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width than the neutral state. This is in direct contrast
to an SU(3) 10 assignment for this resonance.

One can also take the matrix elements of the photon
interaction operator between nucleon states. This gives
the result" that the magnetic moments of the proton
and neutron are in the ratio —~3. Also, the quantity
p = eg/2M for the quark should be equal to the magnetic
moment of the proton. The experimental value of the
latter is 0.13 GeV ', which is somewhat less" than the
value of p, deduced in Sec. IV from the physical radiative
process 6+(1236) —+ Py, viz. , is=0.18 GeV '. The
situation is similar to one encountered in I, where the
value of the pion-nucleon coupling constant fe/g(4rr)
as determined" by simply taking the matrix element of
the pion emission operator between nucleon states is
smaller than the value obtained by fitting the physical

' M. A. B.Beg, B.W. Lee, and A. Pais, Phys. Rev. Letters 13,
514 (1964); G. Morpurgo, Physics (N.Y.) 2, 95 (1965).

"A similar discrepancy has been noted previously in the
literature; see Refs. 12 and 16."C. Becchi and G. Morpurgo, Phys. Rev. 149, 1284 (1966).

decay processes $f,/g(4rr) equal to 0.17, compared
to 0.24j. These two facts serve to remind us that the
quark model is not yet quite numerically self-consistent.

However, our results for the Ãx widths turned out
to be reasonably good when compared with the experi-
mental numbers. In the present absence of experimental
data on the Ey decay widths, we therefore believe that
the results of the present investigation warrant con-

sideration in any future analysis of pion photoproduc-
tion, proton Compton scattering, or inelastic electron
scattering. The recent data'~ on the latter process
certainly seem to be in general agreement with some of
our expectations.

ACKNOWLEDGMENTS

The authors would like to thank Professor H. %'.

Wyld, Jr., for several helpful discussions, and Professor

R. G. Moorhouse and Dr. W. Schmidt for useful

communications concerning their respective analyses.
One of us (D.F.) also thanks the Science Research
Council, London, for financial support during this work.

PHYSICAL REVIEW VOLUME 180, NUMBER 5 25 APRIL 1969

Multiperipheral Dynamics at Zero Momentmin Transfer*

GEOEEREY F. CHEW ANn CARr. ETON DE TARt

Department of Physics and Lawrence Radiation Laboratory,
f7nvversr'ry of Cafefornea, Berkeley, CaHfornia 94720

(Received 9 December 1968)

Following a suggestion by Goldberger and Low, the crude multi-Regge bootstrap model of Chew and

Pignotti is reformulated through a generalization of the physical-region integral equation discovered in 1962

by Fubini and collaborators. When consideration is restricted to zero momentum transfer, Lorentz symmetry
permits almost complete diagonalization of the kernel, Lorentz poles corresponding to eigenvalues thereof.
Cuts also appear but in a manner dynamically and unambiguously related to the poles. Being an expression
of unitarity, the equation encompasses "absorptive" effects.

l. INTRODUCTION

HEORETICAL study of strong-interaction dy-
namics heretofore has concentrated on reactions

between two-particle channels, human capacities still
not having mastered the combined requirements of
Lorentz invariance, analyticity, and unitarity for this
simplest reaction type. The time is nonetheless ripe for
serious study of multihadron systems. It has long been
recognized (a) that unitarity precludes dynamical
isolation of two-particle from multiparticle channels,
and (b) that indefinite proliferation of particle produc-
tion characterizes any relativistic process. Theoretical
attention to such questions has been inhibited not by
belief in their unimportance but by the technical diK-

*Work supported in part by the U. S. Atomic Energy
Commission.

t National Defense Education Act Title IV Fellow.

culties attendant on an indefinitely increasing number
of spin-momentum variables. Recent experimental and
theoretical developments, however, have suggested a
general kinematical technique for decomposing arbi-

trarily large particle systems into finite subunits of
manageable proportions; the approach may loosely be
described as "multiperipheral. "In this paper we propose
a physically plausible and theoretically tractable
dynamical equation suggested by multiperipheral
kinematics.

