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Present calculations of radiative corrections for electron-proton and positron-proton scattering usually
omit various parts independent of an infrared cutoff in two-photon-exchange contributions to the processes.
These parts are examined for their effect on simple calculations which accompany the interpretation of
experimental measurements. It is concluded that the simple calculations may not be adequate for large-
angle scattering. More detailed analytic approximations are given for use at such angles if the asymptotic
decrease of proton form factors is at least as fast as #72. A numerical method is outlined for slower decreases.
The contribution of the N*(1236) resonance to radiative corrections is noted to depend most strongly
on the choice of a form factor for N* photoproduction. )

I. INTRODUCTION

HE effective object of early experiments on
electron-proton scattering was the measurement
of the electromagnetic form factors of the proton. The
form factors occur in the Rosenbluth! scattering cross
section which is calculated on the lowest-order assump-
tion of one-photon exchange between the electron and
the proton. Higher-order terms in matrix elements and
cross sections may be regarded as somewhat less signi-
ficant because they are weighted by extra powers of the
fine-structure constant «. Nevertheless, such questions
as the effect of emission of soft photons undetected in
the experiments require answers, and for that reason
calculations have been extended?? to the next order in
perturbation theory. Finite corrections (radiative cor-
rections) to the Rosenbluth cross section are found to
come mostly from inelastic processes in which one
photon is exchanged between the scattered particles
and one soft photon is emitted, but the processes also
supply terms dependent on a photon mass A and di-
vergent at A=0. These terms are cancelled>? by
A-dependent terms in matrix elements for two-photon
elastic processes (e.g., the exchange of two virtual
photons), whose contribution to the cross section is of
the same order in o.
The simplest method of calculation,* which is almost
universally used, expresses the radiative corrections as

din
(n

where o is the corrected cross section and o¢ is the
Rosenbluth cross section. Here o and oy may also stand
for differential cross sections. For (1) to hold as an
identity, the matrix element for any part of the radiative
correction must be proportional to the matrix element
for one-photon exchange which determines o¢. Relaxa-
tion of this requirement was first considered by Flamm
and Kummer® in an approach based on dispersion

a=(14+38)0,
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theory. More directly, since the matrix element for
scattering by exchange of two virtual photons contains
an integral over the momentum of one of the photons,
and this variable occurs in the arguments of the proton
form factors in the calculations, it follows that the
maintenance of (1) requires an approximation for the
integral. The approximation, which in effect assumes?*
that form factors are significant only near zero mo-
mentum transfer (although its actual purpose is to
simplify an integration), in a sense replaces the actual
measurement of form factors for the purposes of a class
of experiments® that compares electron-proton and
positron-proton scattering under identical kinematical
conditions to gain information about the real part of
the amplitude for two-photon exchange. After presenta-
tion of the relevant matrix elements in Sec. II, the
effect of this approximation and its relation to asymp-
totic behavior of form factors for large momentum
transfer is discussed in Sec. ITL.

Two-photon-exchange scattering makes a finite
contribution to 8, as well as a contribution dependent on
A, whose purpose has been mentioned above. The two
parts are additive.># In simple calculations, some or all
of the finite parts are neglected. Section IV examines the
influence of that approximation on é§ when the asymp-
totic behavior of form factors allows it to be used.

The last significant assumption of approximate
calculations is that the proton remains a proton
throughout the scattering event. However, in two-
photon exchange, it is possible to excite a nucleon
resonance 37 as an intermediate state. A summary of
estimates, which are so far confined to the N*(1236)
resonance, is given in Sec. V.

II. THEORY

By standard techniques of quantum field theory
applied to the single Feynman diagram for scattering

6 J. Mar. B. C. Barish, J. Pine, D. H. Coward, H. DeStaebler,
J. Litt, A. Minten, R. E. Taylor, and M. Breidenbach, Phys. Rev.
Letters 21, 482 (1968), and references therein.

7S. D. Drell and S. Fubini, Phys. Rev. 113, 741 (1959).

