fermi-liquid effect disappears from the final result in the above limiting cases. In (2. 6), if the time
derivative term —iaaf is small compared with the term (7 +iq v+8/Bs) f, then the function f+6e„
which measures the departure from local equilibrium, obeys the same equation as the function f in the
noninteracting case. Further, the expression for the current density (2. 23) is simply the free electron
expression with f replaced by f+68,. Hence, the conductivity tensor is unaffected by the Fermi-liquid
interaction when v « ii/7 +q v+ecI. It should be emphasized that this is a general result which is
even true for metals with arbitrary Fermi surfaces. We would expect that the region where the Fermi-
liquid effect is most dominant is that where the coefficient preceding f and f +68, are of the same order,
1.e. )

qv -m, (u-m, and w7»1.
C

(2. 70)

The calculation of Platzman and Jacobs" on the Fermi-liquid effects in cyclotron resonance confirms the
above criterion. These authors found by numerical calculations that considerable change results in the
Doppler shifted cyclotron resonance when

((o /(u)v c - (o/(o - 1 .
P c (2. 71)

In the cyclotron-resonance experiment, the effective value of q inside the metal can be taken approximately
as I/O where 6 is the skin depth given" by 6=c/(2wo&o)'I'. Since o is of order a&p'/&u, q is then of order
&up/c. Hence, (2. V1) is just a special case of the general criterion (2. 70).

Finally, we note that at & = 0, i.e. , for a uniform perturbing field, ZI (Xsin8) is nonvanishing only for
I=0, and (2. 52), (2. 53) reduces, respectively, to

a, =[(-A +A (u/((o —s(o )]6
(2. 72)

and C = —J+,' [iE' v /(&o —s&a )]8i (8)d(cos8) . (2. 73)

In writing down (2. V2) and (2. 73), we have dropped the collision terms for simplicity. I'I is obtained by
substituting (2. 72) and (2. V3) into (2. 51) and is given by

I' = —[(e - stan )/(v —o. ar )] C
S S

l c & c l

It can then be easily seen that the conductivity tensor 0 in this limit can be obtained by simply replacing
the effective mass m* appearing in o, by m*/n, (both in the prefactor and in vc =eB/m*c) Accord. ing
to Pines and Nozieres, ' m /n, is just the crystalline mass mc of the electron.

III. SPIN-INDEPENDENT OSCILLATIONS OF THE ELECTRON LIQUID

A. General Theory

In the preceding section, we have demonstrated how the conductivity tensor a of a metal can be eval-
uated in the Fermi-liquid theory by solving the Landau-Silin equation. The wave number and frequency
dependent spin susceptibility y can be determined by an analogous procedure. " " These two response
functions are characteristic of the system, and they specify completely tQe behavior of the system under
the influence of a perturbing field. Once the values of the electric field E(r, f ) and the magnetic induction
b(r, t) are given, the values of the current density j and the magnetization M are uniquely determined.
However, the current or the magnetization will in turn influence the field. The fields I and b are coupled
and have to be determined self-consistently from the Mmovell's equations. In general a propagating field
of the plane wave form exp[i(q r —vt)] cannot exist in a metal because of the large value of the conductivity.
A propagating field is only possible if some kind of collective oscillations like plasma waves or spin
waves are excited. The investigation of these problems requires the simultaneous study of the kinetic
equation and the Maxwell's equations. We write the four Maxwell's equations as"

'v x E = —(I/c)sb/Bt, (3.1)
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V' E =4',
Vxb=(1/c) BE/St + (4m/c) j +4mV x M.

From the solution of kinetic equations, we have the two constitutive equations

(3.3)

(s. 4)

(s. 5)

and'o M = a .b . (s. 8)

Since we have used a semiclassical transport equation to solve for o and a, quantum effects such as the
Landau diamagnetism have been neglected. In discussing the electric field excitations, these diamagnetic
terms are certainly small compared with the field b induced by the electric field from (3.1). In the case
of spin wave excitations, we are interested in the pole of the susceptibility. Hence, the Landau diamagnetic
terms can still be neglected even though it is of the same order as that of the spin susceptibility.

I et us investigate the condition for the existence of a self-sustaining field E(q, ur) exp[i(q ~ r- &ot)] in a
metal. The current density induced by such a field is given by (3.5). However, when we substitute (3.8)
and (3. 1) into (3.4), we see that thede exists another relation between j and K which must also be satisfied
by the actual value of the fieM and the current existing in the metal. After a little algebraic manipulation,
this relation can be expressed as

~=r E, (3. 7)

where I' is given by

I"=(i(o/4m) I +(ic'/4m(u)(Q —4v Q o.). Q, (s. 8)

in (3.8), I is the identity matrix, and Q is the tensor defined by

o —q 0
(s. 9)