The physical content of our equation is equivalent to
that presented by Chew, Goldberger, and Low, ' our
work being stimulated by theirs. The difference between
the two papers lies in the kinematical techniques em-

ployed. The principal advantage in the techniques of

~ G. F. Chew, M. L. Goldberger, and F. Low, Phys. Rev.
Letters 22, 208 (1969).
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this paper is the simplicity achieved through almost
complete diagonalization of the kernel of the integral
equation. Both the inhomogeneous and homogeneous
problems then become tractable. We began this work
motivated by the desire to clarify the crude multi-Regge
bootstrap model of Chew and Pignotti' (CP), and the
ensuing equation amounts to a generalization of that
proposed in 1962 by Fubini and collaborators. '

After diagonalization our multiperipheral equation is
of the Fredholm type in a single variable, with both
kernel and inhomogeneous term fixed by "input" Regge
poles. The derivation employs forward-direction uni-

tarity in two-particle elastic scattering, but applicability
of the underlying principles to broader situations will

be apparent. The kernel of the equation, in particular,
is independent of the amplitude being unitarized, so the
determination of Regge poles as eigenvalues of the
kernel is correspondingly channel-independent.

An important aspect of multiperipheral dynamics is
the broad basis that it provides for Regge asymptotic
behavior. It will be seen that any finite number of
"input" Regge poles lead to "output" Regge poles. '
Regge cuts are also to be expected, but these are dy-
namically and unambiguously related to the poles.
(Being an expression of unitarity, our equation encom-

passes the effects often described as "absorptive. ")
A second important feature of the multiperipheral

equation is that it never strays outside the physical
region. The kernel correspondingly has direct physical
meaning and there can be no divergence diKculties.

Of great potential importance is the bootstrap appli-
cation, in which the multiperipheral kernel is related to
the equation's solution. It is straightforward to imple-
ment versions of the CP proposal based on duality, and
improvements of the CP model quickly come to mind.
In this paper, however, we do not venture into such
questions. A separate paper now in preparation deals
with speculations concerning the Pomeranchuk tra-
jectory that are motivated by the multiperipheral
equation.

2. KINEMATICS

To describe the multiparticle production amplitude
we shall use variables of the type introduced by Bali,
Chew, and Pignottib (BCP). The process is

a+b +0+1+2+ ~ +—(n+1), (2.1)

where the numbers identify the n+2 outgoing particles.
Preliminary to the definition of our variables, recall

~ G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112 (1968).
L. Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento 2S,

626 (1962); D. Amati, A. Stanghellini, and S. Fubini, ibid. 26,
896 (1962); L. Bertocchi, E. Predazzi, A. Stanghellini, and M.
Tonin, ibid. 27, 913 (1963).

4 We confine ourselves here to forward-direction unitarity, and
the corresponding "output" zero-momentum-transfer Regge poles
automatically fall into families corresponding to Lorentz poles. A
subsequent paper will deal with nonforward unitarity.'

¹ F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163, 1572
(1967).

that Toiler' has suggested describing such a process
through an amplitude

M(b, bp bt ' b ].] bb) (2.2)

where bI, denotes an element of the six-parameter
homogeneous Lorentz group 5I,(2,C). Physical meaning

attaches to Toiler's variables through the decomposition

~I =~IN&& (2.3)

where uI, is an element of the three-parameter rotation

group which constitutes the little group of the kth
particle momentum pb, and w(pb) is the three-parameter
transformation connecting an arbitrary reference frame
to the rest frame of particle k.' The four-vector particle
momentum pb is related to wb by

Pb=L(tbb) jmb, (2.4)

The expansion coefficient iV „( pb ) can be inter-

preted as the amplitude for finding mI, to be the s com-

ponent of the spin of particle k in some arbitrarily
oriented rest frame, s~ being the magnitude of the
particle spin.

Conservation of energy momentum,

Pu+Pb Pp+ ' ' '+Pn+1 ) (2.6)

must be remembered as placing a constraint on the set
of m~ s, while Lorentz invariance implies that

M(b„bp, ,bb) =M(bb„bbp, . . ,bbb) . . (2.7)

The set of elements (b, . bb) corresponds to the
association with each particle of a conventional rest
frame. The kinematic description proposed by BCP is
similar in spirit to that of Toiler but selects a set of
conventional frames in which momentum transfers play
the role occupied above by the particle momenta. This
momentum-transfer emphasis is better suited to
multiperipheralism.