8G. K. Greenhut, Ph.D. thesis, Cornell University, 1968
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with the exchange of one photon, one may derive® the
matrix element

iaZ  mM 1
M=

(BB E)E
X (ps)yun(pr)a(p)Tu(Qu(pe), (2)

where m is the mass of the lepton which has initial
four-momentum p; and final four-momentum p;, and
M is the mass of the proton which has initial four-
momentum p, and final four-momentum p4. The
quantities E; are the corresponding energies. Equation
(2) describes the scattering of both electrons (Z=1)
and positrons (Z= —1). The four-momentum ¢ trans-
ferred by the photon is equal to p1—p; or ps—pe. The
proton vertex function is

Lu(k) =vuF1(R)+ (1.79/2M)y - by Fo(R),  (3)

where F; and Fs are the Dirac and Pauli electromagnetic
form factors. From (2), the cross section for elastic
scattering is

w2 E B,y
do=
(P po) —m* M2

X / EpadpsQ6@ (pst+pa—p1—p2), 4)

where Q=M1"M, gives the Rosenbluth cross section.
The calculation above is correct to the order of a?
The first step in the derivation of the elastic contribu-
tion to (4) of the order o? is the construction of all the
Feynman diagrams for scattering with two external
lepton lines, two external proton lines, and four vertices.
There are five such diagrams. If their matrix elements
are subscripted 2-6, the substitution in (4) which gives
an elastic scattering cross section to the order of o is

6
Q=M1TM1+2 RCMJ Z M". (5)

=2

To follow the convention of Ref. 3, let M, be the matrix
element for the virtual process in which the lepton
absorbs a photon of four-momentum % before it emits
a photon of four-momentum g-% and /3 be the matrix
element for which the order of these two events is
reversed. Then

¢ mMZ ' v+ (prtk)+m

M= [t
(2m)8 (ErESEE ) k22p1-k

Xy (p1)(pa)T's(g+k) Pr(pa—k,M)Tu(—E)u(pe)

X , (6)
(R2—=N)[(k+q)2—N]
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where

Pr(po—t, M) =Ly (2= B)+MY/[(p—kpP~M*] (7)
is the propagator for the intermediate-state proton.

Similarly, M3 follows with the replacement of pi+%
by ps—*k in the intermediate lepton propagator

(’Y' (prtk)+m - (P3—k)+m>
M3=M d .
/€2+2f)1‘k ]32—2173'13

The vpp vertex function off the mass shell is assumed to
be still defined by (3), because the insertion of an extra
term with an axial-vector form factor proportional to
F; has no significant effect on calculations.

Unlike M, and M3, the remaining matrix elements
MM do not give differing contributions to electron-
proton and positron-proton scattering through their
interference with M in (2).

Subsequent sections of this paper deal with approxi-
mations made in calculations with (6) and (8), par-
ticularly the evaluation of the integrals over k.

III. EVALUATION OF INTEGRALS

The four-dimensional integrals in (6) and (8) have
two noteworthy properties. Firstly, they are impossible
to determine analytically in the absence of information
about the functional forms of F; and F; in (3), and this
limitation remains for quite a wide range of explicit
substitutions of form factors. Secondly, they are func-
tions of a photon mass A.

The second property suggests a simple method of
approximate evaluation. A gauge-invariant treatment
of the complete calculation of order o® in perturbation
theory involves the consideration of additional Feyn-
man diagrams which illustrate the elastic process of
one-photon exchange with the emission of one soft real
photon. Taken separately, the matrix elements from
these diagrams are also functions of A, which cancel the
A-dependent parts of M, through M when the entire
order is examined. Largely independent of a prescription
to distinguish between ‘“‘soft’” and ‘“hard” protons, the
inelastic calculation?:® produces only one function of A:

ldy
K (P33 W) =pi 05 [ FLUCCHNC

0

where p=vyp;+(1—y)p;. Therefore, it is desirable to
have an approximation for (6) and (8) which expresses
\ dependence only through (9). The approximation is
that the form factors [normalized so that Fi(0)=1]
are negligible with respect to unity except when their



180

arguments are near zero, so that

/#Mm@m@+m®wﬁﬂn
zm@/mm@)am

for any g;.
With the approximation (10), whose consequence
for M, is

My~ (—Za/2w)[K (p2, —p1; )
+K (ps, —ps; \) 1M, (11)

there is the additional bonus, through (4), that Eq. (1)
is preserved. It is possible® to make a calculation a little
more accurate than one which relies entirely on (10)
but, at the time that this was first done, it seemed that
the principal aim of experiments to which the theory
provided a means of interpretation was the measure-
ment of form factors. Hence (1) remained untouched,
and no substitution was made for form factors in (6)
or (8). However, since we now have a considerable
(although not complete) understanding of form factors
at low® and high'® momentum transfers, it is meaning-
ful to ignore (1), insert various possible form factors
explicitly in (3), trace their effect through (6) and (8),
calculate the appropriate cross sections for positron-
proton and electron-proton scattering under the same
kinematical conditions C, and determine the ratio R(C)
of these cross sections, for comparison with experiment.
R(C) may then take into account the influence of the
proton’s anomalous magnetic moment, which is dis-
cussed briefly in Sec. III B of Ref. 4 and neglected by
(10).