In writing (3. 9) we have assumed that the wave vector q lies in the y- z plane. Provided we are not near
the pole of the spin susceptibility, elements" of e are only of order 10 '. Hence, the matrix I —4m n
can be simply replaced by the identity matrix I . Then 1» reduces to the familiar expression

(ic'q'/4m(u)((u'/c'q' —1)5 +ic'q q /4v(o.
p,v p,

The condition for the existence of a self-sustaining propagating field of the form E(qv) exp [i(q r —vt)]
in a metal is equivalent to the condition that E satisfy both (3.7) and (3. 5) simultaneously, i.e. ,

)o —1" )=0.
The ratio of the elements of the two matrices oop/I'~p is of order @'~/ ' c'~qcWhen the wavelength of
the disturbance is not excessively small and the frequency is of order a&c, then the factor &u~'&o/c'q'&uc is
much larger than unity. Hence, (4. 10) reduces to the simpler equation

The propagation of plasma waves near the fundamental cyclotron resonance in potassium has been studied
recently by Walsh and Platzman. "~" The experiments are carried out in the Azbel-Kaner geometry, with
samples which are thin, plane-parallel slabs. The plasma waves propagate perpendicular to the dc mag-
netic field B, and may be polarized either parallel or perpendicular to B. In the former case, "the experi-
mental data differs slightly from the prediction of the free electron model, while in the latter, "there ap-
pears to be considerable deviation. Platzman and Walsh attributed the deviation to Fermi-liquid effects,
and present an analysis which involved only the Fermi-liquid interaction coefficients A, and A,. This anal-
ysis contained some numerical errors, and the agreement of theory and experiment was fortuitous. Before
studying this problem in detail, it is worth considering the condition for the self-sustaining magnetization
of the plane wave form. By substituting (3.5) into (3.4) and making use of (3. 1), we can obtain a relation
between M and b as
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b =O'M,
where 0 is the tensor defined by

0 =(4'/(o)Q t Q'c/(u+((o/c)I +4viv/c] '
Q . (3. 13)

The constitutive equation (3. 6) provides another relation between b and M. The condition that a finite mag-
netization exists in the metal is then

' —g t=0

The solution of (3. 14) is quite complicated in general. However we see from (3. 13) that the elements of
0 are of order c'q'&oc/&op'v. Except near the region of frequency and wavelength such that ) o i =0, which
is precisely the condition for the existence of plasma waves, (3.14) reduces to the simpler equation

) n '1=0.

Taking into account the properties of the spin susceptibility tensor one can show that (3. 15) factorize into
three equations a+-' = 0, n ' = 0, and z«-' = 0, corresponding to two waves circularly polarized in the
plane perpendicular to B, and another one polarized parallel to B. It is important to note that the approxi-
mation of dropping the terms proportional to n in (3.10) and the terms proportional to 0 in (3. 14) corre-
sponds physically to an uncoupling of the plasma waves and spin waves. This will be a good approximation
as long as the two dispersion curves do not cross each other. At the point of crossing of the curves how-
ever, the spin waves and plasma waves will interfere with each other and the resulting dispersion relation
for the waves must be studied through the full equations (3. 10) and (3.14) instead of the approximate ones
lo I=0 and la. 1=0. Either from (3.8) and (3. 13) or from the Maxwell's equations directly, it is clear
that spin wave polarized parellel to B can only interact with plasma wave polarized perpendicular to B and
vice versa.

We have seen that the dispersion relation for the plasma waves in a metal can be readily obtained by
putting t 0 I

= 0. However, this method of studying the collective oscillations proves to be very inconvenient
for the following reasons. First, when we want to retain terms in the expansion of Q(p, p') that are propor-
tional to An for n & 2, there exist more than one solution in the neighborhood of every integral multiple of

It is not easy to see which particular mode corresponds to the experimentally observed one and to
understand the physical difference between the different modes. Secondly, if it is assumed that An = 0
for n& 2, then whatever the geometry is, A, and A, always drop out of the final dispersion relation. In
the geometry with q =0, a factorization always seems to result when we form the combination o ~~a&&
—v~&o&z. It is important to ascertain whether these results are just accidental, or really a general
feature independent of the manner in which we truncate the interaction functions. All these questions are
difficult to answer from a study of the equations (3.11) and (3. 15). In this section we present a different
method for studying the plasma waves. This method is completely equivalent to that presented at the be-
ginning of this section, but it provides the result in a more interpretable way. Instead of calculating the
conductivity tensor from the transport equation, we use the Maxwell's equations to relate the electric field
to the charge and current densities. We then express these in terms of the distribution function f (8, P).
The kinetic equation then becomes a homogeneous integral equation for the function f (8, P). If we then use
the technique developed in Sec. II, this integral equation can be converted into a set of homogeneous simul-
taneous linear equations. The condition for f (8, P) to be finite, or equivalently the condition for the exis-
tence of a self-sustaining electric field, can then be obtained by setting the determinant of the coefficient
matrix equal to zero. This method is very similar to that first introduced by Silin" in his classic paper on
the oscillations of a degenerate electron fluid in the presence of a dc magnetic field. However, Silin did
not go into a detailed study and has only obtained the result that for n & t m ) & 1, the eigenfrequencies of the
system are&a =m&o (I+A )+ O(q'). Recently, Mermin, and Cheng" have extended Silin's analysis to shorter
wavelengths by evaluating the term of order q' for propagation perpendicular to the dc magnetic field. In
their theory, the q ~ v term in the kinetic equation is regarded as a small perturbation and hence it cannot
be extended to shorter wavelength region such that q'rz' is larger than a particular value of An. We shall
be able to obtain a result which reduces to that of Silin in the long wavelength limit, but is moreover valid
for arbitrary wavelength, provided of course that the condition for the validity of Fermi liquid theory,
namely qvf «p, is still satisfied.



