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Massless Particles and Fields*
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Free 6elds of massless particles transforming covariantly under the Poincare group are constructed. The
allowed inhnite- and 6nite-dimensional representations of the Lorentz group are obtained. The wave func-
tions are calculated in these representations in various bases. The commutation rules are computed, and
turn out to be nonlocal for any in6nite-dimensional 6elds. The transformation law of a certain irreducible
in6nite-dimensional representation is shown to coincide, for its lowest-spin component, with the usual,
radiation-gauge, vector-potential transformation law, as already discovered by Bender.

I. INTRODUCTION

HIS paper is devoted to a general treatment of
free zero-mass fields, transforming covariantly

under the Poincare group. The requirement of covari-
ance is shown to impose restrictions on the transforma-
tion law for a free massless 6eld. For a field trans-
forming according to an allowed representation we
construct the wave functions in various bases and study
their properties. We also compute the explicitexpres-
sion for a commutator or anticomrnutator of two
fields. It follows that locality can be obtained only in
the finite-dimensional case, and here only with the usual
connection between spin and statistics. It is also de-
monstrated that in the spherical ja- basis, the j&1com-
ponents of the 6eld in momentum space can be ex-
pressed in terms of the jth with coeS.cients linear in the
components of the unit vector p =p ~ p ~

along the
three-momentum y. This implies that the result of a
Lorentz transformation on a j component can be ex-
pressed in terms of the jth components itself. In particu-
lar, an in6nitesimal Lorentz transformation can be so
expressed, with coefficients linear in pq. As a special
case, the transformation laws of the j=1 components
for helicity %1 6elds in special representations turn out
to be those of the free electromagnetic vector potential
in the radiation gauge. This result was obtained, using
a somewhat less direct method, by Bender. '

As is shown in this paper, a free massless 6eld can be
incorporated in irreducible representations of the
Lorentz group for which the lowest spin equals the
absolute value of the helicity. This is no more true when
interactions are introduced. A study of the electro-
magnetic potentials in the radiation gauge shows that
a direct sum of a finite number of irreducible representa-
tions is not sufficient to describe the transformation law
of these potentials. These facts and a study of the inter-
action case deserve further attention.

It was shown by Weinberg' that the requirement of
covariance singles out, among the finite-dimensional
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representations of the Lorentz group, those for which
the minimal spin equals to the helicity ) of the con-
sidered massless particle. The sign of X is determined by
the representation. In the representation Lj„jbj, with
er(J —iK)'= j,(j +I) and «(J+iK)'=j t(j &+1) (J and
K are the generators of rotations and Lorentz trans-
formations), only helicity X=j,—j& can be incorpo-
rated. We show that this result is general, and applies to
infinite representations as well. The allowed representa-
tions are those for which the lowest sipn equals the
absolute value of the helicity.

In Sec. II we summarize the properties of physical
states for massless particles and establish our notation.
In Sec. III we discuss the allowed representations for
free massless fields and the appropriate wave functions
in these representations. We also show there that,
starting from a massive field and letting the mass go
to zero, the only nonvanishing terms are those for
which the absolute value of the helicity equals the
minimal spin, as expected. We compute, in the same
section, the various components and recursion relations
(mentioned above) among them, in the ja basis and in

a Cartesian basis. Finally, we give expressions for the
irreducible massless 6elds and the relations among their
various components which correspond to the relations
found for the wave functions. In Sec. IV we express the
Lorentz-transformed lowest-spin component in terms
of the various components of the same spin, and dis-

cover, for X=&1, the connection with electromagnetism
mentioned above. In Sec. V we discuss the commuta-
tion relations among the various massless 6elds.

The computations of the wave functions are per-
formed in two ways. One uses generators and their
matrix elements, and the other global methods. The
6rst is summarized in Appendix A, and the second in

Appendix B. The reader may thus choose, among the
derivations in Sec. III, the one appealing to his taste.
In the following sections only the global method is
used, to obtain the simplest derivations for the purposes
of the subjects discussed there. However, the persistent
reader may still derive all results with the previous
method, using the appropriate formulas of Sec. III.

Although the material on which our paper relies is
quoted in our list of references, the latter is far from
complete. We apologize to the authors of many papers
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not mentioned here. The reader may 6nd earlier refer-
ences in the works of Bender' and Weinberg. '

later. ) Denoting the representatives of the generators
of Lorentz transformations by the same symbols,
one has

II. PHYSICAL STATES AND POLARIZATION
VECTORS

J, lk,x)=&!kg~),

L, lk,~)=L,!kp)=0,
(2.6)

P
si(8/2)

0 e—'(1)n) j (2.3)

In infinitesimal form the little group (an Euclidean
group in two dimensions) is generated by J3 (rotation)
and L)=Eq —J2, L2 ——E2+J) ("translations" ) with

[J,,L)7=kg, [J,,LQ = iL, , [Lg,L,7= 0.—(2.4)

In the language of 2&&2 matrices, J3~ 203, L»~ ~i'+,
I.2~ 20+, and

We start with the properties of physical states of
massless particles. These were worked out by Wigner.
For completeness we shall outline this construction and
establish our notation. '

Let k be a standard four-vector of zero length with
three-momentum along the s direction k=(k'=1,
k'=0, k'=0, k'= 1). The subgroup of Lorentz trans-
formations which leave this four-vector invariant (the
little group) is obtained as follows. To each Lorentz
transformation A (with detA=+ 1, Aoo) 0) is associated
a pair &A of 2X2 matrices with det(& A) = 1 in such
a way that

(Ax')+(Ax)'0&'=A(x'+o x)A' (2 1)

while to an infinitesimal Lorentz transformation
A~I+is J+iS K, with J and K the generators of
rotations and pure Lorentz transformations (boosts),
corresponds the 2 X2 matrix I+ (is—5) ~~a. The
generators satisfy the commutation rules

[J(,J„7=i&) „J„, [J(,E 7=is(„„E,
[E„,E„7=—ie)„„J„, (2.2)

The little group of k is then dined by the condition
Ak=k, or E(k'+e k)Et= k'+e k which requires E to
be of the form

where the helicity X can take integer and half-integer
values. (The question of representations "up to a
phase" of the Poincare group is well known to be
solved by discussing the representations of its covering
group, which amounts to replacing the 4&4 Lorentz
matrices with their 2 X2 counterparts introduced above. )

A physical state
I p, lb, ) of the same massless particle,

of three-momentum p, positive energy p'= Iyl, and

helicity) is obtained by applying a Lorentz transforma-
tion to the standard state Ik,X):

!pe�

)= U[L(p)7!k,x), (2.7)

L(y) =~(p)fl(lpl), (2.8)

where B(IpI) is a pure Lorentz transformation along
the s direction taking the vector k into the vector
(Ipl o,o lyl):

8(!pl)—8
—'~&~&~))rm

+(I pl) =»I pl;
(2.9)

and E(p) (with p =p/ I p I ) is a rotation that brings e3,
the unit vector along the s axis, into the unit vector p.
For all directions different from the s axis this rotation
can be chosen to be around the axis defined by the unit
vector n(p) =eaXp/I [e3Xp7!. Thus,

where L(p) is a Lorentz transformation which takes
the four-vector k into p, and U[L(p)7 is its unitary
representative acting in the space of physical states.
The transformation L(p) is in principle arbitrary to the
extent of multiplication by the right by an element of
the little group of k. Making a particular choice amounts
then to define the phase of the state

I p,X). One con-
vention which will sometimes be used below is the
following:

ei(~&S+*III+~~I 2) ~ (2 5)
&(P)= expL —@(p)J n(p)7,

cosp(p) =e3 p.
(2.10)

0 g
—i(8/2)

Let lk, X) denote the various states of a particle of
four-momentum k. We assume them to span a finite-
dimensional vector space which is transformed into
itself by the operations of the little group. Furthermore
these operations are unitary as are all those of the
Poincare group. The concept of particle is then made
precise by requiring the little group to act irreducibly.
The Euclidean group has only one-dimensional ir-
reducible unitary representations among its finite-
dimensional ones. Hence the set Ik,X) is in fact one-
dimensional. (The doubling of states necessary to
implement discrete transformations will be discussed

If p is +e3 one can choose E(p) = 1, while for p= —e~
one has to define R(p) as a rotation of s. around some
axis in the x—y plane. In Eq. (2.10), the angle )P is
assumed to lie between 0 and m.