Let Q; denote a four-momentum transfer, such that

Q;= —p +g p;, i=1, , m+1 (2.8)

corresponding to Fig. 1. Now in the rest frame of the
ith outgoing particle the three-momenta of Q; and Q,+t

' M. Toiler, Nuovo Cimento 54, 295 (1968).
We may associate an explicit set of six parameters with bI, as

follows: Nb=R, (pb)R„(sb)R, (pb), rp(pb) =R~(C'b)Rp(ob)&. (b),
where R, and R„are rotations about the indicated axes and J3, is
a boost. The two init:ial rotations in ul„characterized by 81, and
@I„merely serve to define the direction about which particle spin
is to be measured. Thus, there are really only four degrees of
freedom per particle.

the unit vector P having only an energy component,
while I& acquires significance by expanding the ampli-

tude into representations of the rotation group:

~(' ' 'bb ' ' ') = E ~nb(' ' 'Pb' ' ')Dmbm (Nb) ~ (2 5)
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FIG. 1. Kinematic a1 diagram
de6ning the momentum transfers
Ql' ' 'Qa+1

are collinear, since

0

Q( Qp

Pg

Qn+(

Pb

b 5 @n+lg n+1~ b (2.16)

At the other end of the chain we define a boost q +j
by an analogous procedure, and adopt the convention
that the special rest frame associated with b~ corre-
sponds to

p'= Q'+l —Q'

We now adopt the convention that in the special rest
frame associated with b; these three-momenta lie along
the s axis. If we assume spacelike momentum transfers,
a boost along the s axis can bring Q; to the form

Q;~"& = (o,o,o, ( t;)—»') (2.1o)

Q, (l+l, n —(P P P ( t, )l/2)

The boost required here is given by

(2.11)

—Q; Q;+l m —t,—t;~l
cosh'; = = . (2.12)(-«)'"(-t )'" 2(-t)'"(-t )'"

By construction, however, recall that the frame (i+ 1, r)
also gives to Q,+l the form (2.11).Thus the two frames
(i+ 1, () and (i+ 1, r) must be related by an element of
the little group of Q,+l—a three-parameter transforma-
tion in SU(1,1) which we designate

g'+i= &.(t«+l)&.(k'+i)~*(~'+l) (2 13)

The a; are thus successively connected by the formula

The required boost is uniquely determined by t; and
t,+i, and the frame (i,r) defined in this way is seen to
be the same as that designated with a similar but
slightly diBerent notation by SCP. The reason for the
alternative approach here is to amplify the significance
of the Lorentz transformation associated with the
frame (i,r).

Let us designate by a; the Lorentz transformation
connecting the frame (i,r) to our fixed reference frame.
Still following BCP, we introduce the s boost q; which
carries the frame (i,r) to a frame (i+1, l) in which Q;+l
has the form

where r ~ is a rotation still to be specified. Similarly, we
de6ne r, by ao b,r,——. The upshot of all the above
analysis is that the amplitude may be regarded a func-
tion «gg g.+g and &g t.+g, together with r& and r .
Energy-momentum conservation and Lorentz invari-
ance are then implicit. This was the BCP result. What
has been added here is a more explicit description of the
physical meaning of the BCP variables. In particular,
our approach has called attention to the Lorentz
transformations

~i= brag'Oglglg2' ' 'gi-Igi (2.17)

with the recursive property (2.14). Even though the a;
are not fully independent of each other (as are the g;),
they will turn out to be extremely convenient for the
formulation of multiperipheral dynamics.

3. PHASE SPACE

The chief technical dBBculty in multiperipheral
dynamics is the treatment of phase space. The multi-

peripheral amplitude factorizes in its dependence on the
successive g;, so one desires a corresponding factoriza-
tion of phase space. BCP found a phase-space expression
that factored to a considerable extent, but the over-all
constraint of energy conservation was handled in such a
way as to impose an awkward condition on the g, 's.
The constraint treated all II, s symmetrically by
requiring that in the rest frame of particle b,

p.=l- '(r.yogini gn+lg~lrb)prrla (3 1a)~

In the present approach this constraint is satisfied by
an inductive process. Energy and momentum are con-
served at the leftmost "vertex" in the BCP chain and
the phase space is so constructed that the addition of
each new vertex automatically satisfies energy-
momentum conservation. Thus if we require that

Qsyy= Qsg;gs+y &

'b= 1' ' (2.14) p.=I.(ap) prN. (3.1b)

+x= ~agog&. (2.15)

where g, is shorthand for B,(q,), a recursion relation
fundamental to the BCP kinematical analysis. Note
that the parameters in each g; have been uniquely
defined.

The two ends of the chain in Fig. 1 require separate
consideration. Starting with the bo frame, a s boost
defines a special rest frame of p, which we may denote

(O,r) and associate with the transformation ao. We
then s-boost from (O,r) to (1,/), where Ql has only a s
component, thereby defining qo. The frame (1,r) has
already been defined, so we achieve a meaning for g&.

