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A very large class of c-number Lagrangian field theories, called canonical Geld theories —being all theories
whose Geld equations have su%ciently many solutions —satisfy a number of imporant completeness relations.
These relations ensure the existence of Gell-Mann current algebras and Fubini sum rules, and guarantee that
canonical Geld quantization is possible. We have studied finite-component, first- and second-order Lagran-
gians in general, and a class of fourth-order Lagrangians. The work is preliminary to an investigation of
infinite-component field theories.

I. INTRODUCTION

~
&HIS report is a study of canonical 6eld theories of

a finite number of local fields. Under certain con-
ditions these provide model saturations of Gell-Mann
current algebras and Fubini sum rules.

Physically interesting models must involve an in6nite
number of states, with all values of spin, otherwise the
currents are polynomials in momentum transfer. It has
therefore been suggested' that the most convenient
framework for current algebra is in6nite-component
6eld theory, and in fact it has been found' that the cur-
rents of all known saturations with nontrivial mass
spectra are the canonical currents of Lagrangian field
theories of infinitely many fields. However, some in-
finite-component wave equations have solutions with
spacelike momentum, and these unphysical solutions
must be included to obtain saturation, even in the
in6nite-momentum frame. Wave equations without
spacelike solutions can easily be written down, 3 but
such theories seem not to provide a current algebra.

We have studied 6nite-component theories in order to
understand what are the special conditions that must be
satisfied in order that the canonical current provide a
current algebra. To learn something for possible appli-
cation to infinite-component theories, it is important to
choose models that can easily be generalized from the
6nite- to the infinite-component case. On the other hand,
it should not be necessary to eliminate from them those
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unphysical features that are peculiar to 6nite-component
Geld theories. Positivity of the physical probability
metric is an important physical requirement. In 6nite-
component field theories it is very dificult to satisfy
except for the lowest values of spin; it usually requires a
complicated structure of subsidiary conditions. In
in6nite-component theories this particular problem is
quite trivial, and subsidiary conditions play no role
there. We have therefore ignored the positivity require-
ments in our choice of models.

The results are as follows: There is a very large class
of c-number Lagrangian field theories that we may call
canonical field theories; they are theories whose 6eld
equations have a sufficient number of independent
solutions. The c-number solutions of canonical field
theories satisfy a set of sum rules —one sum rule for
6rst-order theories, and three sum rules for second-order
theories (Sec. II). These sum rules are very closely
related to current commutation relations (Sec. III), to
Fubini sum rules (Sec. IV) and to the possibility of con-
structing local quantized 6elds by canonical 6eld quan-
tization (Sec. VI). These results are quite general for
first- and second-order Lagrangians. 4 No complete
investigation of higher-order theories has been carried
out, but a class of fourth-order Lagrangians is examined
in detail (Sec. VII) and no hint of special difficulties
has come to light.

The conclusion is that the only requirement necessary
to ensure that a Lagrangian 6eld theory provide a model
current algebra is that it be "canonical"; i.e., that the
field equations have enough solutions. If the field has
d components and the Lagrangian is of the eth order in
the momentum, then "enough" solutions means —',ed
independent solutions for each sign of the energy. The
extension of these results to the case of infinite-com-
ponent fields is not completely obvious. It turns out that
the most convenient tool for studying the important
completeness relations is a set of meromorphic functions

4 The restriction to currents of special types ("constant" plus
"convective") introduced by Hamprecht and Kleinert (Ref. 2) is
quite unnecessary. All the solutions found by Chang et al. (Ref. 2)
are also of this type.
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that can be interpreted as scattering amplitudes. The
study of such functions in infinite-component theories
will be reported separately.

Klein-Gordon Theory

This is a theory of a single scalar complex field P(x).
The Lagrangian is

with

Z = d'x y*(x)LI i—lP(x)
f.~ l
E ax)

I.(p) =p' —m'.

II. COMPLETENESS

Completeness of the set of c-number solutions of the
classical 6eld theory is basic to current algebra, sum
rules, and canonical quantization. We investigate
completeness in successively larger classes of field
theories.

This is because both of the following sum rules are
satisfied:

4(q)f*(q)
=0, (first sum rule);

2qp

4 (q)4*(q)
qo ——1, (second sum rule) .