208 S ~ C ~ YING AND J. J ~ QUINN 180

B. Propagation Perpendicular to the dc Magnetic Field

From Maxwell s equations and the magnetic constitutive equation, the electric field i.s related to the cur-
rent density by the equation

E P-1 ~ ) (3.16)

Here I' is the tensor defined in (3.V). When the term proportional to & is dropped in (3.8), the inverse of
I' can easily be obtained as

41T(0

k 0

(~2 c2q2) I

((P c2q2)-1

(3.17)

For simplicity in discussion, we have taken q to be in the x direction. Making use of (3.16), together
with the expression for the current density (2.5S), we can write the kinetic equation (2.50) in the form

f =[-,'(~ o. /&u )ar/(&u —m~ )+-,'A m~ /(~ —m&u )](J 8 —J 8 )G
m '

P 1 c ' 1 c c m+1 1 m-1 1 1

+[-(i/2)[~ a /((o —c q )](u/(~ —m(o )+-,'A. m(o /((o —m(o )](J 8 +J 8 )G
2 2 2 2 1 1 —1

p 1 c ' 1 c c m+1 1 m-11 1

+([(o a /(&o —c q )](o/((u —m(o )+~A m(o /((o-m(u )]J 8
2 2 2 2 0 0

p 1 c ' 1 c c m 1 1

+A
c l, lsd(l c

xAG 8 J
m —s' (3.18)

In writing down (3.16), we have made use of the equation of continuity (2.54) to eliminate Go . The sum
over l runs through all integral values starting from l = 2. The Gls are defined in the following manner:

—= (2n') f = Q f 8& (8)f (8)J (Xsin8)d(cos8),

for (I, s) w(1, 1) or (1, —1), while

GI'=Q f d(cos8)(8 'J -8 'J )f =I' ' —I' ',

Gl '=Q f d(cos8)(8 'J 1+8 'J )f =I" '+I'
m m —1 1 m+1 m 1

(3.19)

We have repeatedly emphasized that in the region of frequency and wavelength under consideration, terms
of order (~'p/c'q') (&o/&uc) is much larger than unity. It is then obvious from (3.18) that in the coefficient
Gy Gy and Gy all terms involving Ao and A, can be dropped with no appreciable error. This explains
why A, and A, do not enter the final dispersion relation for the plasma waves. The approximation made
here is equivalent to that of dropping the term 1 compared with 0 in the dispersion relation ) o —I'

) =0.
The difference in form arises because we are working here with the scalar distribution directly instead
of the electric field vector. Multiplying (3.18) by 8I (8)J~ s(Xsin8), summing over m and integrating
over d(cos8) gives an infinite set of homogeneous simultaneous equations for the functions Gf s. The con-
dition that a non-zero distribution exists is obtained by setting the determinant of the coefficient matrix
equal to zero. We find it most convenient to write the infinite determinantal equation as

I Imm mm 0nn' nn' (3.20)

where for n ', n &1,
I (dA I. I
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for 8'= 1j n 41j (3.22)

for n= 1, n'Oi, a, =+A, -1+ j d(cos8)8, u J . , (Xsin8)1n' n' QP —S(0 x
n' s s —m'

S c
(3.23)

and for n=n'=1,
mm' ~ e

A m'~+ed( 8)
m m'

11 & —sar 1, s ss c
(3.24)

In these equations, we have introduced

u '=J (Xsin8)8 '- J (Xsin8)81', u '=J (Xsin8)8 '+ J (Xsin8)8 ', u =J (Xsin&)8 ', (3.25)
S S+1 1 s-1 1' s s+1 1 s —1 s s

and A '= —,'(o 'n /(o2

We have assumed the condition ~7~»1 for all E and dropped the collision terms. This is just for the sake
of brevity in writing. In any case, our discussion in Sec. II indicates that this is the region where Fermi
liquid effects become appreciable. Hence, experimental investigation of plasma waves should be per-
formed in the region, vv'~»1.

