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A quantum theory of adsorbed, mobile monolayers of He'is developed. The formalism,
which includes consideration of both the ground state and the excited states, is followed by
numerical results for experimentally interesting examples.

I. INTRODUCTION

The behavior of an adsorbed He* monolayer can
be analyzed simply when the particles are free to
undergo fluid motion laterally. Strong interaction
of the helium atoms with each other as well as with
the substrate is assumed in the theory developed
here, and small excursions of the adatoms normal
to the plane of the surface are taken into account.
In an effort to make our treatment fairly general
while avoiding undue complication, we neglect the
detailed structure of the substrate, in much the
same spirit that one works with the jellium model
of a solid. In brief, we will study a thin liquid
film in a strong external field that is highly aniso-
tropic in one direction, and focus attention mainly
on the properties of its energy spectrum and
eigenstates. A discussion of the formalism is fol-
lowed by presentation of the results of numerical
computation for experimentally interesting ex-
amples.

II. DESCRIPTION OF THE MODEL

The system of interest is composed of N He*
atoms distributed over a square of area A in the
x-z plane, where periodic boundary conditions are
imposed in order to account for translational sym-
metry. There is a pairwise interaction of the
Lennard-Jones (LJ) type,

Vr)=a/r'?-8 /7 (1a)
=4e[(o/r)2 - (0/r)], "~ (1b)

which can be roughly characterized by a hard core,
with diameter d=2.3 A, surrounded by a neighbor-
hood of weak attraction at slightly greater dis-
tances. W(y) is an anisotropic potential felt by
each atom due to the substrate. The boundary
conditions are that the wave functions vanish in

the following regions:

y < 0, simulates overlap of hard core of
helium atom with hard core in the
substrate,

180

y~°, bound surface layer.

For a basic two-particle Lennard-Jones potential
between He* and a substrate of uniform density p,
a straightforward calculation gives

W(y)=mpla/45(y +d)° - B /6(y +d)?] . )

The quantity d is the distance between helium and
substrate when hard cores first make contact.
Within narrow limits it is an adjustable param-
eter. In the numerical work of Sec. VIII, a some-
what different effective potential, corresponding
to a substrate of bulk copper covered by a mono-
layer of argon, is used; it is displayed graphically
in Fig. 3. For the present we proceed formally
by adding in the kinetic energy to write a model
Hamiltonian for the surface in the following way:

2
X= 2 _%i
1<i<N

+ L

1<i<j<N

Vo) L W), (3)

1<i<N
III. THE MONOLAYER GROUND STATE

The ground-state wave function for the surface
is assumed to have the following properties: (1)
It is nondegenerate and therefore can be chosen
real. (2) It is of one sign and can be chosen pos-
itive. (3) It satisfies the requirements of Bose
statistics in the sense that it is symmetric in the
particle coordinates,

Qualitatively, a wave function for a many-par-
ticle system can be described in words by stating
how it assigns numbers to every arrangement of
the atoms. Frequently considerable insight can be
gained by identifying just the conditions of very
high probability and some of those of very low.
Feynman' used this approach in discussing He*
bulk liquid, and we will simply adapt his technique
to our situation. In the ground state, configura-
tions of high-potential energy are improbable, and
the kinetic energy is as small as possible consis-
tent with this. These ideas can be made plausible

184



180 QUANTUM THEORY OF He?* MONOLAYERS 185

by applying a variational principle, in which the
ground-state wave function is characterized by the
property that it produces the minimum expectation
value of the Hamiltonian. From this line of rea-
soning we infer that the ground-state wave function
is small whenever hard cores overlap, since the
potential energy is then high. To understand the
role played by the kinetic energy, suppose that
one atom moves in the cage formed by its neigh-
bors, which are held fixed. Refer to Fig. 1 and
look at the variation of $¢(Ty, ..., Ty) as atom 2
travels on the line between 1 and 3. A very small
value of ¥ is required by the potential considera-
tions described above when 2 is close to 1 or 3,
For intermediate positions, the curvature of the
wave function, and in turn the contribution to the
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FIG. 1. Variation of the ground-state wave function

¥, as atom 2 moves in the cage formed by its neighbors,
while all other atoms remain stationary.

kinetic energy, will be minimal if § is of one
sign and has a single peak that occurs near the
midpoint between 1 and 3. This argument sug-
gests that compression of the system increases its
kinetic energy. On the other hand, expansion re-
quires that work be done against the attractive

van der Wzals forces. Equilibrium is reached
when these two effects are balanced, and the most
likely configurations are uniform distributions
with each particle near the center of its cage.