2qp

(10)

U(3,1) Theory

The preceding analysis can be generalized to a wide
class of theories. Here we consider an example of field
theories that contain many 6elds with di6erent spins.
Instead of a single scalar 6eld we consider a vector 6eld
P(x) =Q„(x), @=0, 1, 2, 3). For clarity, components
will be labeled with Greek indices, solutions with Latin
indices; the Greek indices will be suppressed whenever
possible. The Lagrangian studied is

d'x Pt(x)L i ~it (x)
ax)

The conserved canonical current density is

J„(x)=i&*(x)B„P(x) (3)
with ft = (tel') and

or, in momentum space
(13)L(p) =pCp+A p' —m',

pCp =psC„„P", (C„~)&~ =8&~b„o.
(4)I.(p q) =4*(p)(p+q)A(q).

(14)

The 16 matrices C„" form a four-dimensional represen-
tation of the algebra U(3, 1). All the results of this sec-
tion can be generalized to an in6nite family of canon-
ical theories in which the C„" are replaced by any one
of a set of finite-dimensional representations of U(3,1).
This is done in the Appendix.

To solve the field equations we diagonalize the matrix
pCp. We choose A and m' positive so that all four solu-
tions have positive p'; then p„can be transformed to
rest, and in this frame'

Io(p, q) =4*(p)(P+q) o&(q)

=4*(q)2q4 (q),
=0

po qoj

po= —qo.
The quantity

(6)Io(p, q) =4*(q)2qo4(q)

is the number of particles per unit volume. ' We shall
use a covariant normalization, setting pCp =p'(1 —n),

Let the three-momentum p be 6xed. Then the time
component Jo(p,q), p=q, defines the orthogonality and
normalization properties of the c-number solutions of
the Lagrangian field equation. Indeed, since po ——+qo,

f*(q)4 (q) =1.
Then, obviously, if g=p,

4(q)&*(q)
(qo+Po)4(p) =4 (P)

2qp

(7) where e is the diagonal matrix with matrix elements
0, 1, 1, 1. In an arbitrary frame we define the operator
n=n(p) by this equation; then the eigenvalues are
always 0 (singlet) and 1 (triplet). The corresponding
mass values, obtained by diagonalizing L(p), are

where the sum is over the positive- and negative-energy
solutions. That is, in the space of 6xed three-momentum,

L(P)- =L-(P')~-

L (p') =p'(1 —n+A) —m',

(16)

(17)

4(q)4*(q)
(qo+Po) =1.

2qp

and, putting L (p') =0, are
9

mo' =m'/(A +1), mrs =m'/A

A more subtle result is that (8) remains true when pAq.

5 More precisely, J0 is the number of particles with positive
energy, minus the number of particles with negative energy.

In this simple case we may simply use (14) to calculate

pep= P', P

from which it is triviaj to Gnd the eigenveetors (19).
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The four solutions (there are eight,
signs of the energy) are

0Aa= 0
~ jv~

L (p') =p4+p'(1 I—+A)+B

The zeros of this polynomial give the masses
19

p' = 2 (—A+22 —1)
mn 2

(29)

counting the two Diagonalizing the operator 22(p) defined by (15) we have

with
Ep =mp +p El =mi +p (20)

&I -4'( —A+22 —1)'—B]'"= (30)

The conserved canonical current density is

~.(p,q) =4'(P)I.(P,q) 4(q),
where

(21)

I„(p,q) = (p+q) I'„„, I'„„=C„„+Ag„„(22)
and C„„ is the symmetric part of C„„.In the space of
fixed three-momentum Jp(pp, p; qp, y) defines orthog-
onality and physical normalization of the wave
functions:

2 =PS. (31)

The solutions are given by (19), and by another set of
four wave functions obtained by replacing m„by p, .
These additional solutions will be labeled fp', lplo',
g=1q 2q 3.