In the geometry under consideration with q perpendicular to B, it is not difficult to see that a++ ™
vanishes if (n —m) is of different parity from (n'- m '). Thus the secular equation reduces to one for odd
(n —m) and one for even (n —m). They contain modes polarized perpendicular and parallel to B respec-
tively. Before going to a detailed study of the solutions of equations (3.20), it is interesting to demonstrate
that a similar infinite determinantal equation can be obtained by starting from the kinetic equation (2.3)
and expanding the distribution function f directly in terms of the spherical harmonics. When this is done,
an infinite set of equation results in the form'4

mi m-1 —2 2 2 2 —1 2 m0 2 2 22 m
((o —n m(u - (5 +6 )[(o -((o —c q ) ](o n v —& e n /((u —c q )/fc si si P 1 nl P 1 n

m~ ~m —1 m —1 m» ~m+1 m+1

m m-1 m-1 m m+1 m+1

+~ n [~ +(&u —c q ) 1(& I fl +& f )=0.mi —1

p 1 nl 1
(3.26)

If we proceed as before and set the determinant of the coefficient matrix equal to zero, we obtain again
two secular equations, one for n-m odd and one for n-m even. Except for n= 1 or 2, a typical block in
the determinant would appear as

(o —n (m —l)(on-1 C

1 w & m

(o —n (m+ 1)(o
m + 1 ~ ~ mqev

n —1 C 8-1 n

m ~ m m-1 m~ ~ m+1 ~ —e m~
n c

m m-1 m+1 = 0.

m —1 ~ m
v (u —n (m —1)(on+1 n n+1 c

m + 1 ~ ~ m
&o —n (m+ I)~n+1 c (3.2V)
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The block for n=1, m=1, 0, etc. , is similar with extra terms proportional to ~p in both the diagonal and
the off-diagonal terms. It can be easily seen this method is exactly equivalent to that of Mermin and
Cheng's perturbation theory. The form of (3.27) reminds one of the usual eigenvalue equation ~HO+O' —I

~

= 0 in the representation with the eigenstates of H„ i.e. , Fn, as the basis. H is just the perturbation
q ~ v. For n&1, the eigenvalue of the system is

(d = & Stcam +y X
nm n c nm

(s.26}

while for n = 1, u) = ~ + O(q').
p

(3.29)

The modes with n= 1 are just the "ordinary" plasmons discussed by many authors before. '7 The coeffi-
cient of X in (3.29) cannot be taken too seriously because for metals, &up is comparable with the Fermi
energy and the validity of the Fermi-liquid theory is then doubtful. The coefficient yn~ can be obtained
by using standard second-order perturbation theory as done by Mermin and Cheng.

We now go back to (3.20) and show that we can obtain the result (3.26) and an explicit expression for y„m
as well. In addition, the result is valid for arbitrary value of q~c. The method is particularly simple
when we can approximate the interaction function P(p, p') by a finite number of terms in its expansion in
Legendre polynomials. In that case, (3.20) reduces to a finite size determinantal equation. First, we
note that whenever (u is not exactly an integral multiple of coc, the diagonal element in the matrix ann&~+

pm' jsnn

a —1=(n m(o —(o)/(co —m(u )+O(X ),
mm 2

nn n c c (s.so)

when we are considering the (n, m) mode corresponding to that given by (3.28), then the diagonal element
a~„~~ —1 as given by (3.30}is of order X'. In order to get the dispersion relation correct to order X',
we need only retain the term independent of X in all diagonal elements and the terms proportional to X in
the (n, m)th column and row, yz~ is then easily evaluated as

1

~ n m~ ]si"0] m~ ~ Z- ~,(,]s'ne]
n n c n

nm 2(m'A ' —1) 4, , (mo.'—m')(mo. '—I'a ') '
n n p 82 n n n

(s.sl)

where the sum on n', m'includes the terms m'=m+1, n'=n+1 only. For n=2, the terms involving
A.n 1 must be replaced by

c 0 . 1
I)sine(2 ' for m=1, and by —

4 2 I 1~sin8)2
' for nz=2.1 2 c 1 . 2

4 2n, -1 1

I I
In these equations

~
sine~, = f+' d (cose)e 8, sine .n n —1 n n' (3.32)