Although the results reported may not be truly from
the asymptotic region, present indications are that
the high-momentum-transfer behavior of form factors
is according to a power law

F,‘OC (1‘—'t/t0)_", (12)

where n=2, ¢*=t is measured in units of (GeV/c)? and
4p=0.71 in those units. There are the further possi-
bilities,!! derived from the application of the Bethe-
Salpeter equation to a model in the ladder approxima-
tion, that the exponent # in (12) may lie between 1 and
2, and that there may be an extra factor of In(—¢/M?)
multiplying that expression. Unless # is an integer, the
conventional method of Feynman parametrization
offers little help even in the approximate evaluation of
the integrals in (6) and (8). Therefore, they must be
treated from first principles as four-dimensional integrals
in Minkowski space.

As an example of the calculation, consider the integral
in (6) when (12) is substituted into (3). The denomina-

9 V. Wataghin, Nuovo Cimento 54A, 840 (1968).

10 G. Weber, in Proceedings of the 1967 International Symposium
on Electron and Photon Interactions at High Energies (Stanford
Linear Accelerator Center, Stanford, Calif., 1967), pp. 59-75.

11 M. Ciafaloni and P. Menotti, Phys. Rev. 173, 1575 (1968).
21, M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952),
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tor is

D= (k2—2p, k) (F2+2p1- k) (B2 —N2) (k2+-1,2) ™
XL (kg1 +t [ (k+9)* =]
= (B2 —12—2M7) (B2 — 1>+ 2E, E— 2 Eyrs)
X (E2—1r2—\2) (B2 — 2 +-1%) "
X[tt+E2—r*+a*+2Ea—2raf(z,u) 1"
X[—N+E2—r+a@+2Ea—2raf(zm)], (13)

where ko=E, k=72, z2=Fk-p1, u=p1-ps, a®=—t, and
f(z,u) =zu+ (1_22)1/2(1 —u2)ll2 COS(¢2'—¢u)) where ¢
and ¢, are the azimuthal angles associated with the
vectors k and p;, respectively. It is assumed that the
target proton is stationary, i.e., that p,=0.

The chief contributions to the integrals occur when
one or more factors in (13) are small. If each term in (13)
is considered separately, from left to right, the neigh-
borhoods where this occurs are

(a) r=E=0 or r=(E*+-M?»)'?+M,
(b) r=E=0, or large r=| E| near z=1,
or 7= (E*+42E,E)'? near =0,

(c) r=|E|,
(@ 7=,
(e) —a+[@+(E+a)+i?]2<r<a

+[La*+ (E+a)* 12 ]2,
() —a+[a+(E+a)*—NT]"2<r<a

+Lat (E+ay—a]e,

For integrals with 4% in the numerator, the regions of
large values of the integrand are still found in the union
of neighborhoods under the six labels above. The anal-
ysis is made principally to check the possibilities for
binomial expansion of the denominators in integrals of
the form

2 1 dd)z
,/0 [B4C cos(¢p,—¢u) ]* A+B+C cos(p.—du) ’

where the azimuthal angle ¢, is the first variable
to be integrated over in (6) or (8). For both equations
(6) and (8) the result of the analysis is that |C| < |B]
and |C|<|4+B]|, so that a single expansion can be
used.

Terms proportional to 1—2?2 appear in the integra-
tion. Experiments which record measurements in terms
of ¢* have the choice of sampling small ¢* either by
operating with beams of leptons of low energy or by
setting detectors to measure large-angle scattering
(#<0) at high energies. Since the Rosenbluth differ-
ential cross section falls off as (14#)(1—u)~2 with the
cosine # of the scattering angle, the former choice is
usually made. For analysis of such experiments, there
is justification for the neglect of terms proportional to
powers of 1 —#?in the present calculation, because these

(14)
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TABLE I. Measurements of R as a function of kinematical conditions C, and associated theoretical predictions. The columns headed
A and A’ list radiative corrections in the sense of Eq. (1), and A’ is the result of the more detailed calculation described in Sec. IV.
Columns 7 and 8 contain theoretical values of R calculated without (1) for two different values of #, the assumed power of ¢! that
reproduces the asymptotic behavior of proton electromagnetic form factors.