However, for most of the discussion it is immaterial
to know the precise form of L(p) provided one assumes
that a definite choice has been made for all y/0. To
the transformation L(y) corresponds the 2X2 matrix
A(y) such that

A(p)(k'+k e)At(p) =p'+y IF; A(p):—I !. (2.11)
(~~ P~)

s„)

This equation only determines the first column of A(p)
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and only up to a phase:

-'(P'+ p n) =
I 10&& (n.v.) .

vn

The choice of this phase amounts, as above, to choosing
the phase of the state

I P,X& since

A(p) =I
(n P.') (n. —v./(In I

'+
I v. I

')l (1

b,i ( „-,/(I, I'+I, I )i (0

nAn+v~4

In. l'+ Iv. l'

e")(y) e'"(y) =y. e")(y)=0. (2.17b)

The behavior of these vectors under Lorentz trans-
formations is quite interesting. Under a transformation
of the little group of k, written as

tively be de6ned by

e")(y) n= (~)/Lv2(p'~~p')P'j '

X(p'~ p)-', '(p'~ y). (2.16)

Consequently, they satisfy the "Maxwell" relations

P""'(p)=~~»&«"'(y); (2.17a)

from which it follows that

I—i(AP)AI (p) —e48Jse~(*iLi+*aim)

as (A ")(P))"=e"""'(Ap)"—(I/~&)(* +~*)(AP)"

Since the fourth component of e&+) vanishes this can
be rewritten as

UI A) I p,x&=e'i«"& IAP, ~).

This relation shows that A(y) differs from a standard 7

one
I

which depends only on the spinor (n~v„) and is
always well defined (I nI '+ Iv„I '= p,)0)j by an (I I-i(AP)AL (p)]&(+)(b)&

p

element of the little group which in the representations
considered is mapped onto the identity. This form is or
well suited to describe the behavior of the states under
arbitrary I orentz transformations. Indeed, one h

The angle 8(p,h.) is given by

8(p,h)- an„+bv„cn +dv„
exp 2

&hy Qhy

ng„(an„+bv ~)+vg, (cn„+ dv „)

ln~. l'+ I v~. I'

(a b)
(2 13)

Ec di

Note that at least one of the two quantities nq„and
vg„ is diferent from zero. In terms of the choice (2.8)
one has

(n.')

L-'(P'+P') j'"
(2 14)

&(p'+~p')/L2(p'+ p') j'"i
Clearly, as was said before, this convention breaks
down when p= —el Lone can set there n„=0, v„=1 for
definiteness which amounts to R(p) =e ' ~'j.

To complete this section we introduce two "polariza-
tion" four-vectors, both functions of p, c&+»(p), which
are de6ned as follows:

.&+)(b)= P(~)/vi)(0, 1,~i;0),
"+'(P)=L(y)"+)(b)=~(P)"+'(b) (2 15)

The fourth component of e&+)(p) is always zero and
~&")(p) depend on p only. These vectors can alterna-

(Ap)'
LAe"'(P)3'=e""")(Ap)'+I:«'"(P)j' (2 18)

(Ap)'

We note the appearance of the second term on the right-
hand side, a "gauge term. " We also remark that the
little-group angle 8—=8(P,A) depends only on the direc-
tion of p and not on its magnitude, as was implicit in
its expression (2.13) and is made clear by (2.18).

III. WAVE FUNCTIONS AND QUANTUM PIELDS

This section is devoted to the study of free fields de-
scribing the creation and annihilation of massless
particles, and transforming according to an irreducible
representation of the Lorentz group.

Let us introduce the operator at(P, X), which creates
a state

I P,X), with pa=
I pI, from the vacuum state

I
0&.

I P,~&= a'(P, li) I o).

Note that the choice of phase of the state vector
I P,X&

refiects in turn in the definition of at(P, X). The cor-
responding destruction operator is a(P,X). Their com-
mutation rules are

L'(P,~),"(P',')j =(2-)'2P'b"'(» —p')b-, (3.2)

where b= —1 defines the commutator and 8=+1 the
anticommutator. The factor 2po on the right-hand side
is dictated by the definition (2.7), which implies co-
variant normalization. Finally, we have left open the
question of the existence of several states with the same
helicity ), to take into account possible discrete
symmetries.

The transformation properties of the creation and
annihilation operators under the Poincare group follow
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Ufh)a(p, X) U '[A—)= e 'ie-&g')a(jap X). (3 4)

By linear superposition of these operators we look now
for a quantum field that transforms irreducibly under
the homogeneous Lorentz group. I et us first discuss the
negative frequency or annihilation part of this field
~&-&(*):

y&-&(x,x) = e '& *—u(p X)a(p ) ) . (3.5)
(27r)'2p'

The field&& & is to be thought as a vector in a representa-
tion space of some irreducible representation of the
Lorentz group (or rather its covering group) and the
same is true for the wave function u(p, X). Once a basis
in such a space has been chosen, we can as well discuss
the components p & l(x,X) and u (p,X) of these vectors.
The wave function is to be chosen in such a way that the
field transforms covariantly, i.e.,

U[A)y&-&(x, ) ) U-i[A) = TP.-i)y&-l(Ax, ) ). (3.6)

In this equation T[A) are the operators of the irreduci-
ble representations of the I orentz group. A brief sum-

mary of their classification and main properties has
been included in Appendices A and B. The reader is
referred to them for the notations to be used below.

It immediately follows from Eq. (3.6) that the wave
function has to obey

u(Ap, X)= e '"&»»T—p.)u(p, )t), (3.7)

where 8(p,h) = —8(Ap, h. ') has been used.
By restricting (3.7) to p= k, where k is the standard

momentum of Sec. II, and A. to a transformation E of
the Euclidean little group of k, we obtain a constraint
equation for u(k, X), which reads

T[E)u(k,X)= e'"'&" ~&u(k X). (3.8)

Setting now p=k and A=L(p) in Eq. (3.7) yields

u(p, X)=T[L(p))u(k, X), (3.9)

where we„'have used 8(k,L(p))=0. This relation, to-
gether with Eq. (3.8), ensures the validity of Eq. (3.'7}.

The problem of solving for the wave function u(p, X)
thus reduces to solving Eq. (3.8) for u(k, X).

We shall present two derivations for u(k, X). The first
one uses the infinitesimal form of Eq. (3.8) and an ex-
pansion of u(k, X) in the basis f;.which diagonalizes the
rotation group. (See Appendix A.) The second uses the
techniques and results of Appendix B, from which
u(k, X) is obtained directly. The latter method also
shows that in the case of infinite-dimensional representa-
tion Eqs. (3.6) and (3.7) are in fact improper in a sense
to be discussed below. However, the discussion of Gnite-

from those of the states, Eq. (2.12), and the invariance
of the vacuum:

UPA)&it(p)X) U 'LA—)= e*"'&& i'at(Ap X) (3 3)

Since U[h) is unitary, we also have

and infinite-dimensional cases proceeds formally in a
similar way.