This description should be reasonably accurate
for the ground-state wave function in the plane of
the surface. The dependence on the normal co-
ordinate, y, can be studied most easily when the
adatoms are tightly bound. In this case any motion
in the y direction is strongly regulated by the po-
tential §; W(y;), and lygl is large only when the
adsorbed atoms are very close to the substrate.
An indirect consequence of this vertical confine-
ment is that the projections of the atomic hard
cores on the x-z plane hardly ever overlap. Under
these circumstances little error is introduced in
matrix elements of the potential, particularly with
respect to the low-energy states of the system, if
V(r;;) is replaced by V(ps), where p is the com-

ponent of T along the surface. This same pro-
cedure should give a good approximation even in
weakly bound systems when the average lateral
distance between atoms is large, i.e., for con-
ditions of low coverage. The Hamiltonian now di-
vides in a natural way into zeroth order and per-
turbing parts.

e =3C,+3C, (4)
ﬁz
K= 2L -5
0 y<i<sy 2m 0
1<i<j<sN Y 1<is<nN
3, = Z; [V(T..)—V(p“)]. (6)
1 1<i<jsN Y Y

The effect of 3¢, can be evaluated only after the
zeroth-order problem has been completely solved.
We intend to treat this perturbation in detail in a
later paper, but for now our concern is limited to
3C,, which can be decomposed into a parallel part,
JCop, that involves only the components of T)i, and
a normal part ¥y that contains only the y;.
Explicitly

%o =% p+%on (7
72 92 92
where ¥.,= 2 [_— (——..2—+.__2>]
oP 1<i<N 2m 3xi azi
+ 2 V(pi')’ (8)
1<i<jsN Y
72 oz
and %..= 2 [—————2—]+ 2 W)
Wy cien L 225 ey T
= 2 h(yi). 9)
1<i<N

An eigenfunction of 3C, can be written as a product
of normal and parallel parts. In particular, for
the ground state, we have

IPO(FI’...’; )=(p0(y1)¢0(y2)"'
X oI By, By o or By (10)
and o = o (11)

with 80=N80N+80P. (12)
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Here it is understood that ¢, and x are solutions
of

h(yz.)wo(yi) = 8.0N¢0(yz.) , (13)

and ZCOPX (pl; pzy cees pN)= 50PX (pl, pz, o o;pfv) ;
14

respectively, where gy and 8gp are the lowest
eigenvalues consistent with the boundary conditions
in Sec. II, and x¥ is symmetric in its arguments.
For future reference we remark that ¢,(y;) is the
first excited state of k(y;), with energy 8oy + 81y

IV. WAVE FUNCTIONS FOR EXCITED STATES

The operator for the parallel component of linear
momentum commutes with 3¢, and therefore they
can be simultaneously diagonalized. When the
reference frame is chosen so that x has vanishing
parallel momentum, one can immediately write
down a large set of excited-state wave functions
with this same property. For example,

¥ 2 *1%) Y (15)
17 <Ten 90 70

qualifies as such and belongs to the energy eigen-
value 8p+ 81y. Others are of the form

¢, () e, (yp)
V=P G0 g a8

where v ranges over all distinct permutations of
the state labels included in the product.