¢ —2 Expt. Radiative correction Theor. values of R

E; (GeV) cos7lu=0" [105(GeV/c)?] R A A’ n=2 n=1
10.0 2.60 0.204 1.0104-0.020 0.001 0.001 1.001 1.001
4.0 12.5 0.689 0.986-0.016 0.006 0.005 1.005 1.007
10.0 5.0 0.731 0.965-0.045 0.002 0.002 1.002 1.003
4.0 20.0 1.54 1.0034-0.022 0.015 0.010 1.010 1.013
4.0 27.5 244 1.040+0.043 0.028 0.019 1.019 1.028
4.0 35.0 3.27 1.1114-0.123 0.044 0.025 1.026 1.041
10.0 12.5 3.79 1.0244-0.034 0.014 0.008 1.008 1.011
10.0 15.0 5.00 1.038-£0.059 0.020 0.012 1.012 1.015

have essentially no effect on measurements made near
the forward direction.

Without further approximation, the integral over
2z is next performed. In the remaining respects, with the
—ie prescription and the transformation E— ¢E to
Euclidean space, the method of integration complies
with a standard pattern.’* When integrals over E and 7
remain, the integrand contains logarithmic terms which
cannot be treated in any simple way. Then, as a last
step before numerical evaluation, the scaling trans-
formations w;=(2/7) tan~'7 and 2w,—1=(2/7)tan"1E
are made, so that w; and w, each range between 0 and 1.

The question of numerical calculation of these two-
dimensional integrals is difficult, especially since the
integrand is still a function of X\. The first difficulty is
merely one of the time required for operation of
numerical computer programs. The treatment of the
infrared cutoff depends on the fact that the difference
of the exact integral form for M, and the approximate
expression in (11) must be independent of A. If the two
forms are evaluated separately by a Monte Carlo or
other numerical program for a fixed small value of A,
and their difference remains stable for subsequent
runs of the same programs with progressively smaller
values of )\, then it is a crude but probably effective
means of obtaining a credible result for the finite part
of M,. The same technique can be applied to Mj,
whose approximate value under (10) is*3

M= (Za/2m)[K (p2,ps; M) +K (pa,p1; M) 1M 1. (15)

_ This method has been adopted. The problem has been
considered partly as a test of Monte Carlo schemes for
eventual extensive application to the calculation of the
part of the electron’s magnetic moment that is pro-
portional to a?.

The abbreviation C in R(C) covers the triplet
(E1,¢%u) of kinematical conditions for a scattering
experiment. In addition, the exponent » in (12) may
be regarded as an unknown. The numerical programs

8 S, S. Schweber, Introduction to Relativistic Quantum Field
Theory (Harper and Row, Publishers, Inc.,, New York, 1961),
pp. 519-522.

must be run afresh for each new combination of the
four parameters, but a simpler expedient is used here.
The experimental results of Mar ef al.5 for measured
values of R(C) over eight different combinations C are
reproduced in the first four columns of Table I. The
radiative corrections* A obtained by the method of
Meister and Yennie* are listed in column 5. Values of
R(C) calculated by the techniques outlined in this paper
for the same sets of parameters C as in the experiment
are given in columns 7 and 8. Although the applica-
tion here is only to cases of integer #, the method can
be applied for arbitrary .

For the case n=2, the calculated values of R in the
table do not differ at all from those obtainable? by
various approximate treatments of the form factors
involved in the integrals (6) and (8). The same holds,
a fortiori, for form factors with an exponential de-
pendence on ¢.

The case n=1 has been modelled in this calculation
by a trivial adaptation of Wataghin’s® three-pole fit for
form factors, which takes account of contributions from
the p’, w, and ¢ mesons. If the behavior of integrals
(6) and (8) had been as insensitive here as for n=2,
columns 7 and 8 of Table I would have contained
identical entries. However, significant differences begin
to appear as the scattering angle increases. The degree
of “significance” must, of course, be assessed by refer-
ence to the experimental errors on measurements of R
quoted in column 4. In principle, nevertheless, the chief
source of error in beam monitoring® in that experiment
need not recur in other experiments.

An extra factor of In(—¢/M?) in (12) for large
momentum transfers does not enter calculations un-
ambiguously, for there is no evidence of such a term
at small momentum transfers, and the question of how
and where to introduce it for larger —¢ has no single
answer. But no plausible method of doing so seems to
affect the results in columns 7 and 8 of Table I in any
important way.