In particular,

and
a,+l——a,g,g;~i, i =0, 1, ~,n+ 1 (3.1c)

then the over-all constraint (3.1a) will have been
fulfilled.

What is potentially confusing about the inductive

approach is that in the end b
—'a„+2 is to be set equal

to b, b~, which is fixed during the integration over the
phase space. One then works backwards through the
inductive chain. If the g; are chosen outside the phase
space, then constraint (3.1b) cannot be satiated. This
constraint appears as a 5 function in the phase space
and so ensures over-all energy-momentum conservation.
The inductive approach to energy conservation is the
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Eliminating pp via the energy-momentum 6 function
and successively converting from p; to Q; according
to Fig. 1, we find

dC &"& = 8+I (p.+Qi)' —mppjd'Qi

X~ t:(Q.-Q.)'- "jd Q' d Q=.
Xh+[(P —Q- )'—m-+ 'j (3 2b)

Consider the invariant volume element d'Ql. The
four-momentum transfer Ql may be written in terms
of the Lorentz transformation a~ as

Ql= L (~i)Q(—tl) "', (3.3)

crucial first step in formulating a recursive phase space.
That this approach is not the same as the 8CP approach
will become clear when it is noted that in the BCP
approach (3.1a) is used to eliminate rb, whereas in the
present approach rb is a variable of the phase space
and gl will be eliminated by using (3.1b).

Let us begin with the momentum phase space for
n+2 particles:

d@(n) d4Ppti+(Pp2 mpP). . .
n+I

d'P-+i~'(P-+i' m-+l—')~'(Z P' P. P—b)
—(3 2a)

8 functions:

d coshg, 8+((Q, —Q,)'—m,')
—+ 1/2( —t,) '~'( —t;+,) 't', i = 1. n;

(3 11)
d sinhg„„i 8+((P b

—Q„ i)' —m l')
~ 1/2mb( —t„+,) '~'.

Putting all factors together, we finally have

8+Lsinhqp —((mp' —m ' —ti)/2m. (—t,) '")j
d@,(n)

am

Xd~z. ~~n+ j sinhqg .sinhq„cosh'„+g

Xd coshtp dvp d cosh&~+i dv„~id cos8b drab (3..12)

The expression becomes more concise if we remember
to add helicity phase space. Since the frame b; is related
to the frame (i+1, t) by a s boost, the angle p, ;+i repre-
sents rest-frame rotations about the direction of the
particle momentum p;. The sum over helicities m, then
becomes an integral over p;+~, and the full phase space is

mpi —m, p —ti)
d4 &"&i=const 8~ sinhqp — ~dti dt„+l

2m, (—ti)'IP )
)&sinhq~ sinhq„cosh'„+~

&i= ~bp(gigp)

we may replace d'Qi by d4Ql', where

Q'=I-(a 'a ')Q( —tl)'"

(3 4)

where Q is a unit four-vector in the positive s direction.
Keeping fixed ap ap (and thus Qp, Qp ~ ), and
remembering from formula (2.14) that where

d'g, =dp; d cosh), dv, ,

d'r b
—dipb d cos8 b dp b—

(3.14)

(3.15)

Xdpid'gpdbgp d'rb, (3.13)

(3.5)

8 +i= bb(g nlrb) (3.8)

where rb is a rotation, rather than an element of the
form (2.13).If we parametrize rb as

rb=~.@b)&.(~b)~.(4 b), (3 9)

it follows that

d Q~l 2tnyldtnyl
Xcoshg„+id sinhg„+id cos0bdpb (3.10).

Next we eliminate the d cosh', , i=1 n+1, and
d sinhg„+i, using formula (2.12) and the mass-shell

whence, by straightforward calculation from formula
(2.13),

d Ql —
2 tldtl slnhgl d cosh/i d cosh/2 dv2. (3.6)

A similar change d'Q, —& d'Q may be applied in turn
to each invariant volume element, provided the order
of integration is maintained. The last integration re-
quires special attention. Here we have

Q- =I(- )Q(—t- )'", (3.7)
but now

The quantity go, appearing in the 8 function, is to be
regarded as a function of f~ .t +~, g2 g~+~, and r b,

determined for given b and bb bp the constraint

'bb ——(r.gpgi)(qigi g +ig„+.lr b) . (3.16)

The essential point here is to realize that each of the
three transformations r„q anpd gl is seParately deter-
mined by (3.16) (apart from the usual ambiguity that
only the sum of the final s rotation in g~ and the initial s
rotation in r, is determined). The s boost gp is thus
expressible in terms of the variables employed in (3.13).