A more interesting problem is to find approxi-
mate energy eigenfunctions for which the momen-
tum is nonzero. In this paper, attention is di-
rected only to the simplest cases, where a single
excitation is present. It is shown that a surface
density fluctuation, which we call a longitudinal
surfon, is described by the wave function

zp-L= Z eZkoplw
1sIsN

o ()

where k is in the plane of the surface, and that a
second kind of surfon, a transverse wave, is de-
scribed by

(18)

Extension of this theory to account for multiple
excitations can very likely be carried out by use
of broad wave packets, or perhaps by direct cal-

culation with the aid of a generalized superposition
approximation for high-order distribution func-
tions. Both of these methods have been success-
fully applied to superfluid helium, %2

Longitudinal Suvfons. The physical situation rep-
resented by ¥ L is essentially the same as that
discussed by Feynman for the bulk liquid. It may
be worthwhile to repeat and elaborate on his dis-
cussion in order to pave the way for analyzing
¥ 71 which is slightly more complicated.

The wave function $z L is small when any atom
is either very far from or close to the substrate;
this is guaranteed by the factors of ¢, in 3,. In
order to exhibit other properties of gbﬁL , we
choose an origin at one corner of the normaliza-
tion square, and look at a typical cross section in
the x-y plane. At first take k in the x direction,
and then consider

ReszL = 2 Yo coskx; . (19)
1siIsN

When at least two atoms are squeezed together
tightly, Reyirl is small because of the x factor in
Yo In contrast to this, for a uniform spacing, x
is close to its maximum value; but then there are
as many atoms in positive as negative regions
along the cosine curve, and ReszL is now small
due to the sum over I. However, for particular
configurations with alternate regions of slight
compression and rarefaction repeating with wave-
length X =2n/k, as shown in Fig. 2(a), x is still

(a)
cos kx

X =

(b) Y

cosk.p &, (y) #(y)

FIG. 2. (a) Condition of high probability in w;L.
(b) Condition of high probability in ¥j 71,
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large, and the cancellation is incomplete because
more atoms are in positive than in negative inter-
vals, so that ReszL is large. For these same
arrangements it is easy to see that Imyjl is
small. Furthermore, the fact that Y~ is an
eigenfunction of the parallel momentum operator
implies that

->

ikeA Lo ++ = - -
e ZPE (rl—a,rz—a,...,rN—a)
LO -> -
=97 (rl, T, ...,rN) , (20)

where 2 is an arbitrary vector in the plane of the
surface. Here, of course, we have assumed ex-
tension of the system to infinity by the use of peri-
odic boundary conditions and appropriate identi-
fication of congruent particles. Equation (20)
together with the discussion preceding it implies
that lszL |2, the probability density for a surfon,
is large whenever density fluctuations occur with
wavelength A = 2/ in the direction of k, and that
this is independent of the origin of coordinates.
Clearly these longitudinal surfons are just the two-
dimensional version of acoustic phonons.

So far we have implicitly assumed that x=27/% is
much larger than the average interatomic spacing,
so that many particles fall into each cycle. If
this is not the case, our qualitative interpretation
of the wave function szL is not correct. To ex-
amine the situation for small A, suppose that it is
equal to the cube root of the mean atomic volume.
Then taking a typical cross-sectional view as be-
fore, one sees that the largest probability density
occurs when each atom is at the center of the cage
formed by its neighbors, but that the curvature of
the wave function is greater than that of the ground
state as an atom roams about in its enclosure.
This suggests that a short-wavelength longitudinal
surfon corresponds to a state in which each atom
is excited in its own cage and moves in such a way
as to produce a net current in the direction of k.

Transvervse Suvfons, To see that the function
¥ 71 in Eq. (18) does indeed describe a trans-
verse wave, again look at a cross section of the
surface. At first consider a situation in which
all atoms are at the same height ¥ and distributed
uniformly in the x-z plane, Then provided that
the wavelength A =27/ is much greater than the
average atomic spacing, the wave function is
almost zero for the same reason as in the longi-
tudinal case. One can easily find other essen-
tially null arrangements. After some reflection,
one also discovers the most probable conditions.
This is the matter to be discussed now. For
definiteness, refer to Fig. 4 and notice that ¢,(y)
has a node in a region where ¢,(») is large. (The
functions ¢, and ¢, have been sketched at the
right of Fig. 2(b) for ready reference.) In gener-

