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The three principal theoretical treatments of the force on an electron near a metal in a gravitational field
are briefly reviewed, and the central arguments restated. The essential conclusion is that the current theory
of metal surfaces conflicts with the apparent experimental findings of Witteborn and Fairbank, but agrees
with recent experiments by Beams. A simpler experiment, directed at this specific problem, is proposed.

XPERIMENTS by Witteborn and Fairbank! have
indicated that a vertical copper tube (standing, of
course, in a gravitational field) generates an electric
field just canceling the gravitational field on an electron
in the space inside the cylinder; more precisely, they
find a net force less than 0.09#¢ upon an electron in the
vacuum within the cylinder. Prior work by Schiff and
Barnhill? predicted this result; subsequent work by
Dessler et al.® predicted a force larger than mg by a
factor of 10105 Herring? reconciled these theoretical
studies, pointed out an error in one important estimate
made by Schiff and Barnhill, and indicated that it
would require a quite accidental cancellation of surface
and body effects to yield theoretically the small ob-
served force. A more recent measurement of fields near
a spinning rotor by Beams® appears to support the large-
field point of view. In spite of the controversy and the
complexity of the exhaustive theoretical studies which
have been made, the theoretical status seems quite clear.
The simpler problem is the force on an electron
within a metal in a gravitational field. This problem was
specifically addressed by Dessler et al.® The result may
in fact be obtained almost trivially. A small dilatation
A(r) in a simple metal causes a net potential
V=—2EpA(r), where Ep is the Fermi energy $muvz.
This follows from a linearized self-consistent Fermi-
Thomas approximation, from the self-consistent elec-
tron-phonon interaction treated by Bardeen,® or from a
pseudopotential treatment.” It is confirmed at least
semiquantitatively by the comparison of theoretical
and experimental ultrasonic attenuation and tempera-
ture-dependent resistivity. The pressure (measured in a
horizontal plane) in a metal in a gravitational field
varies with altitude z as pgz, where p is the metallic
density. Thus, the local dilatation is —pgz/c, where ¢
is the elastic constant giving dilatation under uniaxial
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loading. Thus, the force downward on the electron,
oV /02, is AV /dz="%mgvpip/c

but ¢/p may be taken to be the velocity of sound v,
squared (though slight corrections are required to con-
vert from ¢11, which enters longitudinal sound velocity,
to the modulus ¢). This force is greater than mg by a
factor vz*/3v:2, which is equal to the atomic mass
divided by the electron mass in free-electron-like metals
and is of the order of 6X10* in copper, as suggested by
Dessler et al.

One might naively assume that the tangential com-
ponent of electric field is continuous across the surface,
and that the field outside the metal is that given above.
However, if the surface dipole varies with height (that
is, with dilation), the tangential component will change
across the surface. The usual conservation of tangential
component is simply a restatement that the field is
derivable from a potential; there is no reason why the
potential in this case might not be shaped like a swim-
ming pool. That is, the potential plotted in the z direc-
tion as a function of coordinates x and y would be flat
outside of the metal, like the deck of the pool, while
inside there is a gradient from the deep to the shallow
end. This is suggested by the experiment.

It is not difficult to estimate the effect of the surface
dipole. The electron wave functions extend beyond the
positive ionic charge density at a metallic surface, giving
rise to the electric dipole. This dipole must be sufficient
to raise the rest energy of an electron outside the metal
above the Fermi energy within the metal; otherwise
the electron would not be bound to the metal. The
difference in these two energies is called the work func-
tion and is of the order of a few electron volts. Herring
points out that the Fermi energy is a constant of
a system in equilibrium, and that the Witteborn-
Fairbank finding of no force outside implies precisely
that the work function measured at the top and at the
bottom of the cylinder is the same; that the dilatation
has not changed the work function. Any simple model of
the surface, on the other hand, will yield a change in
work function of the order of ErA, leading to a force
outside the metal of the order of that found within the
metal above. Such an estimate includes both surface
and body effects and, as suggested by Dessler and by
Herring et al., there is no reason to expect cancellation
of the two on the scale of one part in 10° or 10°.
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A direct measurement of the change in work function
with pressure has apparently not been made, but from
related experiments it seems clear that the above esti-
mate is essentially correct. Specifically, Beams® has
measured fields near the surface of a high-speed alumi-
num rotor. Here again there are gradients in the local
dilatation. The observed fields are roughly in accord with
those expected within the metal. This would seem to
rule out an explanation of the Witteborn-Fairbank
result in terms of simple surface effects. However, there
are many differences in the two experiments, one con-
spicuous one being the order of magnitudes of difference
between the dilatations involved.