The theory may be bilinearized by introducing the
eight-component field

4l'(P)lp(p q)&l'(q) I p=p=»~'~l(p) Poqo&o'
(23) Then the Lagrangian tai es the form=0, ppqp(0;

where the single index j takes the values 0, 11, 12, 13,
and

(32)

Obviously, if p=q,

gp(p) =2Epm',

gl. (p) = —2Elm'.
(24)

wltll

L'(P) =I
(—1 p

k p' pCp+Ap'+B j (33)

4 (q)A'(q)
lp(q, p)4(p) =4(p).

~ (q)

As in the Klein-Gordon theory, this remains valid even
if p/q; this is equivalent to a pair of sum rules, analo-
gous to Eqs. (10) and. (11)

The solutions are of the form

(mPV'P) (Pi%» )
( Pp

)' '
Eyip' &

The canonical conserved current is

(34)

4 '(q)4 '(q)

g;(q)

0 (q)A'(q)
goI oo

n (q)

(first sum rule); (26)

(second sum rule) . (2/)

~.(P,q) =&'(P)I.'(P, q)x(q), (35)

I.'(P q) =
I — I. (36)

0 (p+q)

E(p+q) „(p+q)"(C„„+Ag„„)J

For fixed three-momentum, Jo defines orthogonality

gi(q) =2Ep(mp' —pp')mp',

g2
——gp

——g4 —— 2El(ml' —pi')mi', —Fourth-Order Lagrangian

The matrix I'pp —=Cpp+A is the coefficient of qp in Ip(q, p). »t(p)1o (P q)x'(q) =»"n (q) Poqo&0'
These results are obtained by direct calculation from

' ' ' ="' ' ': ' (37)
(19) for the case at hand; the more general case of
higher-dimensional representation of U(3, 1) is treated where j and j run through the eight values 1, , 8,
in the Appendix.

If the Lagrangian is of fourth order in p„, then the
number of c-number solutions needed for completeness
is four times the number of field components. We study
a theory with the same field P(x) as in the preceding
example, but with the second-order Lagrangian operator
(13) replaced by

x (q)V(q) ,Io'(q, P)x(P) =x(p) .
~l(q)

(39)

and q5, , p8 are found by interchanging m and p„
in p1 p4. Obviously, if p=q,

I-(P) =P'+PCP+AP'+B. (28) As in the previous examples, this remains valid if y/21,
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The general second-order Lagrangian may be written

L(p) =I' p~p"+I' p~ —mZ'. (4&)

because the following sum rules are satisfied:

~ (q) x'(q)
=0, (first sum rule);

ni(q)

»(q)»'(q)
qpI'pp = 1 (second sum rule); (41)

ni(q)
(48)I„(p,q) =(p+q) r„„+r„.

(40)
The conserved canonical current is then defined in
terms of the operator

where
Let ip; and i'; be two of the solutions, and consider

J"(q) =4'J(p')LL(q) j 'Ip(q, p)«(p).)0 1

i1 Cpp+Ai

is the coefficient of go in Io'.
In terms of the original field iP, these sum rules are

rather astonishing
(5o)»m q p~(q) =&'-'(p')«'(p)

(42)
This is a meromorphic function of qo, q fixed, with
simple poles at qp =&(q+miP)'I'. Furthermore

=0,
q2 =0,

4i(q)A'(q) q4 =0,
g (q)

g()g =1 )

.gpq4 = —A —Cop.

(43)

from which it follows that

~(q)dqo=4' t(p )« (p) ~'
27ri

(51)

The contour surrounds all the poles, and the left-hand
side has the value

, 4'(q)«'(q)
=Z 4 -'(p') ~p(q, p)~i'(p).

~ (q)
Thus,

&&Residues of F(q& at =+(il' mp')'"l
Here the sum as always, includes all the solutions, in
in this case 16 in number. From (43) it follows that the
usual completeness relation is satisfied in the fourth-
order theory as well,

4'(q)A'(q) I (q p)=1
~'(q)

(44)
«(q)«'(q)

Ip qp =1
g, (q)

(53)

0 (q)«'(q)
=0, (first sum rule);

g;(q)

for arbitrary g and y. Here for all g and all p„.This is equivalent (provided I'„,AO)

I (q )=( +q) ( '+q')+( +q)"(C.+~g„) (45)

defines the canonical conserved current of the fourth-
(54)

order Lagrangian,

~.(q,p) =~t«)1.(q,»«p).
This current has the same matrix elements as (35); in
particular p;(q) is always given by (38).