al one expects this qualitative behavior because
of normalization and orthogonality constraints.
Now suppose the atoms are distributed as in Fig.
2(b). The function x is near its maximum value
and each factor of ¢, is large for this configura-

tion, We ask, what is the result of the operator
k- pl

2 UXCRVERER)
1<I<N

acting on ¥,? The real part of z,bKTl, namely,
v, ()
Tl S g 1 l
Rey»" "= cosk * , 21
" 1s£N °1 "oy Yo » U
consists of terms which, for the conditions of
Fig. 2(b), are all negative because the factor
cosk + p; always has the opposite sign from
<p1(yl)/¢0(yl). This implies that there is no
cancellation in the sum over /, and |Reyj T1| s
large. Furthermore, lIme Tll is negligible for
this arrangement. One can easily supply the de-
tails which show that | 7112 is large for all
translations of the configuration under considera-
tion, and thereby convince himself that ¥ * * does
in reality represent a transverse wave, indepen-
dent of the choice of coordinate system.

V. DEFINITIONS AND FORMULAS

To the equations already developed, we add the
following formulas and definitions to provide a
basis for the mathematical analysis in subsequent
sections,

Eigenvalue-eigenfunction equation for single-
particle excited states in the normal direction:

h(y)¢i(y)=(60N +8Z.N)<pi(y), i=1,2,.0.,7.

It is assumed that there are 7-bound excited
states; of course, the number is dependent on
the depth and range of W(y), and in particular
instances there may be none.

Zeroth-order transverse surfon wave function
(ith branch):

, = - 0 (y)
Ti tkepy "¢ 71
b= 2 e b . (23)
kK y<ien 9oy 70

Pair distribution function in a plane surface:

2 - - 245 eeedp
s%(pp)= NN =1) [ X?dpg*dp (24)

where s =N/A is the average number of atoms per
unit area.
Surface structure function for a plane system:

ok)=1+s feiE'E[Y(P)—l]dﬁ. (25)
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Normalization conditions:

[Te e, (9)dv=1, i=0,1,2,...,7

(26)
2(5 Py D eoedp. =
fx (pl""’pN)dpl de 1.

In Egs. (24) and (25) we have introduced direct
analogs of quantities for three dimensional sys-
tems.

VL. ORTHOGONALITY AND NORMALIZATION OF
SURFON WAVE FUNCTIONS

The mutual orthogonality of ZIJEL s ng’, and ¥,
will now be proved. Since the paraliel momen-
tum of zl)f{L and IIJET’ is different from zero, we
have immediately.that

(w»L|1|¢>=f¢f’*w dr_+e.dr =0, (28)
K 0 E "01 N

and

-

Ti Ti* -
W 1LY = [9g" " Y dE - edE =0, (29)

To show that lPEL is orthogonal to ¥ Ti write
L Ti Lx Ti ~ -
W g = [oy g dE e edEy

=2 feﬂ“(pl_pj)xzdﬁfndﬁN
1,j

o [ CACRH R NCB T 0o )]
NG AR XGRS NE
Xdy1°-°dyN=0. (30)

The last step follows from the presence of a fac-
tor

Jo9))e,(v))dy,=0, i%0 (31)

in each term.
The diagonal matrix element of the identity for
a longitudinal surfon state is

Wt = No@) s enso®] . G2)

This simple answer appears only when one neglects
edge effects.