It should be emphasized that the relation + = n m(dc+yn~X' is only valid in the region yn~X' «mA. n~c
since we have treated quantities like X'/(~ —m&uc) as of order X' in arriving at (3.31). The result here
is equivalent to that of Mermin and Cheng. The first point to be noted from (3.31) is that except for n =2,
yn~ vanishes when all An are put to zero. This indicates that at least in the long wavelength limit, Fermi-
liquid interaction does introduce drastic changes in the propagation of wave in simple metals because the
dispersion relation becomes quadratic in powers of X when the An are finite, instead of quartic or higher
powers of X in the absence of electron correlations. Secondly, the question arises as to how each mode
is related to the plasma waves observed experimentally, To answer this question, it is easier to look at
(3.26). The modes with n = 1 are clearly the transverse or longitudinal plasmons, and we shall not dis-
cuss them further. For n &2, in the (n, m) mode, v tends to o.&merc as X tends to zero, and only fz can
remain finite, all other spherical-harmonic components of the distribution function goes to zero as dif-
ferent powers of X. In particular, the components f,',f, ',f,' and hence the electric field associated with
them all tend to zero in the infinite wavelength limit for all modes with n ~ 2. The plasma waves observed
by Platzman and Walsh are predominantly zero sound waves. Equation (3.26) also indicates that if fz is
independent of X, f, varies with X' as

fm n-I
(3.33)
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Hence, the electric field associated with the oscillations is strongest in the (2, 1) mode. If we are con-
sidering the plasma waves in the neighborhood of ru =cue, then the mode easiest to excite is the (2, 1) mode
for polarization parallel to B and (3, 1) mode for the perpendicular polarization. For propagation near the
higher harmonics &o =m&o with m&1, it is readily seen that the electric field is strongest in the (n, m)
mode for which n =

I m ) or n = I mj+ 1 in the perpendicular and parallel polarization, respectively. Hence,
as X tends to zero, the plasma wave frequency tends to m(1+Ai i)&oc or m(1+Aimi I)&uc depending on
the polarization. This fact enables us to determine, in principle at least, the Fermi-liquid interaction
coefficients A~ for n & 1. An alternative method of obtaining values of the interaction coefficients A~ is
to study the coefficient of X' term in the dispersion relation of the plasma wave in the mth harmonic.
This furnishes information concerning Am, Am 1, and Am+1. Except for the (2, 1) mode, the Fermi
liquid effects reveal themselves eminently since the coefficients of I vanish in the absence of correla-
tions. If we are able to study experimentally plasma waves with ~ -~c and ~-3~c for the perpendicular
polarization and (d-2~ for the parallel case in the long wavelength limit, A„A„and A, can then be de-
termined. Let us illustrate here, for example, the dispersion relation for the (3, 1) mode and the (2, 1)
mode to terms of order X'. These results are obtained by evaluating ynm from (3.31). For the (2, 1)
mode, we have

(u =(o (1+A ) —(o X'(~M+a7A —~70A ), (3.34)

while for the (3, 1) mode,

(1+A )-&o X'(-~A ~~A -&A ).31 c 3 c " 2 " 3 6 4 (3.35)

In writing down (3.34) and (3.35), we have only kept terms linear in the A
We now study the validity of the model in which we truncate the series (2. 40) in an arbitrary manner.

If the interaction coefficients A~ decrease rapidly with increasing v, naturally we would expect that re-
taining only a few terms in the expansion should be sufficient. This may lead to erroneous conclusions
in some circumstances. For example, in the extreme case when the Fermi-liquid interaction is com-
pletely neglected, all different modes with the same value of m starts at the frequency ~ =mco in the
infinite wavelength limit. Using degenerate perturbation theory, Mermin and Cheng have shown that each
of these modes then has a dispersion relation as a&nm =m~c+X2(n —1) . If we study the plasma wave
through (3.20) in this limit, the dispersion relation becomes

g 00 p11 (3.36)

ll —1 —1 —ll 1 —1and a 11 Q 11 011 a» = 0, (3.37)

for the two polarizations, respectively. These are identical to the equations o«'=0 and o»'o&&'+cr~z"
=0, where ao is the conductivity tensor for the noninteracting electron gas. The solutionsof (3.36) and
(3.37), however, contain only one branch near every harmonics and many modes have apparently disap-
peared. The reason for this can be seen from the expression (3.24) for a»00, which is

a "=A 'P [~/(&o —sar )] f+ d(cos8)J' '(Xsin8).
11 1 s c S

(3.36)

The factor co —sac in the denominator originates from the process of dividing through the kinetic equation
by this term. For the (l, s) mode in the long-wavelength limit, ~ —sar varies with X2( 1), whereas the
numerator for this term varies as X is i for X«1. Hence, the solution of (3.36) in the neighborhood of
m-s~c and X«1 is only valid if the following inequality is satisfied

(3.39)

s, being the azimuthal index, always satisfy the relation

(3.40)