A. Generator Approach

Taking the in6nitesimal form of (3.8), we obtain

Jsu(k, X) =Au(k, X),

Liu(k, X) =Lsu(k, X)=0,
(3.10)

In other words, we have set u,.(k,X) = 8,qk( j).
It is straightforward to show that the two remaining

equations in (3.10) determine the coefficients k(j) up to
an over-all constant factor. The detailed calculation is
performed in Appendix A. I.et us bring the results here.
It turns out that, given X, the only representations
allowed are those such that X=ej&i with e=+1 or
~= —1. In these cases

((2j+3) j+1—ec)'"
kV+»=-ik(&)l I

. (3.»)
k(2j+1)j+1+eel

One also gets
E,u(k, X) =i(ec 1)u(k, &) .— (3.13)

It is not surprising that Esu(k, X) is proportional to
u(k, X), since Esu(k, ),) obeys Eq. (3.10) whenever u(k, X)
does. It is clear from (3.12) that the finite-dimensional
representations are obtained for c= e(j s+n+1), n=0,
1, . In the notation ni ——2ji+1, ns ——2j&+1 (with
[-',(J—r'E))'= ji(ji+1), [-', (J+r'E))'= j&(j&+1)), one
has

c= [sgn(jt —jr)5(jr+ jr+1),
c=a (2ji+ 1),

if j&/ j2,.
if ji——j,. (3.14)

Thus, the sign of the helicity A is the one of j&—j2,
i.e., ) = j&—j2 and its absolute value is given by the
lowest "spin" contained in the representation of the

'We do not specify convergence properties here. We only
require that h(j) be 6nite. From the solution (3.12) it follows that
h(j) ~ 1 as j~~.

where Js, I.i=Ei—A, Ls=Er+ J'i are the generators
of the little group of k [compare with Eq. (2.6) of the
previous section). We use the same symbol for a
generator of the Lorentz group and its representative
in the representation T.

To obtain the wave function u(p, X), we have only
to solve Eq. (3.10). To achieve this goal we choose an
irreducible representation characterized by a certain
(j&i,c), and expand the vector u(k, X) in the basis {f;.).
From the first equation (3.10) it is clear that only the
components with cT=X contribute to the expansion of
u(k, ) )'.

u(p, X) =Q u;.(p,X)f;.,
(3.11)

u(k, ) ) =Z kU)f i.
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B. 61oba1 Ayyroach

We repeat the previous calculation by using the
explicit realization of the operators TLA5 of Appendix
B. In other words, the vectors pi )(x,X), u(p, ) ) are ex-

hibited as functions of two variables s and z )or rather
two real variables (s+z)/2, (s z)/2—i5 We. write
p& )(s; x,l).) and u(s; p,X). Setting

(e Qi $Q2)

0 e"" )

Eq. (3.8) takes the form

e'"'u(s k ) ) =f(ni io.2)s+—e '"~5"&—

gi(8/2)g

X((n,+Axe)z+e""5"& 'ul—

It is elementary to solve this equation. With. h a
constant, we Gnd

provided that
u(s kX)=ks"' 'z"' ',

X=-,'(ni —n2) = ejo.

(3.17)

(3.18)

Equation (3.9) then enables one to find u(s; p, l),),
which reads

u{s pl)=k(~W+v )"' '(~W+v )" ' (3 19)

This compact expression for the wave function has
still to be identified with the expression of its compo-
nents in the jo- basis. In this form it shows that, when n&

and n2 are positive integers, the wave function is a
polynomial in s and z, and hence belongs to a finite-
dimensional representation of the Lorentz group. It also
reveals the fact that for all other cases u(s; p,X), and
hence p(s; p,X), does not really belong to the space

D&, , ». (See Appendix B). Finally, as was expected,
from (3.19) one sees that u(s; p, l),) depends only on the
spin or

I

attached to p (see Sec. II), i.e., reflects the phase con-

vention required to define the annihilation operator

Lorentz group, a well-known result for the case of
finite-dimensional representations. '

Once u(k, l),) is known, it is immediate to obtain

u(p, X). Using the convention (2.8), for example, one has

u(p, l )= 2'P-(1))5u(k l ) =&(P)&(l 1 l)u(kP)
(3.15)= (p') ' "&(p)u(k, l),),

where the Eqs. (3.9), (2.9), and (3.13) were used.
Finally, when the wave function is expanded in the
"jo- basis" its components read

u (p») =k{j)(p')" "D."L~(P)5 (3 16)

a(p, l~). Note, however, that the product u(s; pX)a(p, l~)

is independent of this phase convention. It is possible

to expand (3.19) in the jo. basis. The natural defini-

tion uses the scalar product (B22) in terms of which

one has

I'(j+1+-,' {ni+n2))
u .(p,~) = . , (f;.( ) ( ' »~))

I'(j+1—-', (ni+n2))

I'(j+1+-',(ni+n2)) /2q
=k —

l

—
l

-', idsdz
I"(j+1—-', (ni+n2)) (7r)

X (1+sz) Re(n—i+ng) f . (s) (~~+v )ni-i

X(~~+v,)"' '.

To evaluate the integral, it is useful to make the
change of variables:

z= (~a' v.)/(vW'+—~n)

after which the integration is straightforward. One

obtains
u&(p, l )=&(j)(p') '-'D.x"'Ã(p)5, (3.20)

where

~(P) =(l~.l'+ I»l') '"
l

(3»)

2h
k(j) = e' "—I'(ni)I'(n2) sinLs (ec—j)5

I'(j+1—ec) -'"
X (j+l) (3.22)

1(j+1+.c)

R(p) is the rotation which brings the unit vector in

the s direction to the direction p =p/ l p l
.Equation (3.22)

yields the result (3.12) for k(j+1)/k{j), as expected.
One also has u;, (k,X)= 8,),h(j), as before.

Finally, we write down a generating function for

u;.(pl),):

=k(j)(p')"

(~ yi+v.y2)""(—v yi+~.y )' "
(3.23)

L(j+~)'(j-~)'5'"

This generating function will appear to be useful later.

C. Connection with the Wave Fm.ctions for
Nonvanishing Rest Mass

We include here a brief but instructive digression on

the limit of massive-particle wave functions when the
mass goes to zero. In particular, let us assume that we

describe a particle of mass m and spin j by a field

transforming according to a representation of the
Lorentz group with lowest spin jp smaller than j.
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Obviously, some singularity has to occur in the wave
function when es —+0, since only X=&j0 are allowed
for massless particles. To avoid unnecessary complica-
tions we treat one example, where the field transforms
according to the representation n&=n2= 2 or j&= j2= —,''.
to say it more plainly, a usual four vector held. The de-
composition according to the rotation subgroup yields
spin zero and spin one. Let el"(j,o)(j &.0 &+j,j =0, 1)
be the wave function for a particle of spin j and
angular momentum 0 along the 2' axis, and vanishing
three-momentum. Its wave function e&(p; J',0) for three-
momentum y, energy p'= ( l p l

'+m') "' will be given by

"(p,J, )=L."(p) "(J ) (324)

parts of u(z; p,X=O) are proportional to p' and y,
respectively, in agreement with the previous limit.

On the other hand, if we start with a spin-one particle
for which ee(1,0-) = 0 we get

e'(y; 1, ) =Ly e(i,o)/mg,

pe(1, ) y
e(p; 1,~) =e(1,0)+

p'+m m

(3.27)

Obviouslv this four-vector has no limit as m —&0.
However, if we first multiply by m and then let m go
to zero, we obtain

where the Lorentz transformation I-(y) transforms the
time axis n=(1,0,0,0) into P/m. Then

lim me&(y& 1,o) =l y e(1,0)/p'gp&,
m~0

(3.28)

e'(p, J,0) =Lp'e'(J, o)+p e(J,o)g/m,

e(p J, )=e(J )+—
I
"(J»+

p'+m I

Suppose we describe a spin-zero particle; then one
has e'(0,0)= 1, e(0,0)= 0, and Eq. (3.25) reduces to

e~ (y; 0,0)=p~/m. (3.26)

where
(o) (1) (2) (3)

(1+zz z+z z —z 1—zs)
A(z) =i —, —,i

transforms like a four-vector under the law

(az+c)
A(z) ~ (bz+d)(bz+d)Ai

b+d &

This can be checked directly, by verifying that

We see that me&(p; 0,0)=p& has a smooth limit when
m ~ 0. On the other hand, from (3.19) it follows that
for sy='s2= 2,

u(z; p,~=0)=&(~.z+v.)(~a+7.)=h(p ~(z))

which is a zero-helicity wave function. There is no way
to obtain the helicity-one wave function for massless
particles starting from the j~=j2=-, representation of
the Lorentz group, as we expected from the general
considerations above. In fact this result holds in any
spin case. Assume that one describes a massive particle
of spin j by a wave function transforming as a finite-
dimensional representations of the Lorentz group
(n2, n2) with

j2=2ln2 —n2I & j&j ~ =2(n~+n2) —2= lcl —1

(j, is the highest spin in the representation). The
only nonvanishing finite limit, when ns -+ 0, is obtained
by multiplying the wave function by m&~~* and is
proportional to the wave function for a massless particle
of helicity X=2(nr —n2)=ej&, equal in absolute value
to the lowest spin j0.