The matrix elements of the identity for trans-
verse surfon states are found in a few short steps
to be

Ti Tj,
<¢E IIIIIJE ) =Nb (33)

iy -
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In view of Egs. (32) and (33), we see that the
normalized surfon wave functions are, for 2+0,

L -1 k-p
ol o) ™2 D Py e
1<I<N
. _1 Lzoe(y)
s =NTE D Sy )
1<I<N %o\

VII. MATRIX ELEMENTS OF THE ZEROTH-ORDER
HAMILTONIAN

Matrix elements of ¥C, with respect to wave
functions of the type
b= L [ENEF S (36)

¢ 1<1<N

are especially easy to evaluate. To show this in

detail, we first write

(136~ 819, = [y, * 6 ~ 8 )b, dr

hz
e B ()
f a0 1<i<N 2m i
Vv - d
' 1Siz<>j SN (pij) +1 sl?sN W(yi) 60] Fbwo "
(37)
where drt =dr1°- ~drN . (38)
The identity
8 Fplo= (8 F g+ Fy b, d0+2V, 800 V, Fy
(39)
together with the eigenvalue equation
(3(30— 50)4)0:0 ’ (40)

enable us to express Eq. (37) as
ﬁ2
@, 156~ 8 1,)= 2 ( o

1<isnN® 2™
* 2 < 2, O
x[F, @2, Fp+9, 9, VZ_Fb)d'r>. (41)

Next we introduce the relation

- . 2 *-> - 2 X o -

Vit W F*V, Fy) =4V, F =V, Fy
2R %o *V R 2

Wy Fr e By +F SV Ey vz"”o , (42)

to further reduce Eq. (41).
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h—z

W1 -8 19.)= 2 (--

a 0 07D 1<i<N 2m
X[ [, > @ PF >V, FyldT- f(YiFa*a Vin)z/JOZd'r]).

(43)
With the aid of Gauss’s theorem one can convert
the first term in the last line to a surface integral
which vanishes under the specified boundary con-
ditions. Hence

@13~ &19,)

n2 -
L * o 2
o, 2 f(ViFa Vin)wo dT .
(44)

Because of the symmetry of ¥,°, F,, and Fp in
the particle coordinates, each term in the sum
has the same value, and Eq. (44) can be written
as

W, 1= 8,14,

=(1*/2m)N [$ 29 F *- 9, Fdr. (45)

Now we can work out the matrix elements of 3C,
- &, between single surfon states. Straightforward
application of Eq. (45) gives

L Ti
(@E |5€0'80|‘I’1’< y =0, (46)
L L 7i%k?
R T B R A

Ti T, (n%
(@ |y - 8o log >_(2_m+giN> 8- (48)

To derive the last equation we have used the rela-
tion

8Z.N6ij = f:o‘Pi (r(y) - 80N] ¢ (y)dy
(49)

d ?,(¥)

Ly T
=2mdo oY\ @y o)

4 %9,
&y 201

which is essentially just a special case of Eq. (45).
Of course, Eq. (48) can also be established di-
rectly without the aid of Eqs. (45) and (49). The
set of Eqs. (46)-(48) show that the zeroth-order
Hamiltonian is diagonal in the surfon representa-
tion, within the restricted manifold of states
spanned by single-excitation wave functions.

The shape of the longitudinal excitation spectrum
can be found only after o(k) is known. One way to
arrive at a theoretical value for this latter quan-
tity is to use a variational procedure, starting
with, say, a Jastrow form for x, i.e.,

1
-> U .r
XGponBy)= I U5 (s0)
1<i<j<N-

Here U(p) is a two-particle correlation function for
a two-dimensional system, and may be approxi-
mated and parametrized by taking the three-di-
mensional analog as a guide. For the model we
are considering, o(k) will depend only on the den-
sity of the adsorbed atoms and the interaction be-
tween them, but not on the potential W(y). Be
that as it may, W(y) plays a dominant role in fix-
ing the values of the giN- Therefore by varying
the materials in the substrate, one will change the
&;N but not 87,. Consequently carefully planned
experiments should be able to probe the depen-
dence on parallel and normal coordinates sepa-
rately. This is discussed in the next section.

In the absence of definite knowledge of o(2), we
submit the following description as a reasonable
guess. It seems likely that, at least at moder-
ately high areal densities, o(k) will roughly re-
semble S(&) for the three-dimensional liquid.