It follows from (3.39) and (3.40) then that for each given value of s, the solution of (3.36) correspond to
the mode (is i+1,s). We have already seen that this is exactly the mode which is easiest to excite for &u

near stoic. A similar argument holds for the other polarization, and the mode determined from (3.37) in
the neighborhood of &u-s~c is the (is i, s) mode. When we truncate the series for P(p, p') at successively
larger values of n, more and more modes will appear. In general, to study a particular (n, m) mode, it
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is clear from the above discussion that all A„should be retained up to n'=n+1 in the long-wavelength
limit. As X increases, more and more modes will be mixed and the full determinantal equation (3.20)
has to be solved. An exact solution with all the An finite would be extremely complicated and impractical.
A considerable simplification results when only terms linear in the An are kept in (3.2). This can be
easily seen to be a good approximation when the following inequality is satisfied:

QP A && cd —S(dc n C
(3.41)

for all allowed integer values of n and s. The form of the dispersion relation (3.34) and (3.35) suggests
that, in general, (3.41) would be satisfied for values of X greater than unity. With this linearization,
(3.20) becomes

00 ~ mm ~ Om m0
'11

n, fm)&n n, fmJ&n
(3.42)

for polarization parallel to the dc field, and

mm 11 ~ m —1 -1m -1-1 ~ m1 lm
(0 nn 11 ' 1 1 11 1 1n

n m nm n m

1 —1 g ml —lm —11 ~ m —1 1m
'11 n1 1n 11 n1 1n

n m n m
(3.43)

In these equations the summations are performed over all n & 1 and all m such that I m ) &n; in addition
n —m must be odd in (3.42) and even in (3.43). The function Ko is equal to a»"a» ' ' —a» "a»' '.

We now examine the dispersion relation in the short-wavelength limit but with values of X such that
the criterion qvf «s~ is still satisfied. The asymptotic form of the Bessel function is"

J (X sin8) = (2/X sine)'~' cos(X sin8- w lw —g w ) for X» 1.

Making use of (3.44), a general matrix element appearing in (3. 20) can be written as

a, ™=-A, 5,™+(a/X)A, R, cotwa+(a/X)A S, cscwa for n'e 1,nn' n' nn' n' nn' n nn'

(3.44)

(3.45)

while a = [(a/X)R cotwa+ (a/X)S cscwa] .m0 0 m0 m0
nl 1 n1 n1 (3.46)

In (3.45) and (3.46) a = a&/&oc, and we have made use of the identities"

00

= scotia,Q-S (3.47)

Z = w cscwa,
(- 1)
a-s (3.46)

which is valid for a not equal to any integral value. The functions R and S appearing in (3.45) and (3.46)
are defined as

= f 8 8, cos-,'(m+m')wde,nn' o n n' (3.49)

and S, = f 8 8, cos[2X sin8+ —,'(m+m'- l)w] de .nn' o n n' (3. 50)

Substituting (3.45) and (3.46) into (3.42), multiplying" through by sin'wa ~ (x/a) gives the following ex-
pression for the dispersion relation

(I++ A )(coswa+S ) —(a/X)(coswa+S )(Z A R coswa+Z A S )
00 00 mm mm

n n 11 11 n n nn n n nn
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~(a/X) [Q (R
1 ) A cos wa+g A (8 ) +2Z A R 8 coswa] =0. (S. 51)

If we put all A„equal to zero in (3.51), the solution corresponds to that of a free electron gas. It is

a =+w 'cos '[-8»oo(x)]+2m, (S. 52)

with m being any integral value, and cos ' [-8»"] is the principal branch of inverse cosine such that

0-cos '[-8„"]& y'w, if —8„"o-0; and ~w &cos '[-8„"]&w, if —8„"&0.

is a small quantity depending on the parameters A„and vanishes in the absence of electron cor-
relation. To terms linear in ~m +&, (3. 53) can be written as

coswa= —S vb, [1—(8 ) ] '.00 (+) 00 2 —,
'

11 m 11
(3. 54)

There are an infinite number of branches corresponding to values of m = 0, a 1 ', etc. , in (3.37) with
the plus or minus sign before cos '[-8»~]. Since Rnnmm and S„„mm are at most of order unity, it can
be seen from the form of (3. 51) that unlike the situation at the long-wavelength limit, the inclusion of all
or a finite number of A would only introduce a small correction for all branches. To terms linear in
the A„(3.52) can be written

a=+w cos (-8
1

)+2m+~00 (+) (S. 53)
m

Substitution of (3.54) into (S.36) then gives the expression for ~~ ) as

= X [w cos (- 8 )+2m](s) -1 -1 —1 00
m 11

'0 2 OO 2 '0 2 I I

n'm ' n m n'm'
(S. 55)

The summation in (3. 55) is carried out over all integral values of n' and m' such that n'&2, ( m '
I

& n'.
In addition, n ' + m ' must be odd.