All these results are generalized in the Appendix.

General Second-Order Lagrangian

I et L(p) be a second-order polynomial in p„, with
Hermitian matrix coeKcients. Let d be the dimension of
the matrices, and let iP;(q), j=1, , d, be a set of d
linearly independent positive energy solutions of the
Lagrangian Q.eld equation. Let m; be the corresponding
masses. Let us further postulate invariance of L(p)
under Poincare transformations; then there exists an
equal number of linearly independent negative energy
solutions, with the same masses, ~ all the poles of 1jL(p)
are simple, and no solutions have zero norm.

~ W. Pauli, Phys. Rev. 58, 716 (j.940)

«(q)A'(q)
qpI pp = 1 (second sum rule) . (55)

~i(q)

Vile see that this pair of sum rules, already obtained
in special cases, is a general feature of Lagrangian field
theories. Their validity depends only on the very
general postulates enumerated in the first paragraph of
this subsection. Lagrangian field theories that satisfy
these postulates will be referred to as canonical field
theories. An example of a noncanonical Lagrangian
field theory is obtained by setting 8=0 in (28); in this
limiting case the number of linearly independent solu-
tions with positive energy is 3 instead of 4; F(q) has a
double pole, and (44) is not satisfied.

Finally, it is clear that the restriction to second-order
Lagrangians is not essential. The main result (53) is
valid for a Lagrangian of any finite order, provided the
Geld equations have a suf5cient number of independent
solutions.
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For example, let I'„„=0, to treat the most general If we integrate over the time component of k with p,
first-order Lagrangian. The main result (53) is always p' and k' —k fixed, and use the sum rule (53), then we
valid, but instead of (54), (55) we now have the single find that
sum rule

4i(q)4~'(q)
Fp —1o

~~(q)
(56) dkp &p'I J (k') Jp (—k) I p&

=b i4~ (p' p+—k' k)p—t(p') X X'f(p) (61)
For the case of a fourth-order Lagrangian an illustrative
example was given above.

In addition to (54) and (55) an equally important
third sum rule is valid under the same conditions; see
Eq. (69) below.

III. CURRENT ALGEBRAS

or

Similarly

dkp J (k')J '(—k) =J"(k' —k)

dkp Jp'( —k)J'(k') =J' (k' —k),

(62)

(63)

act on the new degree of freedom, i.e., on the charge
index. They are used to de6ne

J (p, q) =4'(p)l V(q),
J"(p q) =&'(p)~ ~v(q)
J. (p, q) =4'(p)J.(p,q)~V(q),
J.-(p, q) =4'(p)I. (p q)~ ~V(q).

(57)

The current algebras considered here are all related
to the canonical conserved current. Ke construct scalar
and vector densities in terms of sets of 6elds that form
representations of some "charge group" like isospin or
unitary symmetry. The Lagrangian is a sum of the
Lagrangians of the individual charge components, and is
invariant with respect to the transformations of the
charge group. The charge index will always be sup-
pressed. A set of constant matrices X, satisfying the
commutation relations of the charge group

and therefore,

dkp[J'(k') Jp'( —k)]-f'"J'(k' —k) (64)

Transformed to con6guration space, this is an equal-
time commutator:

[J (x') Jp'(x))8(xp' —xp) =f"J (x)b"'(x' x). (65—)

Similar results are easily obtained for the commutator
of Jp'(x) with any local density that does not involve
time derivatives of the fields. The final result (65) also
remains valid if F„„=O.

Next, to calculate the "time-time commutator"
[Jp'(x'), Jp (x)j, consider the meromorphic function

F(q) =~;J(p')'(p', q)[I/J-(q)]I. (q,p)~;(p). (66)

As qp tends to inanity,

J"(q) 0--'(p')[r +(I/q )Io(p', p)1A'(p) (67)

Applying the residue theorem as before we obtainThese quantities are matrix elements of the Fourier
transforms of local operators, e.g.,

0 (q)4 "(q)
Z Jo(p', q) Jo(q, p) =I (p",p) (6g)

ni(q)J (k) = e'"J (x)d4x

&p I
J'(k)

I q& =b"'(q —p —k)J'(p, q).