D. Recursion Relations and Tensor Basis

From the explicit expression for u;, (p,X), Eq (3.20),.
it follows that one can relate the various components to
each other. Starting from the generating function Eq.
(3.23), we observe that for any positive integer r one
has

u;p„(y; pX)

(a c) '
I P'(z)+A(z) ~)i

kc d) &b d)

with

(uz+c (as+ c)
=(bz+d)(5z+8) ~oi +Ai

kbz+d kbz+d)

(~,y2+V,y2)( 7 y2+~ y2)
X u;(y; pX)

Hence the projections of the "spin"-zero and "spin"-one

i(y2'+y2')
+P' +P'y'y' 'u;(y; PX), (3.29)
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23-.(y P»

h(j —r) (j—r+»!(j—r —»!
~(j)'. — (j+» (j-»'

V[ g
x ~, +v„

Byl By2

( 8 8)-v. [ P';(y P»
ay2 ay3

h(, r)-(~ —r+»!(j—r —»l-'/2

~(j) (j+»'(j-»'
1// 8' 8' 1 ( ()'

x p'-I — -- +p'—
I +

2 k(ty2' gy&2 2i (By&' ay2'//

+p' 23;(y; p». (3.30)
~3'&~3'2-

can calculate D 0(/&[ R(P)g. In fact,

1 ((2„x2+y,x2)(—y„xg+u„x2)

e p0

1 x22 —xP 2(xP+x22)=—p +p2 +p x3x2
jf 2

& y+m~ p-m

, D-0")P(p)j,
/ L(j+m) l (j—m) Ij (3.34)

which also shows that D 0(3'))R(P)g is a polynomial of
degree j in the components of P.

The reader might notice that p'Wip2 carries angular
momentum &1 along the z axis. This corresponds to the
fact that on the one hand -', a.3 corresponds to Js, while
for a rotation around the z axis of magnitude 8 the be-
havior of the four-vector p as agreed in Sec. II is

Si(8/2)rr3(PO+p. ~)g
—i(8/2)s3

( P'+P' "(P' ip2)&—
E8-i8(pl+, ip2) p

0
p

3 )
Thus, I;~„,,(p») is related to I,.(p,». For the case

of adjacent j values, one obtains i.e., p' ip' c—arries one unit of angular momentum
around. the s axis while p'+ip' carries the opposite
amount. These relations are obviously preserved by the
identities (3.31) and (3.32). These identities show that
by applying suitable combinations of p/P0 to the 23;,
components we generate the j&1 components of the
wave function. Finally, one can write similar relations
in configuration space for the Geld itself. This will be
done in the next paragraph.

For later purposes it will become convenient to use a
Cartesian basis instead of the jg- basis of the rotation
group. For integer ) this basis involves traceless sym-
metric tensors whose indices run from I to 3, while for
the case of half-integer helicity an extra spinor index is
involved. Let us bring here the explicit expressions for
the integer X case.

The required tensors can be computed in two ways.
In the first, one introduces the transformation co-
ef5cients t......,'(1(g3(3), .

x(l (j—)(j—+1)j'/'-;(p' —ip')
XN, .-~(P»+E(j+ )(j—)3'"
xp';.(p») —L(j+ )(j+ +1)g ~

X-', (P'+iP')I;, .+~(P»)}. (3.32)

A single equation, which combines both Eqs. (3.29)
and (3.30), can be immediately derived from Eq.(3.20):

I+-..(P,» =I h(i+~)/hU)3

I/+~. .(P») = Lh(j+ 1)/h(j))LU+ 1)'—j0'3 "'
X(—[ (j+ )(j+ +1)g"' ,'(p' p')-—
x;,. (p»)+L(j+ +1)j—+1)j'"
xp ';.(p~)+L(j-.)(j--+1)j"

Xl(P'+iP')2ii. .+3(P»)} (3 31)

XL-(», l.[0[j+.~a- z D. . ~- L~(p)q
oner

X(jm, [rilm'I j+I )u; (p,», (3.33)

where (j&m3, j2m2[ jm) are the usual Clebsch-Gordan
coeKcients and e is an integer. In deriving this relation,
we made use of the identity

D. =,„-.(+-&tag(jm, I~lm'I j+~ m+e')

= p D %")L&gD~ -'~ "()L&j(jm, IN [m'[ j+S 0)
mmr

Using Eq. (3.21), which defines R(P), and Eq. (A10), we

(i,m3, 1,m2[2, m&+m2)

X(2,m2+m2, i,m3[3,m3+m2+m3)

X(j—1 g m~; i,m; I j,o)e„("» . .p .(~ & (3.35)

where

e(+'& = —(e'+ie2)/~2 e(—» (e&—ie2)/~2 e(0) —e3

The tensor t„...,,. is thus symmetric in all its indices and
traceless in any pair. It is easy to verify that

Z.,i,...Z., i,.ti, ...i,.= t.....,."D, .(3'&I Z$, (3.36)
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where R, y is the 3&(3 matrix representation of a rota-
tion E. One also has

rrp
&~j." ~J &aj ~ ap

—~aa' ~

f~)

The Cartesian basis wave functions are given by

(3.37)

(3.38)

The expression (3.20), when combined with Eq.
(3.36), yields,

U.,-';(Pli) =b(i)(p')' "
XR„i„(p) ~ R,.i,,(p) ti„...i,,". (3.39)

Since p, p R '(p)=B", and since ti,...i,," vanishes
whenever one of l~ 1;0 equals 3, it follows that

which is proportional to the expression for U„...,,,(PX)
derived from Eq. (3.39), as expected (one uses t,...,„"
=~ "(P) "e "(P))

One can also write recursion relations similar to
Eqs. (3.31) and (3.32) in the Cartesian basis. Combin-
ing (3.41) and (3.44), we obtain, for instance,

I""'i+'(PX)

h( j+1)
. — L(J+1)'—io') '"

b(J)

pe&I+1 ' 'Nk' ''&j+ (pg)
k=1 2/+1 k(i

3
paleal 'aid' '' '$$' ' '6j+1(p& ) (3 46)

p 'U„...,,....,,,(ph) =0. (3.40)

An alternative way of introducing the above tensors
is to use the generating function (3.23) and to observe
that for integer helicity ) it can be rewritten as

where we have used

x(p Y)/—~')C&"(p) Y) "~, (341)

with e&+&(P) defined through Eq. (2.14), and

(2($2 $1 )pki($1 +$2 ))$1/2) ~

The transversality (3.40) of the lowest component
follows also from (3.4/). 'fg ~~~@'~gggg g

K m. ' ':=.~i- ~"..~+ ~..'P
'

~E. General Free Irreducible Fields
for Massless Particles

(3.43s)
We shall now complete the formulas pertaining to the

quantized field. Up to now we have introduced the
annihilation part of the 6eld P& &(x,X), Eq. (3.5), and
have obtained that if the 6eld transforms according to
the representation 2'&,„» then X= ~(mi —n2). Similarly,
we introduce a positive frequency or creation part
p&+&(x,X'), defined as

In deriving Eq. (3.41) we have used the relation

and the fact that

the latter may be derived from Eq. (2.16).
Notice that the factor (n„/n~)" carries all the am-

buigity in phase associated with the wave function. The
expansion of (3.41) as y&+&(*,&,') = e'i'*i)(p X')bt(p X') (3 48)