4. DYNAMICS

The defining characteristic of multiperipheral models
is the factorization of the amplitude into a product of
functions that each depends on only a finite number of
variables, the functional form of an individual factor
being independent of the total number of particles.
Motivation for assuming localized particle correlation
comes from the experimental observation that the mean
transverse momentum of any produced particle is small
and independent of total energy. If produced particles
are sequentially arranged according to longitudinal
momenta, defining a definite set of momentum transfers
Q;, it follows that the average magnitude of any t; is
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[lV&"l(t',gr, ' ',g ~t,f'b', tr' 't„+i) [

sa &8b

LdStXdSs j I dS»+

small and independent of the chain length. Furthermore,
the relative momentum of a particle pair increases with
the separation between pair members in the sequence.
Adjacent particles in the sequence tend to lie closest to
each other in phase space. ' It thus seems natural to
assume "short-range order" along the BCP chain.

The simplest multiperipheral model is of the type
proposed by Fubini and collaborators, ' where each
factor depends on a single t;. There is minimal inter-
particle correlation here, dependence on the g; being
totally absent. A more realistic model allows each factor
to depend on a finite number of "adjacent" t, 's and g s.
The dynamical equation associated with such a model
shares many characteristics with the equation that will
be developed below from a slightly different type of
short-range correlation. The particular model used here
to illustrate multiperiphera3. dynamics has been selected
with an eye toward bootstrap applications.

Let us make a multiple O(2, 1) decomposition of the
absolute square of the amplitude (summed over final-
particle helicities),

assume that the residue factor R»'(f, t') is large only
for (t[ and &&t'l both small. "

Unitarity gives for the absorptive part of the elastic
(ab ~ &bb) forward amplitude the expression

A(f& 'bb) = Q dC&"& ~M&"'(4'") j',
n=0

(4.3)

where it is understood that

&„)B. ,"-+ (b. '~„,r, t„+t)=
S&s Pl ' ~ "1&n

ma, too. ~ mn

)(d'g2 . .d'g„+jdtj. dt„sinhqg. sinhq„

tn&&' —tn, ' —tr)
slnhg 0

— Dma~p
2m, (—ti)'" )

XGm, „;»(tr&gt)G, ,»»(tt&tS&gS)

'"'""(t f+ g+) (44)

~u ~b rcg0glg1' ' ' gn+1gn+1~b

is held fixed in the integration. D esignating by
&„&A(b, 'bb) the contribution to cl from n-particle
production, we now introduce an auxiliary function

dna Sip' ' 'mn+I, fob

~a ~I' ' 'ffn+1&~bMmP "mn+I Gm;m;+r'~" (t;&t~t&g;~t)

R y&y&+r(t f )Q &&r '+& oi+1) (g . r) (4 5)
XDm»mo (ra)+mom& (gl) ' ' '+m»m»+x (g»+t)

XD.„,.:(. ). (4.1)

This expansion is completely general, $ds~] denoting the
appropriate measure for the O(2, 1) group. Multi-
peripheralism is injected by assuming that

ffa e ~ ~ ff s ~ ~ o g bM

can be approximated as an analytic function of s; con-
taining only simple poles with factorizable residues. The
integral J'Lds;j may then be replaced by a sum over
these poles. Making this pole approximation in succes-
sion for i=1 n+1, w.e find

R; (f,)R,» (t„f,)

The relation between ~„~A and ~„~B is then

& )~(b. '»)=
fSn+I&8$5 r

Pn+1&$5

d'rbdt +g cosh'„+g

with

x &„)Bm~, "+'(b~ '&b~+t&f~+t)

XR,~-+&b(t.+„tnb')D, ;b(rb), (4.6)

~&+~= ~br b g~+~

The heart of multiperipheral dynamics lies in the
recursion relation that can be read off from the definition
(4 4):

&„+,)B &'(&t',t')= P d'g'df sinhg
$1&gi' ' 'Pn+1&Sb'&

SS&t 1110 ' ' 'tÃn+1&tP1b

Rm&&+1 (t&&+i)Dm&&ma (r&&)+mom& (gl) '
where a'= aug' and

X& lB '(&tt)G '"(V &g) (48)

&m.ms+& """-"'(g-+r)Dms+,mb" 9.b) &
(4.2) coshg= (tn '—t—t')/2(tt')'t'. (4.9)

where y; labels the different poles in s;, the symbol
&r„,(t;) denoting the. position of a pole. ' We furthermore

"Distance" between b; and b; may be de6ned as the boost in
b; Ib;. This boost is equivalent to the "relative momentum. "

Notice that &x„;(t;) is the position of a pole in the absolute
square of the amplitude, not in the amplitude itself.