The physical norm is defined by
& (q)& '(q)

59) p (q r„,+-,'r, ) (q r„,+-', r,) =0
g;(q)

A'(p)ip(p, p)A(p) =n (p)' (

hence the operator product J'(x') J„'(x) is given by (third sum rule) . (69)

(sg)
for arbitrary p„', p„, and «. This again implies (provided
r„„WO) the validity of the sum rules (54) and (55), as
well as the further result

&p I
J.(k)J. (-k)

I p&

= b"'(p' —p+k' —k) Z (po'+ko' —»)4'(p') ~'

0 (p'+k')Crt(p'+k')X, I„(p'+k', p) X'f(p) . (60),
n (p'+k')

In exactly the same way that (53) led, to the equal-time
commutator (65), Eq. (68) gives

[Jp'(x') Jp'(x)]b(xp' —xp) =f"&Jp&(x)8&4&(x'—x) . (70)

This result remains valid when F„,=0; i.e., in the case of
a general linear Lagrangian.

The "space-time commutator" is more complicated
and involves Schwinger terms. The function

~(q) =4'-'(p') Ji(p' q)[J-(q)] 'Jp(q, p)A'(p) (7l)
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has the limit Using straightforward Feynman rules, we obtain the
following amplitude for "Compton" scattering (see
Fig. 1):

g (I i I QiI Qp I 0) }]lpf (p) (72)
T."(p p'») =&'-'(p')(~'Ll/L (p+k)3.(p+» p)) '

as qo tends to inlnity; whence the sum rule +) I.(p', p'-k)LI/L(p'-k))) }~ '(p)
4 (q)f'(q)

Z Ii(p', q) 1o(q,p)
The time component To is a function of the type used
in the proof of the sum rules. It is a meromorphic
function of ko that behaves like

=I,(p,p')+(q —p) (r„,—r„i'„-'r„,). (73)
(1/k )&'-'(p')L~ »']~o(p'»)& '(p)

This is not independent of the previous results; it is as po tends to inf, nity. Thus, if to ' is the absorptive
ecluivalent to (68) and can be obtained directly from the art of T „the b the res, due theorem
three basic sum rules (54), (55) and (69). By the usual
arguments we obtain

dk ~
er fo rpJv—(pi p) (80)

dkpLJi (k'), Jp (—k))=f vJiv(k' —k)

+k p;.t(p')(r„, —r„l'„- r„,)L).,) ),y„(p) (74)

or, equivalently in configuration space,

Similarly, when both vertices are of the vector type,

dk&ts„" f"vJ v(—p—
' p)+k"& "(p' p), (81)

PJ], (x ) JQ (x)]8(xp xs )
8f'"Ji'(x)+iZvl '(x')

BXp,—
~t4&(x —x'), (75)

where Z„„"was defined by (76).

V. INFINITE-MOMENTUM FRAME

where

g„„'(x)=if;„t(x)(I'„„—I',„I'oo 'I'„o)LX,X'] iP;(x) . (76)

In the case of a linear Lagrangian, Eq. (75) remains
valid; in this case the Schwinger terms vanish. (After
held quantization, new Schwinger terms appear in both
first- and second-order theories. )

IV. FUSINI SUM RULES

To show that the preceding results contain sum rules
of the type considered by Fubini et aI,.' it is sufhcient to
show that the meromorphic functions F(q) are related
to scattering amplitudes. Let us introduce interactions
into the Lagrangian by adding the free Lagrangians of
scalar fields A(x) and vector fields A„(x), and local
interaction terms

d4x(A. (x)J'(x)+A.v(x)J (x)}. (77)

The time direction has played a distinguished role in
the whole development. The time component of the
canonical current plays a major role in dining the
physical norm, and all the sums and integrals are carried
out with the three-momenta 6xed. The Lorentz invari-
ance of the Lagrangian guarantees that any positive
timelike direction X& can be used to de6ne the time axis:
in general, sums and integrals are then to be evaluated
with the transverse components of momenta kept
fixed, for example'

dkpT(k„, ) ~ dv T(k„+vX„, ).