We have discussed in the above paragraph the modes of oscillation of an electron gas both in the long
wavelength limit and the short-wavelength limit. In the intermediate wavelength region where X= 1, an
analytic solution of (3.42) or (3.43) is difficult to obtain, and a detailed study must rely on numerical
method. We present here a numerical study of (3.42) retaining only A, in the expansion series of

@(p,p'). It is clear from the above discussion that the solution near v =to in this model corresponds
to the (2, 1) mode which is precisely the one observed experimentally. " As can be seen from (3.34), A,
only introduces a small correction in the coefficients of X'. The dominant term which shows the Fermi-
liquid effect in this mode is the factor (I +A, )v . Hence, the procedure of fitting the theoretical curve to
the experimentally observed one shouM give a good estimate of the magnitude of A, . At larger values of

X, our discussion in Sec. II shows that Fermi- liquid effects start to disappear and the r esulting dispersion
curves should be close to the one for a free electron gas. All these points are clearly borne out in our
calculation. When An=0 for n&2, the dispersion relation (3.42) can be written in the form

X'L(1+2A2 —~A2a2M)+ A [(Sa2L —1)2+(3gL')2] —0 (S.55)

where L'= BL/BX, L = P (1+5 ) '8 (a' —m')
mo m

m =0
(S. 57)

and M= Z (1+5 ) '(T +T )(a' —m') '
m =0 m0 m+1 m- 1

(3. 5a)

In (S. 57) and (3.58)
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S = f d (cos8) cos'8J' '(X sin8), T = f d (cos8) sin'8 cos'8J' '(X sin8) .
m m -1 m

ln Fig. 1 we display the experimental data of Walsh and Platzman" together with the solution of (3. 56) in
the neighborhood of co-co~ for A., = —0.026, —0. 036 and zero. A choice of —0.026 for the value of the
parameter 4, gives a theoretical curve which fits very well with the experimental in the long-wavelength
region X & 2. As X increases, the experimental points begin to fall on the free-electron curve as expec-
ted. The slight deviation of the theoretical curve with A., = —0.026 from the experimental one can be
attributed to the omission of all the terms proportional to A~ for n &2 in (3.42). For the other polariza-
tion perpendicular to B, plasma waves near ~ = co has also been observed experimentally„" This cor-
responds to the (3, 1) mode in the long-wavelength limit. However, owing to a wrong assignment of the q
values, the first published data was erroneous. " Recently, Walsh" informed us that a reassignment of
the q values for the experimental points would yield a dispersion curve very close to the free-electron
curve for X'& 1. For X& 1, there are derivations from the noninteracting picture. This is precisely the
kind of qualitative picture that we have obtained. For small values of X, our theory predicts a X depen-
dence with a coefficient depending on A.„A.„and A4. Detailed comparison between theory and experiment
has yet to wait until further experimental results are obtained.

qvF

FIG. 1. Plot of wz/~ verses qz&~/cu for plasma waves
polarized parallel to the dc Inagnetic field. The open and
solid circles represent the experimental minima and

maxima respectively of the derivative with respect to &
of the power absorbed. The three curves are results
of the present calculation for values of &2 of zero, -0.026,
and -0,036, going from left to right.

I.O l.2 1.4

C. Propagation Parallel to the dc Magnetic Field

%hen the wave vector q of the plasma wave is not exactly perpendicular to the dc field, modes with even
n-m and odd n-m are mixed and the situation is more complicated. The extreme case where q is parallel
to B is rather interesting. In the collisionless limit, the kinetic equation then becomes

(&u —q v —m&o )f (8) —ieE ~ v (8) —(q v +m~ ) Z f A 8 (8}8 (8)f (8')d(cos8')=0 (3. 60)
g g c m m zz c,

~

i nn n mno im

In (3. 60), fm and vm are just the usual Fourier components defined by

Xmas

v = ~ v e
m
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Since vm has nonvanishing value only for m equal to zero or +1, all the Fourier components with lm I & 1
are completely decoupled from the electric field. Moreover, Fourier components with different values of
m are independent of each other. Each of them obeys an integral equation

(&v —q v —m&u )f (8) —(q v +m ) Q fA 8 (8)8 (8')f (8')d(cos8')=0,
n& lml

(s. 62)

for lm l & 1. These equations can be studied by the same technique as described for the other geometry. .

For lm l & 1, the oscillations correspond to pure zero sound modes —the Fermi surface of the metal
undergoes a periodic distortion without inducing any electric field, current density or charge density.
The modes with lm l = 1 are the plasma waves. As before, those modes with n = 1 are just the ordinary
plasmons and we shall not discuss them any further. To obtain the dispersion relation of all the other
modes, we can first express the term iE ~ vm in terms of the distribution as

ieE ~ v =6 8 f d(cos8) 8 (8)f (8), (s. es)

where 6 =&@ 2&v/(~' —cmq'), form =+I, and 6 =v '/&o, for m=0.