Then the zeroth-order longitudinal energy spec-
trum will have a linear phonon character for small
wave vectors, which is consistent with Debye
theory, and perhaps a rotonlike gap further out.
The critical parameters consisting of the phonon
velocity and the roton gap, location, and curva-
ture may, of course, be quite different from those
in the three-dimensional case.

VIII. NUMERICAL RESULTS

Before calculating the spectrum of the trans-
verse modes, one must find the potential W(y).
Bardeen® has shown theoretically that a neutral
atom distance y above a metallic surface feels an
attractive potential given by

Wy (9)==v /92 (51)

The value of v for a helium atom over copper is
51.6X107'* erg cm?; this number was deduced
from a result computed by Schiff and quoted by
Atkins. ®

The interaction between a pair of noble gas at-
oms, one of which is helium, should be accurately
described by a Lennard-Jones potential of the
form in Eq. (1). Since the parameters € and ¢
have not been measured directly for atoms of dif-
ferent species, we have used interpolation formu-
las recommended by Hirschfelder, Curtiss, and
Bird, ¢ namely,



190 H. W. JACKSON 180

TABLE I. Properties of noble-gas elements. The Lennard-Jones parameters are based on the data of Ref. 6.

Material €/Kp (°K) o &) d &) 1A s 87
He 10.22 2.556 2.300 e e
Ne 35.60 2.749 e cee 0.105
Ar 119.8 3.405 e e 0.0685
Kr 171 3.60 e e 0.0613
Xe 221 4.100 e e 0.0472
He-Ne 19.1 2.652 2.387 3.62 e
He-Ar 35.0 2.980 2.682 4.21 e
He-Kr 42.0 3.078 2.77 4.39 e
He-Xe 47.5 3.328 2.995 4.84 e
o =% +0)), (52) area per atom is inversely proportional to the
of a B square of the Lennard-Jones parameter o, s was
calculated for the other noble gases. The results
and € ap” (Eof 8 >z, (53) are given in Table I. Translation of the origin of

where the single subscript refers to atoms of a
given element, and the double subscript to the
heterogeneous pairs. The values adopted in our
work are based on data given in Ref. 6, page 1110,
and are shown in Table I. When the noble-gas
(NG) substrate is distributed uniformly with areal
density s over a plane, the net attractive potential
for a helium atom is

Wye¥) =2ms 5o /vy~ 5B /y9). (54)

The assumption of uniformity of the monolayer is
reasonable only when the adatom is not too close;
otherwise correlations between helium and sub-
strate particles become important. To bypass
difficulties arising in this way, we make the ap-
proximation that the helium stops when hard cores
meet with the atomic centers a distance d apart.
The choice of d is somewhat arbitrary, but we
have taken it to be 0. 90. The value of s for argon
was computed from the data of McCormick, Good-
stein, and Dash.” Under the assumption that the

y (&)
00 20 40 6.0 80

the y coordinate to coincide with the boundary con-
dition described above requires that we replace y
by (y +1) in Eq. (51), where

1=0. g(aNG+0. 50He) , (55)

and oNG is the LJ parameter for the relevant
noble gas. The total effective potential between
a helium atom and the substrate is

W)=—v/(y+1)
+2rs[& a/(y+d)°-%B/(y+d)], (56)

which is plotted in Fig. 3.

The eigenvalues and eigenfunctions of %4(y), for
a single-particle subject to the potential W(y),
were computed by numerical methods. Basically
the procedure consisted of replacing the differen-
tial equation by a difference equation and then
solving the latter. The grid used in this conver-
sion was Ak=0.2 f&'l, which introduced errors of
about 5%. This estimate is based on comparison

- FIG. 3. Anisotropic potential for he-
— lium atom over substrate of bulk copper
— covered by argon monolayer.
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with calculations for special cases with a grid of
0.1 A™!. The wave function was forced to vanish
at 20.2 A™' as an approximation to the boundary
condition at infinity. This produces some uncer-
tainty in the number of bound states since the en-
ergy eigenvalues are typically closely spaced near
zero. For the cases studied we feel that only the
last bound state is in doubt. The lowest four eigen-
values were consistently found to be quite insensi-
tive to the choice of 20.2 A™! as an upper limit.
The eigenvalues for several different situations
are listed in Table II. The computed ground-state

TABLE II. Bound-state eigenvalues of #(y), the
Hamiltonian for a single He! atom in the ¥ direction.
The substrate is bulk copper covered by a monolayer
of the noble-gas element indicated.