Although the sum rules are Lorentz-invariant, the
individual terms are not, and it is possible to suppress
some contributions by a judicious choice of P„and a
restriction on the momentum transfer. In particular it
is possible to suppress the contribution of negative-
energy states by taking the limit of lightlike A,„."

For delniteness consider the sum rule

f~(q)4~'(q)
~"1.( p)A'(p) =k '(p)

g, (q)
(82)

FIG. 1.Feynman diagrams illustrating the scattering amplitudeT„ofEq. (78). The incoming quantum (marked k') is a scalar
with internal quantum number o,' the outgoing one is a vector.

V. de Alfaro, S. Fubini, C. Rossetti, and G. Furlan, Phys.
Letters 21, 576 (1966).

C. G. Bollini, J.J. Giambiagi, and J.Tiomno, Nuovo Cimento
51A, 717 (1967)."S.Fubini and G. Furlan, Physics 1, 229 (1964);M. Geii-Mann,
Lecture Notes, International School of Physics, "Ettore Major-
ana, " Erice, Sicily, July (1966) (unpublished). The infinite-
momentum limit considered as a transformation to a lightlike
coordinate system has been discussed by H. Leutwyler, presented
at the VII Internationale UniversitKtswochen fiir Kernphysik,
Schladming, 1968 (unpublished).
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where fi;(p) is a positive-energy solution of the field
equation.

Let e be a small positive number and put

X~={1+-',e, 1—-', e, 0, 0),
X'&=(1—-', e, 1+x4e, 0, 0) .

Then X'= —X"=e, and

(83)

(U) =$;t(q)ki'I)i'(p) (q'X) =x'
OJ)=y, t(q)k, I4„(p), (q ~)=-,. (89)

If (q X)=~ then all matrix elements remain finite, and
the positive-energy solutions contribute a 6nite amount
to the sum (82). To show that the negative-energy
solutions contribute nothing in the limit is not so
simple, because the components of the wave function
may tend to zero or to in6nity as e tends to zero and

qo and q~ tend to infinity.
Let us normalize P;(q) so that the individual com-

ponents remain finite; then the matrix elements in (89)
are 6nite, and

f;t(q)(lb')pi (p)= el kl, (q &)= —~ (90)

for a negative-energy solution P;(q). It remains to con-
sider the phase-space factor

~(q)=4'(q)(l 1)4 (q), (q l)=-'
From the 6eld equation it follows easily that:

~;(q) =1, r„„wo;
92

ib(q) =e, r„„=0.
We have not been able to exclude the possibility that
special cancellations could produce higher powers of c

k I„(q,p) =(1/.)[(X k)(X I)—P.'.k)(l ' I)]
—(ki I). (84)

I'uttjng k =q —p and using current conservation, we get

(X k)(X J') —(V k)(X' J) =eki J. (85)

The three fixed components of momenta are (V k) and
ki. We now specialize to the case (Vk) =0, or

(~' q) =(~' P)=—&o. (86)

Then (85) becomes

&'(q)l "J.(q P)& '(P) =( l»)6'(q)k'I(q, p)A'(P) (87)

We have to determine the limits of p„and q„as e

tends to zero for fixed a. If P2=mi;2 and qm=ygp, then

(p X) =+[(p V)'+e(mip+y ')]' ' —+ ~
(88)

(q. P) —~[(q. li )2+e(~.2+qi2)]1/2 + ~K ~

Both po and pi remain finite and tend to i~~ If (q .g)
tends to +~, then qo and qi tend to the same finite
limit, while (k X) tends to zero like e. If (q g) tends to
—~, then qo and qi tend to infinity like e ', while (B)
tends to 2~. Thus

in (90) or in (92), but no examples of such cancellations
have been found.

The meaning of this is that, in the limit of lightlike
X&, with momentum transfers restricted to (Vk) =ko
+ki ——0, and "external" momenta restricted to po&0,
pi&0, negative-energy intermediate states do not con-
tribute to the operator products (X&J„')(YJ„'). In
second-order canonical theories, with F„„WO, the same
is true of the products J (Xl'J„') and J„'(X"J„').