(2~)'(2P')

e;(y; X) = P I "'~'( X)Y„...Y„3.44) bt (P,X') is a creation operator which, transforms accord-
ing to (3.3) as:

allows one to de6ne a tensor N„...,,.(PX) which is sym-
metric and traceless (since Y'=0). In the particular
case of j= jo, one obtains

b(io)
Nag. ~ a&0(p& ) — 2/ol2(po) ec-i

E(2io)-')'"

X(,/-„)"..."(p)"'..."(p), (3.45)

U(A)bt(P, X') U 'fA)=e+'&i' ~&bt(AP X'). (3 49)

Therefore, by arguments similar to the case of the
annihilation part, the requirement that p&+&(x,X') trans-
forms according to (3.6), namely, by the same rule as
y&-&(xp.),

UP)y&+&(x,a') U'- (X)= rLX-)y&+&(Xx ),') (3 50)
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yields that
X'=,'-(n2 —nr) = —X, (3.51)

we can write the recursion relations as

~(Pp
'= -X)=cp )N(p p ),

where c(X) is a proportionality constant. At this point,
we have to be slightly more speciGc about the physical
meaning of the states. If XQO then clearly we have to
deal with two types of states, those with helicity ) and
those with helicity —X. At the level of Lorentz trans-
formation properties (i.e., without including discrete
operations like parity P or parity times charge conjuga-
tion PC) these states are distinct so that it is justifiable
to use different symbols like a(p, X), at(P, X), b(p, X),
b"(P,—X) to describe their annihilation and creation.
However, when one does not violate any principle by
considering coherent superpositions of the type p(P,X)
+vip, —X) (which is the case of photons but not of
neutrino-antineutrino pairs, due to the lepton number
superselection rule), it is possible to identify the opera-
tors a and b.

The full irreducible Geld now reads

y(x) =pi-&(x,x)+@&+&(x,—x),

(e-*'&'N(P, X)a(P,X)
(2w)'(2P')

+e'~ *v(p —X)bt(p —) )7 . (3.53)

Its transformation law under translations and Lorentz
transformations is

Finally, we can describe the vector character of g(x)
by introducing the variable s above. Or we can consider
its components in either the tensor or "jo-" basis. We
translate here the results, previously obtained for the
wave function, to the Geld. We limit ourselves to the
case of integer ) and tensor basis. Then the lowest
component (for LAO) is divergenceless:

3

4'~r. ~a "~r" ~/0(x) =O ~

~~=& Bx~"
(3.55)

More generally, introducing formally the nonlocal
operator 1//6 such that

—~(x,x') =— y(x', x'),
4w ix' —xi

(3.56)

U(a)y(x) Ut(a) =y(x+a),

&LAj4(*)U't Ah= T(., -,)LA 'j4(»),
-', (n —n ) =X. (3.54)

i+& 8
X

jr=I gg k

s/+i(x)
2j+1 k(l

3

X Q Q' "'"'"'" &" '/+'(x), (3.57a)
a=1 Qg+

~ ~ ~
j j )r/2

'2 'X
j+jo&

k(j—1) rl 1 3 8= —j —Q P ""' /-"(x) (3.57b)
h(j) coax' d, ~=r Bx'

IV. RADIATION GAUGE

Up to now we have extensively discussed the wave
functions suitable for describing massless particles. We
have seen that the requirement of Lorentz invariance
restricts the behavior of the wave function in such a
way that it can only transform according to those
representations T~„,„,l for which X=2(nr —n~). As a
result it seems impossible to describe photons, for ex-
ample, by the usual vector potential. Indeed, the usual
four-vector A„corresponds to the representation with
n& ——2, n2 ——2, which accommodates only helicity-zero
massless particles and is therefore unsuitable for the
description of helicity &1 photons. On the other hand,
the quantization procedure cannot be applied to the
covariant four-vector potential without introducing
extra unphysical states. The radiation gauge does not
suffer from the latter defect, and is therefore used' in
quantizing electromagnetism within the Hilbert space
of physical states. However, this gauge appears to spoil
manifest covariance.

In this section we shall demonstrate that the for-
malism developed in the previous section entails that
the free electromagnetic Geld in the radiation gauge
transforms covariantly under a certain inGnite-dimen-
sional representation of the Lorentz group. The po-
tential is then the lowest-spin component in that
representation (this result was derived before by
Bender' using somewhat less direct methods). In fact
we shall show that many apparently noncovariant
transformation laws for potentials of massless particles
are indeed covariant, when those potentials are in-
corporated in inGnite-dimensional representations, in
which the former are the lowest-spin components of the
latter. All this will be done for the noninteracting case.
The interacting case, which will add new structure to

J. D. Bjorken and S. D. Drell, Retetieistic Quantum Fields
(McGraw-Hill Book Co., New York, 1964).
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the transformation laws, will be treated in another
paper.

To achieve our aims we note that, when applying an
infinitesimal boost to a lowest-spin component jo, it
acquires also a component with j= jo+ 1.However, since
all spin components of massless fields are related to
each other, we can express the jo+1 component in
terms of the jo component. This yields a transformation
law for the lowest component which appears noncovari-
ant, and for the case jo= 1 and c=&1 coincides with
the law of radiation-gauge potentials. Note that a
similar procedure may be applied to any component,
and not necessarily to the lowest one.

Let us start by introducing the field

y&-&(s; x) =h e—ly a(& &+y )nl—1

(2~)'(2p')

X(-~+&.)"'-"(p,&) (4 1)

We treat the annihilation part only. (The creation part
may be treated in exactly the same way. ) Under a
I orentz transformation A. corresponding to a 2&(2
matrix

with Eq. (4.2),

UEAj~ i-&(y') U-'EA]

=Iz(j)E(j+~)t(j—~) lj '" ~
—iy Aa

(2~)'(2p')

(~
—j+i

XEP 'p)'3'- '
(yiyo)

y
—j—X

X (=.y.)(&-')' (p,~) (44)
yl—

Clearly if A. is a rotation, we obtain the ordinary be-
havior corresponding to the representation j of the
rotation group. On the other hand, for pure Lorentz
transformations we find, for j= jo,

iEE.,y, ,(y; X)j= (X08 —X cj')y, ,(y; X)+-.', 0(yrg 1o' )
X4Vo(y; x) —(jo+1—«)(~'~ /~)too(y x) (43)

where we remind the reader that T(e '*a') is identified
with e' 'x (see Appendix 8). We also note that when
p(x) transformsby T, „Boff(x) transforms by T»+i, „o+1,
as is clear from (4.4).

For the case of integer jo, combining (4.5) with (3.41)
and (3.44) gives

the field p& &(s; x) behaves as

UEA3~&-'(;.) U-'EA1

=TEA.—'$y&—
&(s Ax)

zEE.,qb""'""(x)Q=( x8 x8'—)y' 'oo(x")

(jo+1 «—)(~'~ /~—)4"" "'(x)
jO—ze 2 0 b b'ollbl

~ ~ bb-1 b b.b+1" ~

boo(g) (4.6)
k 1

(2~)'(2p')
g-i p.hx

where in the course of the calculation, it is useful to
realize that

XL( 4—7 &)s+(— c+y ~)3"' '

XE(co~d y~5)z+ ( —n„c+y„a)—5"0 'a(p, x) .