14 Since this radiative correction applies to R, it is the difference
of corrections calculated separately for positron-proton and
electron-proton scattering.
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Preliminary numerical estimates suggest, as Table I
implies, that the best prospect for a measurement of R
significantly greater than unity lies at large scattering
angles,'® above about 120°. The other conclusion of this
work is that, while previous approximate methods of
treatment of form factors may be adequate if =2, the
case n=1 requires a more detailed approach. One may
either accept as highly likely Wataghin’s recent
proposal'® that asymptotically Fi(f) behaves like ¢,
and then be compelled to use the numerical methods of
integration described here to calculate R accurately
for large scattering angles, or reverse the chain of
reasoning to use measurements of R as a test of the
proposal. This may be an artificially simplified view,
however, to the extent that indirect effects of strong
interactions are not fully contained in the present
calculation.

IV. APPROXIMATE EVALUATION OF INTEGRALS

A result of Sec. IIT is that numerical integration is
probably unavoidable if the consequences of the substi-
tution #=1 in (12) are to be explored fully. Is there a
simpler way of proceeding in the case of large scattering
angles if #=2, as seems to be most likely!® from the
experimental evidence?

This matter has been studied in a previous paper?
which presents expressions for M, and M that are
more general than (11) and (15), and that contain parts
independent of N. Since the approximation (10) is
justified if #=2, the expressions are proportional to
M, and therefore allow the use of the simple relation
(1) to calculate radiative corrections. With only the
terms that have proved to be significant in numerical
evaluation, and purged of typographical error, these
extensions of (11) and (15) are

Za 51
M2=—{K<pz,p1; N)+K (pups; >\2)+[20 1n(——)
2 —S2
As—Bs
+1n2(4.—1)+32 ln2(—Bg)—ln2< —)
—B,
1—B,
42 Li2<A —> —1In?(1—A;)—} In?(By)
27 D2

Al—Bl Al—Bl
+2 Li2< _->+ Liz( )—2r2]
A1 l_Bl
Xcothd—K (pao,p1; —q2)}M1 (16)

15 For large angles, the approximation which neglects powers of
1—22 in the numerical integration must be removed. However,
the purpose of the approximation was to ensure a single binomial
expansion in an integral form like (14). Other single binomial
expansions are available in any suitably chosen range of ».

16'V, Wataghin, Nucl. Phys. (to be published).
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and
My=(Za/2m)[K (P, p3; \)+K (pa,p15 \)
—K (pa, ps; —¢) 1M1, (17)
where
pi pi=mM coshf,
[ypit+(A=y)piP=s1(y—A41) (y—B1),
Lypi—(1=y)pif=s:(y—A42) (y—Bs),
A:>B;,
and
2In(1—y)

Lig(x)=— | ——dy
y

0
in a Spence function, or dilogarithm.

The entries A’ in column 6 of Table I are radiative
corrections calculated with the assistance of (16) and
(17). The table indicates that there is no difference of
present importance between A’ and A for small scatter-
ing angles. For larger angles, detailed inspection of
(16) and (17) shows that the most significant terms
involve the A-independent functions K (ps,p;; —¢2).
Therefore, the approximate relation

A=A = (20/m)[K (p2.p3; —¢) —K (p2p1; —¢")] (18)

can be used to take more accurate account of the effect
of scattering with the exchange of two virtual photons
on radiative corrections. For substitution into (18),

K (ps, pi; —¢°) =Tl[ln2(m~—2E]————_m> ——1n2<tn—2>

pa pa

2ME; 1 2ME; 2E;(2E;—M)

(- ) ()
pa 2 pa m?
2E;—M M\ =?

o yn(2)-2]

2E; 2E;/ 6

where again a?=—i=—¢, p=(2ME;—M?*»'2, and
terms of order m?/M? with respect to unity have been
neglected. Equation (19) holds if 2M E;> M?*4m?, but
a similar equation is easy to obtain by integration if
2ME; <M*+m?. The quantity E; does not appear in
the headings of columns 1-3 of Table I, but is deter-

mined by these kinematical quantities through the
relation —@?=~2EE;(1—u).