VI. CANONICAL FIELD QUAN&I~A'rION

We have de6ned a "canonical" Lagrangian c-number

6eld theory in Sec. II as one that has a suf6cient number

of solutions, and we showed that the sum rules (54),
(55), and (69) result. We shall now show that these
sum rules are intimately connected with the locality
of the corresponding q-number field theory.

Let us distinguish positive- and negative-energy wave
functions by a sign following the subscript, viz. , P;+(q)
and iP; (q). For each positive-energy solution we

introduce an annihilation operator a, (q), and for every
negative-energy solution an operator b;(q), and postu-
late canonical commutation or anticommutation rela-

tions;

[~i(q),~~*(q')] =b ~~+(q) b"'(» —a'),

[»*(q),b (q')] =b n -(q)b"'(iI —q').

Now define a quantized field. by

(93)

(94)

P(x) =P d'q e'&'* 6+(q)~ (q)
%+ q

+ -0 -(q)»'(q) (95)
n -(q)

Then,

[P(x),Pt(x')] = d'q e'&' ""
0+(q)A+'(q) |»-(q)A-'(q)

xZ +
n~+(q) n -(q)

(96)

[~(*),~t(")r.]l..=..=b"'(x-") (97)

This can be evaluated when xo=xo' by means of the
sum rules (54)—(56). The physical interpretation re-
quires that q;+(q) be positive-definite, and. that q; (q)
be positive-definite (negative-definite) if the quanti-
zation is made with anticommutators (commutators).
Here we compromise on positivity, as explained in the
introduction. (According to a well-known theorem due

to Pauli, ~ q; = —g;+ in a 6nite-component field theory
of integer spin 6elds, and g; =g;+ in the case of half-

integral spins. )
Let us consider the linear theories first. Then the sum

rule (56), together with (96), gives the equal-time
canonical commutator
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sponding momenta II(x) and 1I'(x) and verify that a
complete set of canonical equal-time commutation
relations are satished. Thus we learn that a complete
canonical formalism can be developed for some quantun~
Geld theories with Lagrangians of order higher than 2.

and this need only be supplemented with the observa-
tion that f(x) commutes with P(x').

For a general second-order Lagrangian the complete
set of canonical equal-time commutators is given by
(96) and the three sum rules (54), (55), and (69) are
given by

B(*)A'(~')jI.=" =0 (98)

9(*),11(*')jl*.=*.='B"'( -"),
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so that
11(s)=it'(V) (V"P.0+2 Po) (101)

APPENDIX

»(v)»(v)
7

~ (v)
(second sum rule);

II;t(q)»(q)
=0, (third sum rule) .

~ (v)

J.~~,p) =~~~)~(p)+~t~~)»(p)

Our three sum rules may be written

0 (v)»'(v)
—=0', (first sum rule);

n (v)

(102)

""")(~)-(n.)

In the preceding sections we have discussed models
based on one of the simplest representations of U(3,1),
i.e., the representations where the wave function is a
four-vector. In this Appendix we want to generalize

(103) some of the results to the representations where the
wave function is a symmetric four-tensor )P„,...» with
S indices, N being an arbitrary Gnite positive integer.

If U(3, 1) is reduced along the canonical chain
U(3, 1)QU(3)QU(2)QU(1), the wave functions are
labeled by the integers r, X, p, satisfying E&v&P &g.
Explicitly

(105)

which emphasizes the close relationship between
c-number completeness relations and q-number com-
mutation relations. It is now easy to see that

(E) '~' r) '~'(x) '~'

(...).(...)--)) &~i

«o~o(p'a) ~o(ap) =~o(p', p) . (106) x ())3 ) r—) (~ ) N &(A1)—

VII. CANONICAL FIELD QUANTIZATION
FOR FOURTH-ORDER LAGRANGIAN

Let us return to the example of Sec. II of a canonical
theory with a fourth-order Lagrangian. The current is
given by (45) and (46). The time component can be
written without explicit appearance of derivatives as
follows:

D, ), „), (g', g)
g(r', )',n')nz' nN(r)~)y (r, X,n)(~)

—$(T,V, ) nz"nn&(P) &iL (~n')P (r, X,n) (P) (A2)

where g„ is the four-velocity and q;„ is a set of spacelike
unit vectors orthogonal to p„. The symbol S is a sym-
metrization operator.