The transformed field is given by the same formula as
(4.1) with x o A.x and

Defining the generating field,

(y' ~.)( (p) &)=-:(y' ~,) T E( (p) )(y(— )y')g

It can be verified, using Eq. (2.17a), that the right-
hand side of Eq. (4.6) is transverse in bi b,„as it
should be. Using the same equation, one also gets

(Zo) baba@ bi bk 1ebb+1 ~ ~ ~ bco(X—) ($0/Q)
Cj bCI1

bl .bk labb+1 ~ ~ ~ bio(—g) pa+&bl. bb-1 bbbltl bj0( )]h&)J ~

(4 8)

&(j)

E(j+~)~(j-~)l3'"
d p

(2~)'(2p')

Cherefore, (4.6) turns into

bl'o(g)j —(g g X go)y 1 " lo(g)

(1 ec) (—8'a /—8 )cIaobl '( 1o)x"

$0$ bfe

@bl ~ ~ ~ bk labo 1 ~ bl'o(g—)
— (4 9)

Xe czar a(po)oc--j—1(~ y +y y )j+b

X (—y y&+oT, y&)c
—

&1z(p Z) (4 3) When jo——0 the last term is absent. Since «= —',(ni+no),
it follows that (4.9) is invariant under nio-o no, which

we get, combining formulas of the previous section in turn implies that it is valid for both helicity ) and



Y. F RISHM AN AND C. I TZ YKSON 180

helicity —X and any combination of both. It therefore
applies to the photon field as well. The choice

—,', (n(+n;) =1 or c=&1
~ (4.10)

with c=+1 for positive helicity and c= —1 for nega-
tive helicity, makes the transformation law (4.9) ex-
tremely simple. The lowest-spin component then trans-
forms under pure Lorentz transformations in a sort of
"minimal" way: Besides the orbital part one adds the
simplest term needed to restore transversality. Finally,
with jo——1 and condition (4.10) fulfilled, one realizes
that Eq. (4.9) represents the free-radiation-gauge
potential transformation law. Thus helicity &1 radia-
tion-gauge potentials transform covariantly under the
in6nite-dimensional representations jo= 1 c=&1 re-
spectively. Note that these representations are
nonunitary.

L4»(y; *),4»"(y', ~')]

=b(j)h*(j')l (j+l ))(j-l ) t(j'+) )((j'-l )))-"

X~u (po) [~(W~') (i+i'+&))—
(2~)'(2p')

X(~.yx+v, y2)'+"(—v yx+~,y2) "

X( .y~'+7.y2')""(—v.y~'+ .y2')" "

XLe '&'( *')+blc(X) l'e"(

V. COMMUTATION RELATIONS

In this section we investigate the commutation rules

among the various field components. I et the field be
expressed as

(Pp
4»(y; ~) = 0 ee-j—1

L(j+) ) (j—) )l)'" (2~)'(2P')

X( „y+y.y,) +"(—y„y +-„y,)
Xfe '& *a(p X)+ ()c)e*&*bt(p —'l()) . (5.1)

The commutation rules among the creation and an-
nihilation operators are

E (p, l ),"(p',l ')) =P(p, l ),b'(p', l'))
=(2 )'(2P')» &("(p-p'), (5 2)

with l A,B)~=AB+8Mand 8=&1. All o. ther com-
mutation relations vanish. (The treatment of self-
conjugate particles, namely a(P,X)=b(P,X) does not
yield 'any new results. In fact, there need not be a
separate treatment for self-conjugate particles whenever
X&0, since then a(P,X) and at(p, —X) commute (or
anticommute). ) One therefore readily obtains

E4 (y;*)A '(y' *'))~=L4»'b'*)A»"(y' *')) =o (53)

However, the commutator (g, (y; x), P, t, (y'; x'))q does
not vanish. It is

Let us now notice that

Therefore,

z'+z ~=l, O&((yv2).
ky, ' (5.5)

L& (y' ~)A "(y'; ~')7~

=$)),,h( j)Q+(j )L(j+$)[(j—$)1(j~+$)I(j~ p) l)—&/2

d p
X (po) [~(~+~') (i+i '+2)-)

(2~)'(2p')

x (p ' Y) ~ I ~l (p, Y )7 I ~ I (zopo+ &Z ' p) r I )'I

XLe "'* '+Sic(X)l'e" (* *')). (5.6)

These commutation relations are in general nonlocal,
namely, the right-hand side does not vanish for space-
like separations (x—x')'(0. It is easy to realize that
local fields are obtained only for finite-dimensional
representations, and then only with

and
lc(X) l

=1

8= —1 for j +j ' even,

8=+1 for j,+j, ' odd.

(5.7)

(5 8)

For fields within the same irreducible representation,
the conditions (5.8) express nothing but the usual con-
nection between spin and statistics.

For the free-radiation-gauge electromagnetic poten-
tials A, (y; x) one has ac=ac'=1, l)(l =1, and hence,

LA, (y; x),A;.t(y; x'))

=&(Z)&(Z')E(&+1) (j—1) (j'+1) (j'—1) 7 '"

2
X—

d3

(P') "+"(1 Y) '(I Y')"

X(Z'p'+eY p)' sinp (x—x'). (5.9)

For the lowest components,

P,(y;.),A,t(y';")) =-lb(1)
I

d p

(2~)'(2p')

xl zo+.
l

»np (~—~). (5.10)(,
~ )

(& yl+ r y2) ( Y yl+~ y2) (~ yl +r y2 )
x(—v.y'+ .y')" "=(p Y) ~")(p Y')"-)"~

X(Z'P'+ ez 1)"" (5 4)
where we have dined
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The equal-time commutators between two fields or a pJ,E27=E' . We thus get
field and its time derivative are then

I A1(y; x),&1'(y'; x')7
=4Ih(1) I'2(z'z p'/d)8&2&(x —x'), (5.11a)

LA1(y; x),A1 (y'; x')7
= (4/i) Ih(1) I2I (~')2+(Z &)2/~7~"'(x —y) (5»b)

as expected. The 6rst commutator vanishes when fields
which include both helicities are used.

E.f;.=~ jI (j~-)(j~-+1)7"fj
+»L(j~0) (j~0'+1)7"'f~ .+1

wcjf(j No+1)(j No+2)7'j2f+1 a~i, (A4)

E2f;.='a;Pj' n'7—1j'f; 1,+b,~f;.
+c LU+1)' ~'71"f+1 .~

In a certain irreducible representation, J K= p and
J'—K'= s are constants.

Thus,
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jj= jj

b' =p/j U+1),

(J' K') f,,—=sf;;

APPENDIX A: LORENTZ GROUP—
GENERATOR APPROACH where

=
&U+ 2) —p'/(j+ 1)'—»(2j+ 1)(2j+3),

In this appendix we recall, for completeness, the
action of the Lorentz generators in the jo- basis, namely,
the basis which diagonalizes rotations, ' and then solve
for the coefficients h(j) of the wave function jj(k,X)
Lsee Eq. (3.11)7. A more formal treatment of the
representation theory is given in the next appendix.

The generators of rotations J and Lorentz transforma-
tions (boosts) K obey the commutation rules

E;'= a;+gcj.

Suppose jo is the lowest j in the representation. Then
Xj, ~ =0, and hence

p'/2o'.

Defining c through P= ij &c, we thus get

P,J„7=i' „„J„,
pm, &.7=«m. rE'. ,

L&~,E„7= «mn Ja— (A1)
and

Let fj, be basis "states" which diagonalize rotations,

namely,

J K=ij 2c,

(J'—K') = jo'+c' —1,

Ãj =-
(j+1)'

1
I (g+1)'—g&'7L(j+1)'—c'7

4(j+1)'—1

(A5)

and
J'fj.=j U+ 1)f.

~+fj.= Ei U+ 1) 0(0~1)7'"f .+—1

~2f~ =of '
(A2)

(A3)

From the vector character of K under rotations and

P2,E+7=E'+ it follows that

E+fja=+jafj 1a+1+fijafj a+1+—Cjafj+1 a+1 ~

The dependence of the coeKcients aj„bj, and cj on 0-

can be determined by a straightforward calculation
using PJ+,X+7=0. One then gets

&+f;.= c' L(i )(j 1)7'"f —1.+1- —-
+&'L(i )U+~+ 1)7'"f; -—+1

c;L(j+.+1)U+~+—2)7'"fj+1.+1

b; =V'&c/2 (2+1) ~

(A6)

Let us remark that for an orthonormal set f;„ the
Hermiticity of K, namely, a unitary representation,
implies that

(a) c=ir, r real (principal series);

(b) j2——0, c real, 0(c2(1 (supplementary series).
(A7)

The finite-dimensional representations are obtained for
IcI = j2+n+1, n=0, 1, 2, . For those, denoting:

Choosing f,, in such a way that aj+i=cj, we thus
finally obtain

(j2 j&2)(j2 c2) 1/2

Gj=cj
j 4j~—1

The action of E3 is determined by that of X+ and

(E+,J 7=2E2, and that of E' from that of E2and L:', (J—iK)7'='ji(ji+1), I 2(J+iK)72= j2(j2+1) (Ag)
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subgroup, they are also given in the Lie-algebra or
indnitesimal form.