'P The pair of superscripts yy' on the residue E. can be used to
specify the type of particle produced at the vertex p of the BCP
chain. )In fact, for a given pair of adjoining poles at »&~(t} and
a„(t'), there is rarely more than one possible stable particle that
can be emitted from the intervening vertex. g The sum over y and
y' thus includes all possible arrangements of particle types along
the chain if we understand that the vertex boost q depends on
these indices. Because of the emphasis on small values of (t;~,
double counting is expected to be unimportant.
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If we dehne

it follows that

B—= Z &.)B,
n=o

B= &s)B+ BG,

(4.10)

(4.11)

common Lorentz transformation of all Ã of the corre-
lated u's, keeping b, 6xed.

An analogous symmetry is present in the Bethe-
Salpeter equation, a circumstance which encourages a
tendency to equate the content of multiperipheral
dynamics with that of this celebrated off-shell equation.
Without prejudging the question of whether an oG-shell
kernel can be found that corresponds to an arbitrary

where the variables and integration are the same as in
(4.8). Performing the linear operation (4.6) on B rather
than on („)8evidently produces A. Thus if the integral
equation (4.11) can be solved for B in terms of &e)B, we
can find the complete absorptive part in terms of

( ms' —ns, ' —i')
&p)B r (8 ( ) = P 8~ sinhgs ——

so,li, wa 4 2m (—i) Is )

with u'=r qpg'.

5. LOREÃTZ SYMMETRY AND PARTIAL-WAVE
[ANALYSIS

The integral Eq. (4.11), which written out is

on-shell kernel, we stress that the advantages gained by
attempting to go off shell are obscure. A tremendous
asset of multiperipheral dynamics is that everything
takes place not only on shell but in the physical region.
The kernel G has a direct physical significance, subject
to experimental check.

Because of the Lorentz symmetry of the kernel it is
natural to expand the function B(«,') into its irreducible

components with respect to the Lorentz group. The
consequent diagonalization of Eq. (5.1) will be explored
in detail in a subsequent paper. We note brieQy, how-
ever, that after projection onto representations of the
Lorentz group with Toiler quantum numbers M and X,
Eq. (5.1) will have the structure

Bsr) (~ ) —
&

)BAIZE(~ )+ BMK(~)G3A(~ P)et~ (5 2)

B~ &'(a', i') = &s)B„.&'(&J,',f)+P d'g'Ch sinhg

possesses a fundamental symmetry that (a) facilitates
its solution through diagonalization, and (b) leads to
Regge asymptotic behavior. The kernel is invariant
under the transformation a —+ ca, a' —+ ca', where c is an
arbitrary Lorentz transformation. The volume element
in (5.1) evidently possesses this same invariance. The
symmetry operation in question does not involve any
transformation of b, and therefore is more than a state-
ment of over-all Lorentz invariance. "It is a dynamical
symmetry arising from the basic multiperipheral
assumption that only a Pnite number of particles are
correlated. It would not matter if E particles, rather
than 2, were correlated, so long as E is independent of
the chain "length" b, 'by. The function 8 and the
kernel would then have more variables but there would
be invariance of kernel and volume element under a

~'Of course, the invariance of the kernel guarantees Lorentz
invariance of the final absorptive part A(b 'bs).

The symbolic solution of this Fredholm equation,

BNx B3A/(I —G)ko~) (5.3)

mill contain t'-dependent Lorentz poles arising from
input Regge poles in (~~8~ and Gm, together with
f'-independent Lorentz poles wherever G~ has the
eigenvalue i. The latter will propagate essentially un-
changed into the corresponding Lorentz projection of
the absorptive part A~, while the former will become
branch cuts. Inverting this projection to achieve the
absorptive part itself, A(b„bs), leads to asymptotic
behavior in b, b~ that is controlled in the familiar way
by the leading singularities in X. Our dynamics, of
course, yields the complete absorptive part, not simply
an asymptotic representation thereof.
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