The D functions are dehned by

We may pass from q to g' by means of a pure Lorentz
transformation in the plane of g' and q. Therefore we
choose the direction of the s axis to lie in this plane.

From (A1) and (A2) we obtain

~o(np) =11(V)4(p)+II'(V)k'(p)+H c (10&)
where

4'(p) =pV(p) (108)

(p) =4'(p)p (109)

II(p) =4'(p)(p'po+p"~o+~ pa) (110)

The sum rules (40) and (41), together with the analog of
(69), give 10 sum rules of the type (103)—(105), the
only nonvanishing sums being

Dr'V rX ('gn)'g)n

|1V=By ),B ~
( [ ( )

/cosh(8) j
E r X) E' ))— —

X(tanh8)'+" " 2Fg(X —r, X r', )(—1V; ——1/sinh |t)
(A3)

4 (v)»A)» 4)» (v) =1. 111
In a similar manner it is possible to obtain the matrix

elements of the U(3,1) generators C„"between states of
We can introduce local ffelds f(x) and)P'(x), with corre- different U(3) quantum numbers and different four-
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velocities. For instance,
1 (r X—)gs'go' (r—X—)ps ps(f~" "' "'&(g')

~

Coo ~p&'" "&(»)= (1V—X)rjogo'+ D, g „x (si', »,

(r—X)(1+2sIs")—(r' —X)(1+2gss)
pv —x)(&,&,'+&,'~,)+

$8/0 $8 $0

XD,'.„..(.,». (A3)

lE) -(p' q)(p q)
' ' (p' q)' —m 'm ' l'"+' (p q)' —m 'm ' l'+'

~ so=+(ss +~a )i~s E0'i m m m — (p 'q) — — (p'q)

kg s SSg2 2 l m, 'm '
X(—)' P ( ', —;N; — —

~

Pg~ —,—,—X;
m 'm ' —(p' q)'& 4 m 'm ' —(p q)s&

l Poqo m,m. rqsqo oPsPo—)'
X A+BI% + I

m
& p q p q psqo popo &-—

If the spacelike vectors are chosen in an arbitrary manner with respect to q' —p, the preceding expressions will
involve U(3) rotation matrices in addition to the expressions for pure Lorentz transformations.

Formulas (A3)—(A5) allow us to write the sum rules of Sec. II in terms of the D's and to obtain a series of rather
complicated addition theorems for the hypergeometric functions. In particular, for the quadratic model the sum
rules of Eqs. (26) and (27) may be written

=0 if v=0,
~' l p p' (p' p)' —m 'm"' '"

&m,m, . (p p)

Sly m~s2 2l l
sFJ r, r, ——1—V) !

m, 'm (p p—')'&.
if I=1, (A6)

where m, ' =1/(A+BA Br). —
In (A6) we have considered the simple case when

p, p', and q are collinear.
For the more general case of arbitrary orientation of

the 3-vectors, one obtains more complicatedaddition
theorems including extra hypergeometric functions
coming from U(3) rotations.

Similar expressions may be obtained from the fourth-
order model.

In general the addition theorems are rather compli-
cated and difficult to check by direct computation. We
have done it in a few particular cases. We produce the
"check" for the simple case when p'=y=0 and v- =v.'=0.
Then (A6) becomes

I
1+

m.'

~ ko & m, 'i m. '& mos

The left-hand side of (A7) can be written

lay lX—
~ l sl' ~

+"m '
I( —)'I

E~& ( I & Em.s& mos

E! lsl' )" $1—(B/A)(rf" —'
(—) =1+

~ (E—I)!(mo& ~ o!(I—a)! mos

E! l qs q (1—B/A)'( —)xZ
e-o (1V—s—1)!kytos& ~ o!(1+s—"0)!

t:1—(B/~) 3'( —.) ~ (—)=Pa,
o!(1+s—0)! =o o!(1+s 0 r)!——=0

as was to be s¹wn,

As both sums are of 6nite range (A =positive integer),
we may exchange the order of summation and write