To describe the representations one introduces
function spaces D( y g) with n&, n2 two-complex num-
bers, such that n~ —n2 is an integer. A function of two
real variables x and y Lwhich are conveniently grouped
as z= x+iy, z= x iy—so that a function of the variables
x, y is also written f(z,z)j belongs to D~„, „» if

one obtains

c= (j&+j2+1) sgn(j& —j&), for j&N j2, (A9)
c=~(2j+1), for

For a more complete discussion, the reader is referred
to the liters, ture. ' (See also Appendix B.)

We now proceed to solve the constraint Eqs. (3.10),
which read

J3u(k, X) =Au(k, X),

(E —iJ )u(k, X)=0,
(E~+iJ~)u(k, X)=0. One abbreviates f(z,z) by f(z). The topology on D~„,,„,~,

namely, uniform convergence of f and j and their
derivatives on compact subsets of the s plane, will not
be discussed here except to state some results.

In the space D(„,,„,), one defines a continuous
representation of SL(2C) through the following rela-
tion. For any 2&2 matrix A with determinant 1, one
sets up the mapping A-+ T(A), where the linear
operator T(A) acts in D&„,, „,~ as follows:

It is straightforward to show that Eqs. (A10) imply

(J.K)uP) =X(E3+i)u(X),
(A11)

(J2 K2)u(g) —P& 1 (Ea+i)2ju(P)

Thus, in an irreducible representation (jo,c),

X(E3+i)u(1%,) = (ijoc)u(X),

(E3+i)'u(X) = ('A' —jQ' —c')uP ) . (A12)

(i) f(z,z) is infinitely differentiable (abbreviated C"),

(ii) j(z z) = z"' 'z"' 'f(—1/» —1/z) is also C".
(A10)

It thus follows that one necessarily has

(~ -j,')(~' —c ) =0. (A13)

Hence either X= ejo or X= ec (obviously, the latter is
valid only for jo—c integer). It turns out that X= ac

does not give any solution not included already in the
) =mojo case. Thus one has

f2j+3)'~ /j+1 —ec)
&(j+1)= —ih(j)l —

l I

—

l (A15)
&2j+1) 0j+1+ac)

APPENDIX 8: SUMMARY OF REPRESENTATION
II' THEORY FOR SL(2C)

In this appendix we give a brief survey of the repre-
sentation theory for the group SL(2C), the covering

group of the homogeneous I orentz group. This is
mainly to define the notation and to derive some
identities used in the text. We rely mainly on the clas-
sical reference texts from Naimark, Gelfand, and co-
workers. 5 The results are 6rst stated in global form;
then, using a particular basis to diagonalize the SU(2)

5 For the theory of representations of the Lorentz group see
M. A. Nailnark, Linear Representations of the Lorentz Group
|,'Pergamon Press Inc. , New York, 1964); I. M. Gelfand, M. I.
Graev, and N. Ya-Vilenkin, Generalized' Functions (Academic
Press Inc. , New York, j.966), Vol. 5.

(A14)
Eau(X) = i(ec—1)u(X), c=a1

The derivation of (A14) from (A12) is not direct for
X=0. However, Eqs. (A14) hold in general.

Using Eqs. (A3) and (A4) and the expansion (3.11),
one can solve for the coeKcients h( j) from Eqs. (A10).
The solution is

(as+ c
X(tz+d)"'-'fl —, (»)

&fzya',
'

These representations exhaust in a certain sense all
irreducible representations of SL(2C). We summarize
irreducibility and equivalence by distinguishing the
situation of "integer" and "noninteger" (n~,n2) points
as follows: An index (e~,n2) is called integer if (n~, n~)
are both nonzero integers of the same sign.

Noninteger points. The representation at a noninteger
point (n&n2) is irreducible. Two representations (n&,N2)

and (n&',n2') are equivalent if and only if n&'+n&
=n'+n2 ——0. Equivalence means the existence of a
continuous, invertible intertwining operator between
between D(„,, ,) and D(„, ,„,). Irreducibility is un-
derstood as

n g
———,

' (n+ ip),
u2 ', ( n+ip)——, ——

n integer, p real
(82)

(i) subspace irreducible: no closed proper invariant
sub space,

(ii) operator irreducible: all-continuous operators com-
muting with the T(A) are multiples of the identity.

All these representations are infinite-dimensional.
They contain in particular the important special case
of unitary representation.

Unitary representations They fall into t. wo series:

(i) principal series characterized by nz+82=0 or
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with scalar product

2
(f,g) = - li«« f(z)g(z)

D~„,,„2~. They read

1 8 8
(g3) Ii——— (ni —1)z—(n2 —1)z+(1—z')——(1—z')—

2 BZ l9z-

The measure is —,'idzdz= d Rez dImz;

(ii) complementary series characterized by

n~ ——n~ ——c, —1&c&1, c&0,

1 8 8
I2=—(ni —1)z+ (n2 —1)z—(1+z')——(1+z')—

2i BZ BZ-

n2 —nq 8 8
I3= — +z——z—

2 t9z Bz-

and scalar product (valid for —1(e(0;the representa-
tions with 0&c&1 are equivalent to those with —1&c
(0, since ni=n2=e and ni=ni ———e are equivalent).

(2) 2

(f,g) =I —
I (2'L) «i«i«2«2

&& I zi —z2I '-'f(zi)g(z~) (»)

Integer point, s These rep. resentations are no-more sub-
space irreducibles though they are still operator ir-
reducible. In fact, with nj. , n2 both positive integers,
the four representations T

g 2 T
g 2 T g 2 and

T „,, „„are related by various continuous mappings,
which commute with the operations of SL(2C). Con-
sequently, the kernels and images of these mappings
are invariant subspaces. Denote by E,, 2 the closed
subspace of D„,,„, of polynomials in z, z of degree at
most n~ —1 in z, and n2 —1 in z. This is an invariant
subspace of D„, , Similarly, let F, „, be the sub-
space of D it „,of those functions f which satisfy

K,=—(ni —1)z+(n, —1)z
2i

8
+ (1—z')—+ (1—P)—

BZ BZ-

E2 ——(ni———1)z+ (»—1)z
2

8 8
y(1+z2)——(1+P)—,

BZ BZ-

1 ni+» 8 8
K =——

3
—1—z——z:

i 2 BZ BZ-

(J—iK)' ni' —1

E 2 )
=ji(ji+1),

(
J+iKq' n, ' —1

2 )
=j2(j2+1),

The usual invariants take the following values with
ni=2ji+1, ng=2jg+1:

(-2i)««z'z~ f(z) =0,

for 0&j&n& —1 0&k&n2 —1.
J' —K'=

ni2+n22 (ni n2) 2 (n—i+n2) ~

I+I
2 )

This is a closed infinite-dimensional sub space of
D „,, „,. Note that E„,„, is Quite-dimensional (dimen-
sion niXn2) and carries the usual finite-dimensional
representations of SL(2C). The index (ni, nq) can be
written (2ji+1, 2j&+1) to make contact with the
usual notation, where J—iK is represented by spin ji
and J+iK by spin j& (see below).

Let the symbol denote isomorphism between
spaces and equivalence between representations in the
corresponding spaces. Then one has

Dnl, n2t' n1, n2 —ny, —n2 —ny, n2 nl —n2 &

D-n, ,-~,/F-n. , ..-&n, , n, .