(°K) Ne Ar Kr Xe
8on/Kg —-66.25 —73.94 —82.67 —80.18
(8on+81N/KB —27.47 —32.64 —38.20 —38.15
(Bon+8aN)/KB —10.79 —-13.35 —16.34 —16.72
(Bon+83N)/KB  —3.79 —-4.85 —-6.21  —6.50
(BoN+84N/KB  —1.11 —-1.48 —201 -2.14
(Bon+850/KEp  —0.05  -0.24 -046  —0.51

energy of a helium atom for a substrate of bulk
copper covered by an argon monolayer given in the
table is equivalent to 131.6 cal/mole. At high
coverage the lateral interactions will make the
binding energy somewhat greater than this, but the
total will undoubtedly still be compatible with the
determination that the energy of adsorption is less
than 200 cal/mole, made by McCormick et al.

The eigenfunctions of z(y) for the Cu-Ar sub-
strate are shown in Fig. 4. One can see that the

helium monolayer in the ground state is localized
within about 2 A of the argon surface, and extends
out only a few more angstroms for the first two
excited states. Hence the tight-binding approxi-
mation is well suited to this problem. The eigen-
functions for the remaining cases have also been
computed and are not much different from those
shown in the figure.

If we treat the surfons as elementary excitations
obeying Bose statistics, the heat capacity per
unit area at constant coverage is

1 B
c =———————Z)/
a 21TkBT2 a (1)

[exp(éﬁ’ a/kBT) -17

© kdk8s 2exp(8s /k_T)
k, a k,a (57)

where a ranges over all branches of the energy
spectrum,

Until o(%) is known in detail, we cannot com-
pute the total heat capacity, but the contribution
from the transverse modes has been evaluated.
For ease of computation, Eq. (57) was trans-
formed to

o0 xzex
_ _xe 2
c, —KT}:) P erg/m?, (58)
idxy (e -1)

where K=3.136x10' and xg=8;5/kgT. To find
the specific heat in cal/mole one must multiply
C, by the area (in m?) covered by a mole of ad-
sorbed helium, The curves for different sub-
strates are shown in Fig. 5.

Since for fixed coverage of helium the substrate
does not influence the longitudinal modes, the dif-
ference in the total specific heat for all cases

FIG. 4. Bound-state eigenfunction of
h(y), the Hamiltonian for a single He*
atom in the y direction. The substrate
is bulk copper covered by an argon mono-
layer.
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should be the same as that for the transverse
modes alone. Although the approximations and
uncertainties in our treatment may lead to errors
of about 10 or 15%, we feel that the relative order-
ing of the specific heat curves is still correct.
Some experimental data for total specific heat,
based on the high-coverage case of Ref. 7, is
shown in Fig. 5. The area per atom here is
14.0 A2, A parabolic form was fit to the ob-
served points below 3°K, and we have extrapolated
that curve to high temperatures. Comparing it
with our results, one recognizes that below 6°K
the thermodynamic properties are completely
dominated by the longitudinal modes, but that the
transverse modes become increasingly important
as the temperature rises. Of course, any ex-
periment designed to observe this effect must
take into account desorbing tendencies above
about 10°K.
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FIG. 5. Heat capacity per unit area at constant cover-
age for He! monolayer over a substrate of bulk copper
covered by a single layer of noble-gas atoms as follows:
(1) neon, (2) argon, (3) krypton, (4) xenon, and (5) argon.
Curves 1—4 are for contributions from transverse modes
only. Curve 5 is the total heat capacity deduced from
experimental measurements below 3°K for an Ar-Cu
substrate. (See text for details.)
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