Both experiments are difficult ones. For that reason,
it is not easy to make large changes in the gradient of

FORCE ON ELECTRON NEAR METAL

1607

dilatation, nor to look for relaxation effects over wide
time scales. The question is sufficiently important to
the understanding of metallic surfaces that a simpler
and more direct experiment is much to be desired. For
example, a metallic bar bent as a horseshoe could be
compressed on one arm. A compression of 0.1%, would
be expected to yield a contact potential difference of the
order of 10—3Er or 6 mV; that is, a field in the space
between arms corresponding that potential drop. The
Witteborn-Fairbank experiment would suggest a field
smaller by a factor of 105.

Note added in proof. Recent experiments by P. P.
Craig [Phys. Rev. Letters 22, 700 (1969)] utilized
uniform compression and do not, therefore, specifically
address the question of dilatation gradients.
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We comment on the proposed vanishing of the A Regge trajectory residue at aa= 1%, giving experimental
tests of this hypothesis and an interpretation of such a result.

HE possibility that, in backward meson-baryon
scattering involving exchange of the A Regge
trajectory, the residue functions vanish at the wrong-
signature sense point, where aa=1%, has been considered
by Igi et al.! In this paper we would like to suggest some
experimental tests of this hypothesis, and to comment
on the interpretation of such a zero.

According to some conventional Regge-pole fits to
backward =—p elastic scattering,® the point where
aa=% is at #=0.35 (GeV/c)% Other fits® give an even
larger value of # at this point. It is difficult to detect a
zero in do/dt even at u=0.35 (GeV/c)? in elastic
scattering, where #<0.14 (GeV/c)? for Er>2.5 GeV.
In addition, the Carnegie-BNL measurements of back-
ward 7—p elastic scattering® show less of a flattening
than the Cornell-BNL data* that Igi ef al.! concentrated
on, so one would like additional predictions to test the
presence of the zero. These are available in experiments
(which are currently in progress®) involving inelastic
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backward scattering. For example, as shown in Table I,
in backward production of N*(1688) at EL=2.5 GeV,
we find #=0.35 in the physical region. The most
favorable situation not involving resonances but with
reasonable cross sections appears to be K—p — Ztz~, If
there is a turnover in backward =—p elastic scattering
due to a zero at a wrong-signature sense point on the A
trajectory, more pronounced dips should appear in
these inelastic reactions.

We would also like to note that the treatment of
ghost-eliminating zeros in Regge-pole amplitudes
should in principle be different at wrong-signature and
at right-signature points. Because of the zero of the
signature factor in the wrong-signature situation, two
of the four possibilities in the right-signature situation
become special cases of the other two. In the right-
signature case each of the four mechanisms® has its own

TaBLE I. The value of « in the backward direction
for various reactions, in (GeV/c)2.

ErL (GeV) wN — N*(1688)r =N — N*(1240)7 K=p = Z*x~ x~p — pr~

2.5 0.43 0.23 0.18 0.14
4.0 0.29 0.16 0.12 0.09
6.0 0.20 0.11 0.08 0.06
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Elementary Particles, edited by H. Fitthuth (Wiley-Interscience
Inc., New York, 1968), p. 197.