V. EFFECTS OF NUCLEON RESONANCES

It has been assumed above that two-photon—exchange
scattering occurs without the excitation of nucleon
resonances in M, or M; The assumption is expressed
in (7), which is just the proton propagator for substitu-
tion into (6) and (8). Drell and Fubini’ first made an
approximate nonrelativistic estimate of the effect of
excitation of the N*(1236) resonance by the use of
information about the amplitude for proton Compton
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scattering. More exact calculations may be describep
readily, but are difficult to perform because of the many
terms that are generated. To carry through a project
of this type in a reasonable time requires, firstly, a com-
puter program to handle the necessary algebraic opera-
tions and substitutions of integral forms, and, secondly
[since it is not always possible to use (1)], a numerical
program to produce values of radiative corrections from
the simplified algebraic expressions.

The assumptions governing the input to the algebraic
program are the following:

(a) The propagator for a spin of £, to replace (7), is

Prpo(p,M*) = (v p—M*)[8,0— 37,7«
—(/BM*) (Yopoe—vops) — (2/3(M*)) popo],
where M* stands for the N*(1236) mass.
(b) Photoproduction of the N*(1236) resonance
occurs principally in M1 mode,'"1® so that the Lagran-
gian for the ypN* vertex is

e(c/M)vyyysud,A,+H.c.,

where v, is a Rarita-Schwinger spinor.

(¢c) The dimensionless constant ¢ in (20) is 1.437,
which can be derived from the work of Iddings.!?

(d) The M1 form factor for the ypN* vertex is given,
in general, by

G () =0.64M*/ (1+0.8M72)2, (21)

an expression which matches!” early experimental data
on photoproduction. Further details of the calculation
have been presented in a previous paper.?

(20)

In that paper, the approximation (10) for form factors
was used on G(¢), for the somewhat unphysical reason
that the algebraic calculation would otherwise have
overflowed the available storage of the computer. There
are now stronger justifications for the approximation.
Section III indicates that (10) produces no significant
error if G(¢) falls off with ¢ no more slowly than 2
Dufner and Tsai'® have made a phenomenological
analysis of recent data, which leads to a dependence

G« (149.0a) exp(—6.3a). (22)

The expression (22) falls off much more rapidly with
t=—a? than does (21). Moreover, Caneschi?® has con-
cluded from a model based on the Bethe-Salpeter
equation that G does not decrease asymptotically as
slowly as £72

( by R) H. Dalitz and D. G. Sutherland, Phys. Rev. 146, 1180
1966).

18 A. J. Dufner and Y. S. Tsai, Phys. Rev. 168, 1801 (1968).

19 C. K. Iddings, Phys. Rev. 139, B446 (1965).

2 1,. Caneschi, Nuovo Cimento 56A, 551 (1968).
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No completely general conclusions can be drawn from
the numerical computer programs produced in the
present work, because of the time needed for them to
generate results for a set of kinematical conditions which
is large enough to be representative. For angles near
135° and momentum transfers between 1 and
5 (GeV/c)2, the absolute value of their contributions to
radiative corrections for lepton-proton electromagnetic
scattering ranges between 0.007 and 0.011 as E, varies
between 4 and 10 GeV, with the assumption of (21)
for G(¢?), where ¢ is the total four-momentum trans-
ferred in the scattering process. Since G(g?) is factored
out of integrals under the approximation (10), it is
possible that numerical predictions should be multiplied
by a ratio of (22) to (21) to be in accordance with the
most recent results. Hence, they may be reduced for
large momentum transfers. On the other hand, for some
kinematical conditions Greenhut® has reported that
contributions for the N*(1236) resonance under different
means of approximation may be up to 509, larger than
those calculated by the present method. Further study
of these questions is required.

The effects of nucleon resonances of higher mass may
be incorporated in the calculation when accurate ex-
perimental measurements of their photoproduction
become available. Dufner and Tsai'® have remarked
that this situation has not yet been reached.

VI. CONCLUSIONS

For small scattering angles (below, say, 90°) it is
sufficient to calculate radiative corrections for com-
parison with present experiments by the simplest
available methods.2# For larger scattering angles, more
detailed analytic approximations of the type quoted in
Sec. IV are likely to be both accurate and noticeably
different from the results of the simple methods if the
asymptotic decrease of proton electromagnetic form
factors is at least as rapid as £72. If the form factors fall
off only as £, analytic approximations should be re-
placed by numerical procedures, as stated in Sec. IIL.
The contribution of the N*(1236) resonance to radiative
corrections at large angles is not negligible, but its
precise importance depends most critically on the
choice of the analytic expression for a yp/N* form factor.
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