Errata

Rescattering Model Applied to Y^* Production, C. P. SINGH AND B. K. AGARWAL [Phys. Rev. 173, 1611 (1968)]. In Eq. (7), the normalization factor $\frac{1}{2}(2\pi i)^2/(2\pi)^4$ should be replaced by $|\mathbf{q}'|m_b/8\pi W$. In Eq. (8), the corresponding change would be to replace $1/4(2\pi)^4$ by a factor $|\mathbf{q}'|^2 m_b^2/64\pi^2 W^2$, where $|\mathbf{q}'|$ is the c.m. momentum of the intermediate schannel particles. This change would decrease our values of differential cross section by a factor of about $\frac{2}{5}$ for the case of $Y_1^*(1385)$ production at a K^- momentum of 1.46 GeV/c. This may be compensated by adjusting the value of $g_{Kp\Lambda^2}/4\pi$, which can be anything from 4.8 to 16 [see R. H. Graham, S. Pakvasa, and K. Raman, Phys. Rev. 163, 1774 (1967)]. Thus our results remain essentially the same.

Soft-Photon Theorem for Bremsstrahlung in a Potential Model, LEON HELLER [Phys. Rev. 174, 1580 (1968)]. P. Signell has pointed out an error in Sec. III, where the formulas are written for particles with spin. When the functions $T_n(\nu,t,\Delta_i,\Delta_f)$ and the spin operators $A_n(\mathbf{L}_1,\mathbf{L}_2,\mathbf{L}_3)$ in Eq. (29) are expanded in powers of the photon's energy, one must make certain that the values of the arguments of T_n about which one expands are consistent with the values of the arguments of A_n , as prescribed in Eqs. (23)-(25) and Eq. (12). The choice of arguments which was made in Eq. (30), described after that equation, is not consistent. This can be seen directly from the fact that *t* is required by definition to equal L_1^2 , but $(\mathbf{p}_2'-\mathbf{p}_2)^2$ differs from Q^2 by $2\mu\gamma \cdot \mathbf{Q}/m_1$. To correct this it is sufficient to expand the T_n in Eq. (29) about $t=Q^2$, with all other variables as before. The only change in the appearance of Eq. (30) is the addition of $(2\mu\gamma \cdot \mathbf{Q}/m_1)\partial T_n/\partial t$ to the brackets which at present contain derivatives of T_n with respect to ν and Δ . The functions T_n in Eqs. (32) and (33) should also be evaluated at $t=Q^2$, and Eq. (33) acquires an extra term

$$\frac{e_1}{m_1} \left(\frac{\mathbf{p}_1'}{\Delta} + \frac{\mathbf{p}_1}{\Delta'} \right) \frac{2\mu\boldsymbol{\gamma}\cdot\mathbf{Q}}{m_1} \sum_{n} \frac{\partial T_n}{\partial t} \left(\frac{\bar{q}^2}{2\mu}, Q^2, 0, 0 \right) A_n(\mathbf{Q}, \mathbf{N}, \mathbf{P}).$$

Another way to avoid this problem is to write the general T-matrix element, Eq. (23), in terms of *unit vectors*:

$$\langle \mathbf{k}_{1}', \mathbf{k}_{2}'; s'm' | T(e) | \mathbf{k}_{1}, \mathbf{k}_{2}; sm \rangle$$

= $\sum_{n} \overline{T}_{n}(\nu, t, \Delta_{i}, \Delta_{f}) \langle s'm' | A_{n}(\hat{L}_{1}, \hat{L}_{2}, \hat{L}_{3}) | sm \rangle,$

as is customary in elastic scattering. [The relation between the \overline{T}_n and the T_n can be gotten from Eq. (34).] These variables are independent, so \overline{T}_n and A_n can be expanded independently.