Infinitesima/ Form: By identifying T(et't'&t'+'»'~)
with e'('~+& ~) for a and y infinitesimal, we derive the
expressions of the generators J and K in the space

. ni —»& (ni+n21

)4 2)
Rotation basis. Except for the cases corresponding to

the unitary representations, the vector spaces D( y 2)

are not naturally equipped with a bilinear form. How-
ever, they carry a reducible representation of the com-
pact group SU(2), which we expect to be equivalent
to a unitary one-direct sum of the well-known repre-
sentations of "spin" j. %e shall, indeed, construct in

Dt, ,„» a bilinear form invariant under SU(2), which
allows us to embed D(„,,„2) as a dense subspace of a
Hilbert space, a basis of which diagonalizes the repre-
sentation of this group.

We proceed by constructing sets of 2j+1 functions.

f;,(z) belonging to D~, , », such that the subspace
spanned by these functions is left invariant under the
action of Tt, ,„»(A), for A restricted to SU(2).
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Sy~' $2~'
D, , (i)(A) (810)

x'=2~x.

Combining (89) and (81) we get

We are thus looking for f;,(z), with the property that
for A restricted to SU'(2),

P'(., »(A)f2 3(s)=f2"(s)D".(j)(A); (89)

where the Wigner functions D, ,&')(A) are defined by

X&'~+.~2'~~

E(j+~) (j—~) 3'"

Bremains to compute f;,(0).To this end we note ths, t
choosing A=e&'/2)2" in (811),and using D, ,&j)(e&'/2)2&2)

=5, ,e'~, one gets

f.,(ei2Z) —f, (Z)ei2[o+(n1—n2)/2)

fjo(0) fib .( 2 1)/—2

It thus follows that

f (s) . f.(1+zs) (n1+n2) /2 —1D 2(j) (A t) (815)

Defining the unitary matrix V, by

A, = V,(2~2),
we obtain

f (s) —g.( 1+ zz)(n1+n2) /2-1D
( (j) (V' )

(as+c)
(bs+d)"' '(bz+ d)"' 'f .

I

—
I
=f "(s)D"."'(A)

(811)
(a b) d —c)

kc di —d ai

V, = (1+sz)-'/2i

where g =f ( )j+&"—1 "»/2 a-nd where

(816)

To solve for f, (s) from (811), one simply chooses a has been used.
matrix A such that as+c=0; for example: As will become clear later, it is convenient to choose

( 1 z
A, = (1+zz)—'/2I

E—z
(812)

I'(j+1—', (n1+n2)) '"
gj=e ""' ' (j+')-

&(j+1+-', (n1+n2))
(817)

thus obtaining
Let us now introduce the following generating

f;, (z)D, &j)(A,) = (1+sz) &"'+"»I' 'f, (0). (813) function:

(221s+222)i+(n1 n2) /2( 22—1+222z) j (n1 n2) /2--&z'+~2~'

, f.(s)=f(x;)=g (818)
i L(g+—ir)!(g —&r)!$'/2 f(g+22 (n1 —n2))!(j—

2 (n1 —n2))!j'/2(1+st) I+' &"'+""'

This definition requires of course (in order to have a
homogeneous polynomial of degree 2j in x) that

(819)

be a non-negative integer. The lowest spin contained
in the representation will thus be jo. We now verify
that f;, have indeed. the required properties.

(i) f;,(s) is clearly C, as is jj,(s), since g;,(s)
= (—1)j+'fj.(z) or jj(x,z) = fj(2~»,z).

(ii) H

where we have used the fact that unitarity of V implies
that

azyc q2
I
1+

bs+d i fbz+d/!2

From this equation it immediately follows that the
f;.(s) obey Eq (89). .

Apart from a factor, we observe that f;,(z) is a
D& function. We can thus set up a Hermitian "scalar
product" in D&„,,„,), invariant under SU(2), such that
with respect to this scalar product f; (z) and f,';(z)
will be orthogonal for (j,o)&(j',a'). We shall indeed
show that one has

denotes an element of SU(2) so that U '= Vt,
det V=1, or

(a c) ( d b)—
Eb di E—c a)

'

z
««(1+sz) "'"'+"-"f (z)f' (s)

2
&(j+1—',(n,+n,))

=88 5„
F(j+1+-',(n,+n,))

(821)

then according to (81),

T,„,„»(V)f,(x,s) = f;(Vx,s),
To prove this relation we set z=e'2 cot2P, 0&P&2r, and

(820) remark that f,,(cot2P e")= e'2('+&n' n»/2) f;,(cot-', P), and
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further that
/'cos-,'P —sin-', Py

I/'-(, ;//
&sink(P cos~2PP

However, in the case of the supplementary series,
(822) does not coincide with (85). Indeed, one can
easily verify that for n& =n2 =c, —1(c(0, the following
identity holds;

Hence, with the classical notations of quantum me-
chanics textbooks,

~/ 'I'
Du, (eg—ng)/2 I, ) aot;p) = a,r, (eg sl)—/2 (/k) y

(2l'
(f/- f )=1-1 (-,'i)'ck(dz) ck2dz2

X Ik~ —»I ' 'f /"(k))f /. (k2)

the left-hand side of (821) reads

I'(j+1—', (ng+ e2))
(j+k)

I'(j+1+-',(I&+ep))

slnpdp d&r, (ng ng)/—2 (P)dg, (ng —nm)/2 (P)

I'(j+1——',(I,+I,))
r(j+1+-',(e&+I,))

where we have used the orthogonality properties of the
d~ functions.

Let us brieQy comment on the scalar product derived
from (821). For any two f and g belonging to D&„,, „»
the following integral obviously exists:

2 i
(f,g) = -ckdk (—1+kz) '("'+"')f(k)g(k)

7r 2

2 i
-ckcz (1+kz) a'&"'+"»

zz&1 2
XL-f( )g( )+f( )g( )j (822)

(The use of the (, ) notation is to distinguish this
scalar product from that introduced before. ) Clearly,
(f,f)&0 and the equal sign only holds for f=0. D(„,,„,)
is not complete with respect to this norm but is dense
in its completion, a Hilb crt space that we can denote
H &„,,„».It is easy to see that the set f;.(k) is an orthog-
onal basis in this space (j—jo~& 0 non-negative integer).
It is gratifying to observe that the scalar product (822)
is precisely the one corresponding to the principal series,
since from nq+n2 ——0 it follows that Re(n(+n2)=0
Lcompare with (83)j and in this case

e,=e,=c, —1&~&0. j, j'=0, 1,

Thus apart from an over-all constant factor the func-
tions f,, are again in that case an orthonormal basis for
the unitary representations of the complementary
series. This explains the particular normalization
chosen above.

Let us exhibit the action of the generators J, K on
the functions f;,(k). With J~=J(&iJ2, E'~——Xq&iE2,
they read

Jaf .=O.f. J+f~.= L(&0.)U~~+ 1)j"'f . +~

+sf —g.(j2 02)I/. 2f. ) +$Of.
&+f/. =~ LU~ ) (j~ —1)3'"f

+»L(&0)(j~o.+I)j'"f ,-+/(
~&//+~L(j+ ~+ 1)(j~~+2)3'/2f +~,.+~,

with
1 (j'—&.")(j'-jo')

2

i joC

j(j+1)
where we have used the notation of Naimark;

I'(c—j)I'(i+c+ j) 2
=2(—1)'+' (-', i)eh&dr(

I'(1+c)2

Xf;;(»)f;.(k()( I+»k~) ",
and since 2(:=I(+n2= Re(n(+N2),

I'( —j)1(1+ +j)
(f;;,f,.) =2(-1)'"

Ll'(1+&)3'

2I'( —c)

I'(1+c)

I'(g+1 ,'(ng+e—2))
=1.

I'(j+1+-',(e(+e2))
(823) jo———,

'
~
n&—n2 ~, c= sgnL(n& —m2)$-', (e&+m2),

or a-', (n(+N2) if nq =n2. (825)