Substituting (3.63) into (3. 60), multiplying by 8n and integrating over d(cos8) gives a system of equa-
tions

Z (a, —e,)u, =0.(m) (m)
nn' nn' n' (3. 64)

In (3.64), un™is similar to the In defined previously except that m is fixed in the present case, i. e. ,

= J d(o8)8 f (s. 66)

and a, = f d(cos8)8 8, A, (q v +m~ )/(~ —q v —me ), for n'& 1,
(m) +' m m

nn' n n' n' z z c z z c ' (s. 66)

(m) +'d(cos8)8 8 (~ —q v —m& ) '6
while a n 1 8 8 c m

n1
(s. 67)

The dispersion relations of the various modes are then the solution of the determinantal equation

(s. 68)

In the long-wavelength limit, we can again distinguish various modes with different values of n and m.
The dispersion relation for the (n, m) mode to order Z' is

of cos2g g Z cosg Q Q Z cosg Q

n n n n —1 n n n+1

for n & l ml ~ 1, andn & 2. For n= lml, the term proportional town 1 should be set to zero. Among
the plasma wave modes, the (2, 1) mode is most strongly coupled to the electric field and corresponds to
that which would be observed experimentally. Its dispersion relation in the long-wavelength limit is given
by

&u=(1+A2)(u +—,', o.2nsu) (A2-As) 'Z'. (3. 70)

This expression is valid in the region Z & [ A, —A, I (36A,/8) and Z &A, . Because of the restriction Z &A„
(3.70) is only valid over a rather small range of values of wavelength. The general dispersion relation
for the plasma wave can be written as
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(1+A,)I„—~A,aI, I, (1 —a)/X'-~4A~aI~2=0 .

Here I,=2(l —a)/Z'+[1/Z- (1 —a)'/Z']in[(1 —a+Z)/(1 —a —Z)] (3.72)

I, =——,+, — Z, ln[(1 —a+ Z)/(1 —a —Z}].4 2(1 —a)' (1 —a)' (1-a) (3.73)

In these equations, Z=q v~/&c, and a=&a/~ . Equation (3.71) canbe solved by numerical methods. As
the wavelength decreases, we will arrive at a point such that qzvf& I &u —&eel. Then there exists a value of
8 for which q v cos8 is equal to ~ —(d~, and the waves are severely damped by those electrons traveling
in phase with t e wave. Owing to this Landau damping in this geometry, plasma waves cannot be observed
experimentally beyond a critical value of q determined by the solution of (3.71}.

IV. SUMMARY

We have presented a rather general method of
evaluating the electrical conductivity tensor of a
degenerate electron liquid in the presence of a dc
magnetic field. The results are valid for arbitrar-
ily short wavelengths, provided only that the con-
dition q «k~ is satisfied. The method of solution
is demonstrated quite simply by the case in which
the interaction function P(p, p') can be approxi-
mated by a constant. This case is studied for a
Fermi surface of arbitrary shape, and the results
may be a useful first approximation for studying
some effects in materials with complicated Fermi
surfaces. For a more general interaction function
we limit our consideration to a spherical Fermi
surface. The expression for the conductivity in-
volves the solutions of an infinite matrix equation.
Only for the case in which the interaction function
is approximated by a finite number of terms in
the expansion in Legendre polynomials, can nu-
merical results be obtained. We have evaluated
the conductivity for the case in which the first
three terms in the expansion are nonzero.

The self-sustaining oscillations of the electron
liquid are obtained by making the constitutive
equations (the solutions of the kinetic equations)
consistent with Maxwell's equations. Except in
the vicinity of the crossing points of the disper-
sion relations, plasma waves and spin waves are
independent to a very high degree of approxima-
tion. Then, the dispersion relations are given by
(3. 11) and (3. 15). These equations are rather
cumbersome to use because they require the com-
plete solutions of the kinetic equations. For the
study of plasma wave propagation, we find it
simpler to use Maxwell's equations from the
start. We use them to express the electric field

E in terms of the current density j and then write
j in terms of an integral over the distribution
function. This procedure reduces the kinetic
equation for the spin independent oscillation to a
homogeneous integral equation. The solutions are
determined by setting an infinite determinant
equal to zero. We have explicitly evaluated the
long-wavelength limit for propagation perpendic-
ular to and parallel to the dc magnetic field. We
have also studied the short wavelength limit
(e. g. , qrc» 1) and found that Fermi-liquid cor-
rections to the free-electron model are small.
The intermediate wavelengths can be studied by
approximating the interaction function by a finite
number of terms in its expansion, and investigat-
ing numerically the solutions of the resulting
finite sized determinantal equation.

In principle the slopes and intercepts of the
plasma wave modes in the long wavelength limit
contain more than enough information for the ac-
curate determination of m*, and of all the A~
coefficients except A, and A, There is need how-
ever of considerably more experimental data than
is available in the literature at present. In fact,
our estimate of 4, =-0.026 cannot be taken too
seriously because the cyclotron effective mass is
not known with sufficient accuracy, This em-
phasizes the need for more and better experimen-
tal data.
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